ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.29 by root, Mon Jan 15 01:39:42 2007 UTC vs.
Revision 1.90 by root, Mon Oct 12 14:00:58 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
29
4#if __GNUC__ >= 3 30#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
32# define expect(expr,value) __builtin_expect ((expr),(value))
33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
6#else 35#else
7# define is_constant(c) 0 36# define is_constant(c) 0
37# define expect(expr,value) (expr)
38# define prefetch(addr,rw,locality)
39# define noinline
8#endif 40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
44#endif
45
46// put into ifs if you are very sure that the expression
47// is mostly true or mosty false. note that these return
48// booleans, not the expression.
49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
9 53
10#include <cstddef> 54#include <cstddef>
11#include <cmath> 55#include <cmath>
12#include <new> 56#include <new>
13#include <vector> 57#include <vector>
15#include <glib.h> 59#include <glib.h>
16 60
17#include <shstr.h> 61#include <shstr.h>
18#include <traits.h> 62#include <traits.h>
19 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
22 79
23// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 81// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 83// (note: works great for pointers)
27// most ugly macro I ever wrote 84// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 86
30// in range including end 87// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 88#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 90
34// in range excluding end 91// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94
95void cleanup (const char *cause, bool make_core = false);
96void fork_abort (const char *msg);
97
98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
99// as a is often a constant while b is the variable. it is still a bug, though.
100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143template<typename T>
144static inline T
145lerp (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164}
165
166// lots of stuff taken from FXT
167
168/* Rotate right. This is used in various places for checksumming */
169//TODO: that sucks, use a better checksum algo
170static inline uint32_t
171rotate_right (uint32_t c, uint32_t count = 1)
172{
173 return (c << (32 - count)) | (c >> count);
174}
175
176static inline uint32_t
177rotate_left (uint32_t c, uint32_t count = 1)
178{
179 return (c >> (32 - count)) | (c << count);
180}
181
182// Return abs(a-b)
183// Both a and b must not have the most significant bit set
184static inline uint32_t
185upos_abs_diff (uint32_t a, uint32_t b)
186{
187 long d1 = b - a;
188 long d2 = (d1 & (d1 >> 31)) << 1;
189
190 return d1 - d2; // == (b - d) - (a + d);
191}
192
193// Both a and b must not have the most significant bit set
194static inline uint32_t
195upos_min (uint32_t a, uint32_t b)
196{
197 int32_t d = b - a;
198 d &= d >> 31;
199 return a + d;
200}
201
202// Both a and b must not have the most significant bit set
203static inline uint32_t
204upos_max (uint32_t a, uint32_t b)
205{
206 int32_t d = b - a;
207 d &= d >> 31;
208 return b - d;
209}
37 210
38// this is much faster than crossfires original algorithm 211// this is much faster than crossfires original algorithm
39// on modern cpus 212// on modern cpus
40inline int 213inline int
41isqrt (int n) 214isqrt (int n)
58#if 0 231#if 0
59 return dx_ > dy_ 232 return dx_ > dy_
60 ? (dx_ * 61685 + dy_ * 26870) >> 16 233 ? (dx_ * 61685 + dy_ * 26870) >> 16
61 : (dy_ * 61685 + dx_ * 26870) >> 16; 234 : (dy_ * 61685 + dx_ * 26870) >> 16;
62#else 235#else
63 return dx + dy - min (dx, dy) * 5 / 8; 236 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
64#endif 237#endif
65} 238}
66 239
67/* 240/*
68 * absdir(int): Returns a number between 1 and 8, which represent 241 * absdir(int): Returns a number between 1 and 8, which represent
73absdir (int d) 246absdir (int d)
74{ 247{
75 return ((d - 1) & 7) + 1; 248 return ((d - 1) & 7) + 1;
76} 249}
77 250
251extern ssize_t slice_alloc; // statistics
252
253void *salloc_ (int n) throw (std::bad_alloc);
254void *salloc_ (int n, void *src) throw (std::bad_alloc);
255
256// strictly the same as g_slice_alloc, but never returns 0
257template<typename T>
258inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
259
260// also copies src into the new area, like "memdup"
261// if src is 0, clears the memory
262template<typename T>
263inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
264
265// clears the memory
266template<typename T>
267inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
268
269// for symmetry
270template<typename T>
271inline void sfree (T *ptr, int n = 1) throw ()
272{
273 if (expect_true (ptr))
274 {
275 slice_alloc -= n * sizeof (T);
276 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
277 g_slice_free1 (n * sizeof (T), (void *)ptr);
278 assert (slice_alloc >= 0);//D
279 }
280}
281
282// nulls the pointer
283template<typename T>
284inline void sfree0 (T *&ptr, int n = 1) throw ()
285{
286 sfree<T> (ptr, n);
287 ptr = 0;
288}
289
78// makes dynamically allocated objects zero-initialised 290// makes dynamically allocated objects zero-initialised
79struct zero_initialised 291struct zero_initialised
80{ 292{
81 void *operator new (size_t s, void *p) 293 void *operator new (size_t s, void *p)
82 { 294 {
84 return p; 296 return p;
85 } 297 }
86 298
87 void *operator new (size_t s) 299 void *operator new (size_t s)
88 { 300 {
89 return g_slice_alloc0 (s); 301 return salloc0<char> (s);
90 } 302 }
91 303
92 void *operator new[] (size_t s) 304 void *operator new[] (size_t s)
93 { 305 {
94 return g_slice_alloc0 (s); 306 return salloc0<char> (s);
95 } 307 }
96 308
97 void operator delete (void *p, size_t s) 309 void operator delete (void *p, size_t s)
98 { 310 {
99 g_slice_free1 (s, p); 311 sfree ((char *)p, s);
100 } 312 }
101 313
102 void operator delete[] (void *p, size_t s) 314 void operator delete[] (void *p, size_t s)
103 { 315 {
104 g_slice_free1 (s, p); 316 sfree ((char *)p, s);
105 } 317 }
106}; 318};
107 319
108void *salloc_ (int n) throw (std::bad_alloc); 320// makes dynamically allocated objects zero-initialised
109void *salloc_ (int n, void *src) throw (std::bad_alloc); 321struct slice_allocated
110
111// strictly the same as g_slice_alloc, but never returns 0
112template<typename T>
113inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
114
115// also copies src into the new area, like "memdup"
116// if src is 0, clears the memory
117template<typename T>
118inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
119
120// clears the memory
121template<typename T>
122inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
123
124// for symmetry
125template<typename T>
126inline void sfree (T *ptr, int n = 1) throw ()
127{ 322{
128 g_slice_free1 (n * sizeof (T), (void *)ptr); 323 void *operator new (size_t s, void *p)
129} 324 {
325 return p;
326 }
327
328 void *operator new (size_t s)
329 {
330 return salloc<char> (s);
331 }
332
333 void *operator new[] (size_t s)
334 {
335 return salloc<char> (s);
336 }
337
338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
347};
130 348
131// a STL-compatible allocator that uses g_slice 349// a STL-compatible allocator that uses g_slice
132// boy, this is verbose 350// boy, this is verbose
133template<typename Tp> 351template<typename Tp>
134struct slice_allocator 352struct slice_allocator
146 { 364 {
147 typedef slice_allocator<U> other; 365 typedef slice_allocator<U> other;
148 }; 366 };
149 367
150 slice_allocator () throw () { } 368 slice_allocator () throw () { }
151 slice_allocator (const slice_allocator &o) throw () { } 369 slice_allocator (const slice_allocator &) throw () { }
152 template<typename Tp2> 370 template<typename Tp2>
153 slice_allocator (const slice_allocator<Tp2> &) throw () { } 371 slice_allocator (const slice_allocator<Tp2> &) throw () { }
154 372
155 ~slice_allocator () { } 373 ~slice_allocator () { }
156 374
165 void deallocate (pointer p, size_type n) 383 void deallocate (pointer p, size_type n)
166 { 384 {
167 sfree<Tp> (p, n); 385 sfree<Tp> (p, n);
168 } 386 }
169 387
170 size_type max_size ()const throw () 388 size_type max_size () const throw ()
171 { 389 {
172 return size_t (-1) / sizeof (Tp); 390 return size_t (-1) / sizeof (Tp);
173 } 391 }
174 392
175 void construct (pointer p, const Tp &val) 393 void construct (pointer p, const Tp &val)
180 void destroy (pointer p) 398 void destroy (pointer p)
181 { 399 {
182 p->~Tp (); 400 p->~Tp ();
183 } 401 }
184}; 402};
403
404// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
406// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
407struct tausworthe_random_generator
408{
409 uint32_t state [4];
410
411 void operator =(const tausworthe_random_generator &src)
412 {
413 state [0] = src.state [0];
414 state [1] = src.state [1];
415 state [2] = src.state [2];
416 state [3] = src.state [3];
417 }
418
419 void seed (uint32_t seed);
420 uint32_t next ();
421};
422
423// Xorshift RNGs, George Marsaglia
424// http://www.jstatsoft.org/v08/i14/paper
425// this one is about 40% faster than the tausworthe one above (i.e. not much),
426// despite the inlining, and has the issue of only creating 2**32-1 numbers.
427// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
428struct xorshift_random_generator
429{
430 uint32_t x, y;
431
432 void operator =(const xorshift_random_generator &src)
433 {
434 x = src.x;
435 y = src.y;
436 }
437
438 void seed (uint32_t seed)
439 {
440 x = seed;
441 y = seed * 69069U;
442 }
443
444 uint32_t next ()
445 {
446 uint32_t t = x ^ (x << 10);
447 x = y;
448 y = y ^ (y >> 13) ^ t ^ (t >> 10);
449 return y;
450 }
451};
452
453template<class generator>
454struct random_number_generator : generator
455{
456 // uniform distribution, 0 .. max (0, num - 1)
457 uint32_t operator ()(uint32_t num)
458 {
459 return !is_constant (num) ? get_range (num) // non-constant
460 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
461 : this->next () & (num - 1); // constant, power-of-two
462 }
463
464 // return a number within (min .. max)
465 int operator () (int r_min, int r_max)
466 {
467 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
468 ? r_min + operator ()(r_max - r_min + 1)
469 : get_range (r_min, r_max);
470 }
471
472 double operator ()()
473 {
474 return this->next () / (double)0xFFFFFFFFU;
475 }
476
477protected:
478 uint32_t get_range (uint32_t r_max);
479 int get_range (int r_min, int r_max);
480};
481
482typedef random_number_generator<tausworthe_random_generator> rand_gen;
483
484extern rand_gen rndm, rmg_rndm;
485
486INTERFACE_CLASS (attachable)
487struct refcnt_base
488{
489 typedef int refcnt_t;
490 mutable refcnt_t ACC (RW, refcnt);
491
492 MTH void refcnt_inc () const { ++refcnt; }
493 MTH void refcnt_dec () const { --refcnt; }
494
495 refcnt_base () : refcnt (0) { }
496};
497
498// to avoid branches with more advanced compilers
499extern refcnt_base::refcnt_t refcnt_dummy;
185 500
186template<class T> 501template<class T>
187struct refptr 502struct refptr
188{ 503{
504 // p if not null
505 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
506
507 void refcnt_dec ()
508 {
509 if (!is_constant (p))
510 --*refcnt_ref ();
511 else if (p)
512 --p->refcnt;
513 }
514
515 void refcnt_inc ()
516 {
517 if (!is_constant (p))
518 ++*refcnt_ref ();
519 else if (p)
520 ++p->refcnt;
521 }
522
189 T *p; 523 T *p;
190 524
191 refptr () : p(0) { } 525 refptr () : p(0) { }
192 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 526 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
193 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 527 refptr (T *p) : p(p) { refcnt_inc (); }
194 ~refptr () { if (p) p->refcnt_dec (); } 528 ~refptr () { refcnt_dec (); }
195 529
196 const refptr<T> &operator =(T *o) 530 const refptr<T> &operator =(T *o)
197 { 531 {
532 // if decrementing ever destroys we need to reverse the order here
198 if (p) p->refcnt_dec (); 533 refcnt_dec ();
199 p = o; 534 p = o;
200 if (p) p->refcnt_inc (); 535 refcnt_inc ();
201
202 return *this; 536 return *this;
203 } 537 }
204 538
205 const refptr<T> &operator =(const refptr<T> o) 539 const refptr<T> &operator =(const refptr<T> &o)
206 { 540 {
207 *this = o.p; 541 *this = o.p;
208 return *this; 542 return *this;
209 } 543 }
210 544
211 T &operator * () const { return *p; } 545 T &operator * () const { return *p; }
212 T *operator ->() const { return p; } 546 T *operator ->() const { return p; }
213 547
214 operator T *() const { return p; } 548 operator T *() const { return p; }
215}; 549};
216 550
217typedef refptr<maptile> maptile_ptr; 551typedef refptr<maptile> maptile_ptr;
222 556
223struct str_hash 557struct str_hash
224{ 558{
225 std::size_t operator ()(const char *s) const 559 std::size_t operator ()(const char *s) const
226 { 560 {
227 unsigned long hash = 0; 561#if 0
562 uint32_t hash = 0;
228 563
229 /* use the one-at-a-time hash function, which supposedly is 564 /* use the one-at-a-time hash function, which supposedly is
230 * better than the djb2-like one used by perl5.005, but 565 * better than the djb2-like one used by perl5.005, but
231 * certainly is better then the bug used here before. 566 * certainly is better then the bug used here before.
232 * see http://burtleburtle.net/bob/hash/doobs.html 567 * see http://burtleburtle.net/bob/hash/doobs.html
239 } 574 }
240 575
241 hash += hash << 3; 576 hash += hash << 3;
242 hash ^= hash >> 11; 577 hash ^= hash >> 11;
243 hash += hash << 15; 578 hash += hash << 15;
579#else
580 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
581 // it is about twice as fast as the one-at-a-time one,
582 // with good distribution.
583 // FNV-1a is faster on many cpus because the multiplication
584 // runs concurrent with the looping logic.
585 uint32_t hash = 2166136261;
586
587 while (*s)
588 hash = (hash ^ *s++) * 16777619;
589#endif
244 590
245 return hash; 591 return hash;
246 } 592 }
247}; 593};
248 594
252 { 598 {
253 return !strcmp (a, b); 599 return !strcmp (a, b);
254 } 600 }
255}; 601};
256 602
603// Mostly the same as std::vector, but insert/erase can reorder
604// the elements, making append(=insert)/remove O(1) instead of O(n).
605//
606// NOTE: only some forms of erase are available
257template<class T> 607template<class T>
258struct unordered_vector : std::vector<T, slice_allocator<T> > 608struct unordered_vector : std::vector<T, slice_allocator<T> >
259{ 609{
260 typedef typename unordered_vector::iterator iterator; 610 typedef typename unordered_vector::iterator iterator;
261 611
271 { 621 {
272 erase ((unsigned int )(i - this->begin ())); 622 erase ((unsigned int )(i - this->begin ()));
273 } 623 }
274}; 624};
275 625
276template<class T, int T::* index> 626// This container blends advantages of linked lists
627// (efficiency) with vectors (random access) by
628// by using an unordered vector and storing the vector
629// index inside the object.
630//
631// + memory-efficient on most 64 bit archs
632// + O(1) insert/remove
633// + free unique (but varying) id for inserted objects
634// + cache-friendly iteration
635// - only works for pointers to structs
636//
637// NOTE: only some forms of erase/insert are available
638typedef int object_vector_index;
639
640template<class T, object_vector_index T::*indexmember>
277struct object_vector : std::vector<T *, slice_allocator<T *> > 641struct object_vector : std::vector<T *, slice_allocator<T *> >
278{ 642{
643 typedef typename object_vector::iterator iterator;
644
645 bool contains (const T *obj) const
646 {
647 return obj->*indexmember;
648 }
649
650 iterator find (const T *obj)
651 {
652 return obj->*indexmember
653 ? this->begin () + obj->*indexmember - 1
654 : this->end ();
655 }
656
657 void push_back (T *obj)
658 {
659 std::vector<T *, slice_allocator<T *> >::push_back (obj);
660 obj->*indexmember = this->size ();
661 }
662
279 void insert (T *obj) 663 void insert (T *obj)
280 { 664 {
281 assert (!(obj->*index));
282 push_back (obj); 665 push_back (obj);
283 obj->*index = this->size ();
284 } 666 }
285 667
286 void insert (T &obj) 668 void insert (T &obj)
287 { 669 {
288 insert (&obj); 670 insert (&obj);
289 } 671 }
290 672
291 void erase (T *obj) 673 void erase (T *obj)
292 { 674 {
293 assert (obj->*index);
294 int pos = obj->*index; 675 unsigned int pos = obj->*indexmember;
295 obj->*index = 0; 676 obj->*indexmember = 0;
296 677
297 if (pos < this->size ()) 678 if (pos < this->size ())
298 { 679 {
299 (*this)[pos - 1] = (*this)[this->size () - 1]; 680 (*this)[pos - 1] = (*this)[this->size () - 1];
300 (*this)[pos - 1]->*index = pos; 681 (*this)[pos - 1]->*indexmember = pos;
301 } 682 }
302 683
303 this->pop_back (); 684 this->pop_back ();
304 } 685 }
305 686
306 void erase (T &obj) 687 void erase (T &obj)
307 { 688 {
308 errase (&obj); 689 erase (&obj);
309 } 690 }
310}; 691};
311
312template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
313template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
314template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
315
316template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
317 692
318// basically does what strncpy should do, but appends "..." to strings exceeding length 693// basically does what strncpy should do, but appends "..." to strings exceeding length
694// returns the number of bytes actually used (including \0)
319void assign (char *dst, const char *src, int maxlen); 695int assign (char *dst, const char *src, int maxsize);
320 696
321// type-safe version of assign 697// type-safe version of assign
322template<int N> 698template<int N>
323inline void assign (char (&dst)[N], const char *src) 699inline int assign (char (&dst)[N], const char *src)
324{ 700{
325 assign ((char *)&dst, src, N); 701 return assign ((char *)&dst, src, N);
326} 702}
327 703
328typedef double tstamp; 704typedef double tstamp;
329 705
330// return current time as timestampe 706// return current time as timestamp
331tstamp now (); 707tstamp now ();
332 708
333int similar_direction (int a, int b); 709int similar_direction (int a, int b);
334 710
711// like sprintf, but returns a "static" buffer
712const char *format (const char *format, ...);
713
714// safety-check player input which will become object->msg
715bool msg_is_safe (const char *msg);
716
717/////////////////////////////////////////////////////////////////////////////
718// threads, very very thin wrappers around pthreads
719
720struct thread
721{
722 pthread_t id;
723
724 void start (void *(*start_routine)(void *), void *arg = 0);
725
726 void cancel ()
727 {
728 pthread_cancel (id);
729 }
730
731 void *join ()
732 {
733 void *ret;
734
735 if (pthread_join (id, &ret))
736 cleanup ("pthread_join failed", 1);
737
738 return ret;
739 }
740};
741
742// note that mutexes are not classes
743typedef pthread_mutex_t smutex;
744
745#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
746 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
747#else
748 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
335#endif 749#endif
336 750
751#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
752#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
753#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
754
755typedef pthread_cond_t scond;
756
757#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
758#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
759#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
760#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
761
762#endif
763

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines