ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.57 by root, Tue Oct 16 05:34:24 2007 UTC vs.
Revision 1.90 by root, Mon Oct 12 14:00:58 2009 UTC

1/* 1/*
2 * This file is part of Crossfire TRT, the Roguelike Realtime MORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team 4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Crossfire TRT is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <crossfire@schmorp.de> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
24 25
25//#define PREFER_MALLOC 26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
26 29
27#if __GNUC__ >= 3 30#if __GNUC__ >= 3
28# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
29# define expect(expr,value) __builtin_expect ((expr),(value)) 32# define expect(expr,value) __builtin_expect ((expr),(value))
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
31#else 35#else
32# define is_constant(c) 0 36# define is_constant(c) 0
33# define expect(expr,value) (expr) 37# define expect(expr,value) (expr)
34# define prefetch(addr,rw,locality) 38# define prefetch(addr,rw,locality)
39# define noinline
35#endif 40#endif
36 41
37#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
38# define decltype(x) typeof(x) 43# define decltype(x) typeof(x)
39#endif 44#endif
40 45
41// put into ifs if you are very sure that the expression 46// put into ifs if you are very sure that the expression
42// is mostly true or mosty false. note that these return 47// is mostly true or mosty false. note that these return
43// booleans, not the expression. 48// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0) 49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1) 50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
46 53
47#include <cstddef> 54#include <cstddef>
48#include <cmath> 55#include <cmath>
49#include <new> 56#include <new>
50#include <vector> 57#include <vector>
52#include <glib.h> 59#include <glib.h>
53 60
54#include <shstr.h> 61#include <shstr.h>
55#include <traits.h> 62#include <traits.h>
56 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
59 79
60// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 81// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 83// (note: works great for pointers)
64// most ugly macro I ever wrote 84// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
70 90
71// in range excluding end 91// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 94
95void cleanup (const char *cause, bool make_core = false);
75void fork_abort (const char *msg); 96void fork_abort (const char *msg);
76 97
77// rationale for using (U) not (T) is to reduce signed/unsigned issues, 98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though. 99// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84 109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
85template<typename T> 143template<typename T>
86static inline T 144static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out) 145lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{ 146{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
90} 164}
91 165
92// lots of stuff taken from FXT 166// lots of stuff taken from FXT
93 167
94/* Rotate right. This is used in various places for checksumming */ 168/* Rotate right. This is used in various places for checksumming */
172absdir (int d) 246absdir (int d)
173{ 247{
174 return ((d - 1) & 7) + 1; 248 return ((d - 1) & 7) + 1;
175} 249}
176 250
177extern size_t slice_alloc; // statistics 251extern ssize_t slice_alloc; // statistics
252
253void *salloc_ (int n) throw (std::bad_alloc);
254void *salloc_ (int n, void *src) throw (std::bad_alloc);
255
256// strictly the same as g_slice_alloc, but never returns 0
257template<typename T>
258inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
259
260// also copies src into the new area, like "memdup"
261// if src is 0, clears the memory
262template<typename T>
263inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
264
265// clears the memory
266template<typename T>
267inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
268
269// for symmetry
270template<typename T>
271inline void sfree (T *ptr, int n = 1) throw ()
272{
273 if (expect_true (ptr))
274 {
275 slice_alloc -= n * sizeof (T);
276 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
277 g_slice_free1 (n * sizeof (T), (void *)ptr);
278 assert (slice_alloc >= 0);//D
279 }
280}
281
282// nulls the pointer
283template<typename T>
284inline void sfree0 (T *&ptr, int n = 1) throw ()
285{
286 sfree<T> (ptr, n);
287 ptr = 0;
288}
178 289
179// makes dynamically allocated objects zero-initialised 290// makes dynamically allocated objects zero-initialised
180struct zero_initialised 291struct zero_initialised
181{ 292{
182 void *operator new (size_t s, void *p) 293 void *operator new (size_t s, void *p)
185 return p; 296 return p;
186 } 297 }
187 298
188 void *operator new (size_t s) 299 void *operator new (size_t s)
189 { 300 {
190 slice_alloc += s;
191 return g_slice_alloc0 (s); 301 return salloc0<char> (s);
192 } 302 }
193 303
194 void *operator new[] (size_t s) 304 void *operator new[] (size_t s)
195 { 305 {
196 slice_alloc += s;
197 return g_slice_alloc0 (s); 306 return salloc0<char> (s);
198 } 307 }
199 308
200 void operator delete (void *p, size_t s) 309 void operator delete (void *p, size_t s)
201 { 310 {
202 slice_alloc -= s; 311 sfree ((char *)p, s);
203 g_slice_free1 (s, p);
204 } 312 }
205 313
206 void operator delete[] (void *p, size_t s) 314 void operator delete[] (void *p, size_t s)
207 { 315 {
208 slice_alloc -= s; 316 sfree ((char *)p, s);
209 g_slice_free1 (s, p);
210 } 317 }
211}; 318};
212 319
213void *salloc_ (int n) throw (std::bad_alloc); 320// makes dynamically allocated objects zero-initialised
214void *salloc_ (int n, void *src) throw (std::bad_alloc); 321struct slice_allocated
215
216// strictly the same as g_slice_alloc, but never returns 0
217template<typename T>
218inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220// also copies src into the new area, like "memdup"
221// if src is 0, clears the memory
222template<typename T>
223inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225// clears the memory
226template<typename T>
227inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229// for symmetry
230template<typename T>
231inline void sfree (T *ptr, int n = 1) throw ()
232{ 322{
233#ifdef PREFER_MALLOC 323 void *operator new (size_t s, void *p)
234 free (ptr); 324 {
235#else 325 return p;
236 slice_alloc -= n * sizeof (T); 326 }
237 g_slice_free1 (n * sizeof (T), (void *)ptr); 327
238#endif 328 void *operator new (size_t s)
239} 329 {
330 return salloc<char> (s);
331 }
332
333 void *operator new[] (size_t s)
334 {
335 return salloc<char> (s);
336 }
337
338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
347};
240 348
241// a STL-compatible allocator that uses g_slice 349// a STL-compatible allocator that uses g_slice
242// boy, this is verbose 350// boy, this is verbose
243template<typename Tp> 351template<typename Tp>
244struct slice_allocator 352struct slice_allocator
256 { 364 {
257 typedef slice_allocator<U> other; 365 typedef slice_allocator<U> other;
258 }; 366 };
259 367
260 slice_allocator () throw () { } 368 slice_allocator () throw () { }
261 slice_allocator (const slice_allocator &o) throw () { } 369 slice_allocator (const slice_allocator &) throw () { }
262 template<typename Tp2> 370 template<typename Tp2>
263 slice_allocator (const slice_allocator<Tp2> &) throw () { } 371 slice_allocator (const slice_allocator<Tp2> &) throw () { }
264 372
265 ~slice_allocator () { } 373 ~slice_allocator () { }
266 374
275 void deallocate (pointer p, size_type n) 383 void deallocate (pointer p, size_type n)
276 { 384 {
277 sfree<Tp> (p, n); 385 sfree<Tp> (p, n);
278 } 386 }
279 387
280 size_type max_size ()const throw () 388 size_type max_size () const throw ()
281 { 389 {
282 return size_t (-1) / sizeof (Tp); 390 return size_t (-1) / sizeof (Tp);
283 } 391 }
284 392
285 void construct (pointer p, const Tp &val) 393 void construct (pointer p, const Tp &val)
296// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 404// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
297// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 405// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
298// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 406// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
299struct tausworthe_random_generator 407struct tausworthe_random_generator
300{ 408{
301 // generator
302 uint32_t state [4]; 409 uint32_t state [4];
303 410
304 void operator =(const tausworthe_random_generator &src) 411 void operator =(const tausworthe_random_generator &src)
305 { 412 {
306 state [0] = src.state [0]; 413 state [0] = src.state [0];
309 state [3] = src.state [3]; 416 state [3] = src.state [3];
310 } 417 }
311 418
312 void seed (uint32_t seed); 419 void seed (uint32_t seed);
313 uint32_t next (); 420 uint32_t next ();
421};
314 422
315 // uniform distribution 423// Xorshift RNGs, George Marsaglia
424// http://www.jstatsoft.org/v08/i14/paper
425// this one is about 40% faster than the tausworthe one above (i.e. not much),
426// despite the inlining, and has the issue of only creating 2**32-1 numbers.
427// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
428struct xorshift_random_generator
429{
430 uint32_t x, y;
431
432 void operator =(const xorshift_random_generator &src)
433 {
434 x = src.x;
435 y = src.y;
436 }
437
438 void seed (uint32_t seed)
439 {
440 x = seed;
441 y = seed * 69069U;
442 }
443
444 uint32_t next ()
445 {
446 uint32_t t = x ^ (x << 10);
447 x = y;
448 y = y ^ (y >> 13) ^ t ^ (t >> 10);
449 return y;
450 }
451};
452
453template<class generator>
454struct random_number_generator : generator
455{
456 // uniform distribution, 0 .. max (0, num - 1)
316 uint32_t operator ()(uint32_t num) 457 uint32_t operator ()(uint32_t num)
317 { 458 {
318 return is_constant (num) 459 return !is_constant (num) ? get_range (num) // non-constant
319 ? (next () * (uint64_t)num) >> 32U 460 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
320 : get_range (num); 461 : this->next () & (num - 1); // constant, power-of-two
321 } 462 }
322 463
323 // return a number within (min .. max) 464 // return a number within (min .. max)
324 int operator () (int r_min, int r_max) 465 int operator () (int r_min, int r_max)
325 { 466 {
336protected: 477protected:
337 uint32_t get_range (uint32_t r_max); 478 uint32_t get_range (uint32_t r_max);
338 int get_range (int r_min, int r_max); 479 int get_range (int r_min, int r_max);
339}; 480};
340 481
341typedef tausworthe_random_generator rand_gen; 482typedef random_number_generator<tausworthe_random_generator> rand_gen;
342 483
343extern rand_gen rndm; 484extern rand_gen rndm, rmg_rndm;
344 485
345INTERFACE_CLASS (attachable) 486INTERFACE_CLASS (attachable)
346struct refcnt_base 487struct refcnt_base
347{ 488{
348 typedef int refcnt_t; 489 typedef int refcnt_t;
415 556
416struct str_hash 557struct str_hash
417{ 558{
418 std::size_t operator ()(const char *s) const 559 std::size_t operator ()(const char *s) const
419 { 560 {
420 unsigned long hash = 0; 561#if 0
562 uint32_t hash = 0;
421 563
422 /* use the one-at-a-time hash function, which supposedly is 564 /* use the one-at-a-time hash function, which supposedly is
423 * better than the djb2-like one used by perl5.005, but 565 * better than the djb2-like one used by perl5.005, but
424 * certainly is better then the bug used here before. 566 * certainly is better then the bug used here before.
425 * see http://burtleburtle.net/bob/hash/doobs.html 567 * see http://burtleburtle.net/bob/hash/doobs.html
432 } 574 }
433 575
434 hash += hash << 3; 576 hash += hash << 3;
435 hash ^= hash >> 11; 577 hash ^= hash >> 11;
436 hash += hash << 15; 578 hash += hash << 15;
579#else
580 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
581 // it is about twice as fast as the one-at-a-time one,
582 // with good distribution.
583 // FNV-1a is faster on many cpus because the multiplication
584 // runs concurrent with the looping logic.
585 uint32_t hash = 2166136261;
586
587 while (*s)
588 hash = (hash ^ *s++) * 16777619;
589#endif
437 590
438 return hash; 591 return hash;
439 } 592 }
440}; 593};
441 594
536 erase (&obj); 689 erase (&obj);
537 } 690 }
538}; 691};
539 692
540// basically does what strncpy should do, but appends "..." to strings exceeding length 693// basically does what strncpy should do, but appends "..." to strings exceeding length
694// returns the number of bytes actually used (including \0)
541void assign (char *dst, const char *src, int maxlen); 695int assign (char *dst, const char *src, int maxsize);
542 696
543// type-safe version of assign 697// type-safe version of assign
544template<int N> 698template<int N>
545inline void assign (char (&dst)[N], const char *src) 699inline int assign (char (&dst)[N], const char *src)
546{ 700{
547 assign ((char *)&dst, src, N); 701 return assign ((char *)&dst, src, N);
548} 702}
549 703
550typedef double tstamp; 704typedef double tstamp;
551 705
552// return current time as timestampe 706// return current time as timestamp
553tstamp now (); 707tstamp now ();
554 708
555int similar_direction (int a, int b); 709int similar_direction (int a, int b);
556 710
557// like sprintf, but returns a "static" buffer 711// like sprintf, but returns a "static" buffer
558const char *format (const char *format, ...); 712const char *format (const char *format, ...);
559 713
714// safety-check player input which will become object->msg
715bool msg_is_safe (const char *msg);
716
717/////////////////////////////////////////////////////////////////////////////
718// threads, very very thin wrappers around pthreads
719
720struct thread
721{
722 pthread_t id;
723
724 void start (void *(*start_routine)(void *), void *arg = 0);
725
726 void cancel ()
727 {
728 pthread_cancel (id);
729 }
730
731 void *join ()
732 {
733 void *ret;
734
735 if (pthread_join (id, &ret))
736 cleanup ("pthread_join failed", 1);
737
738 return ret;
739 }
740};
741
742// note that mutexes are not classes
743typedef pthread_mutex_t smutex;
744
745#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
746 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
747#else
748 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
560#endif 749#endif
561 750
751#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
752#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
753#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
754
755typedef pthread_cond_t scond;
756
757#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
758#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
759#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
760#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
761
762#endif
763

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines