ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.30 by root, Mon Jan 15 01:50:33 2007 UTC vs.
Revision 1.92 by root, Tue Oct 20 05:57:08 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
26#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28#define PREFER_MALLOC 0 // use malloc and not the slice allocator
29
4#if __GNUC__ >= 3 30#if __GNUC__ >= 3
5# define is_constant(c) __builtin_constant_p (c) 31# define is_constant(c) __builtin_constant_p (c)
32# define expect(expr,value) __builtin_expect ((expr),(value))
33# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34# define noinline __attribute__((__noinline__))
6#else 35#else
7# define is_constant(c) 0 36# define is_constant(c) 0
37# define expect(expr,value) (expr)
38# define prefetch(addr,rw,locality)
39# define noinline
8#endif 40#endif
41
42#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43# define decltype(x) typeof(x)
44#endif
45
46// put into ifs if you are very sure that the expression
47// is mostly true or mosty false. note that these return
48// booleans, not the expression.
49#define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50#define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52#include <pthread.h>
9 53
10#include <cstddef> 54#include <cstddef>
11#include <cmath> 55#include <cmath>
12#include <new> 56#include <new>
13#include <vector> 57#include <vector>
15#include <glib.h> 59#include <glib.h>
16 60
17#include <shstr.h> 61#include <shstr.h>
18#include <traits.h> 62#include <traits.h>
19 63
64#if DEBUG_SALLOC
65# define g_slice_alloc0(s) debug_slice_alloc0(s)
66# define g_slice_alloc(s) debug_slice_alloc(s)
67# define g_slice_free1(s,p) debug_slice_free1(s,p)
68void *g_slice_alloc (unsigned long size);
69void *g_slice_alloc0 (unsigned long size);
70void g_slice_free1 (unsigned long size, void *ptr);
71#elif PREFER_MALLOC
72# define g_slice_alloc0(s) calloc (1, (s))
73# define g_slice_alloc(s) malloc ((s))
74# define g_slice_free1(s,p) free ((p))
75#endif
76
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 77// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 78#define auto(var,expr) decltype(expr) var = (expr)
22 79
23// very ugly macro that basicaly declares and initialises a variable 80// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 81// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 82// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 83// (note: works great for pointers)
27// most ugly macro I ever wrote 84// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 85#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 86
30// in range including end 87// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 88#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 90
34// in range excluding end 91// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 92#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94
95void cleanup (const char *cause, bool make_core = false);
96void fork_abort (const char *msg);
97
98// rationale for using (U) not (T) is to reduce signed/unsigned issues,
99// as a is often a constant while b is the variable. it is still a bug, though.
100template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103
104template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
108template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109
110template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113// sign returns -1 or +1
114template<typename T>
115static inline T sign (T v) { return v < 0 ? -1 : +1; }
116// relies on 2c representation
117template<>
118inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120// sign0 returns -1, 0 or +1
121template<typename T>
122static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124// div* only work correctly for div > 0
125// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126template<typename T> static inline T div (T val, T div)
127{
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129}
130// div, round-up
131template<typename T> static inline T div_ru (T val, T div)
132{
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134}
135// div, round-down
136template<typename T> static inline T div_rd (T val, T div)
137{
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139}
140
141// lerp* only work correctly for min_in < max_in
142// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143template<typename T>
144static inline T
145lerp (T val, T min_in, T max_in, T min_out, T max_out)
146{
147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148}
149
150// lerp, round-down
151template<typename T>
152static inline T
153lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154{
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156}
157
158// lerp, round-up
159template<typename T>
160static inline T
161lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162{
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164}
165
166// lots of stuff taken from FXT
167
168/* Rotate right. This is used in various places for checksumming */
169//TODO: that sucks, use a better checksum algo
170static inline uint32_t
171rotate_right (uint32_t c, uint32_t count = 1)
172{
173 return (c << (32 - count)) | (c >> count);
174}
175
176static inline uint32_t
177rotate_left (uint32_t c, uint32_t count = 1)
178{
179 return (c >> (32 - count)) | (c << count);
180}
181
182// Return abs(a-b)
183// Both a and b must not have the most significant bit set
184static inline uint32_t
185upos_abs_diff (uint32_t a, uint32_t b)
186{
187 long d1 = b - a;
188 long d2 = (d1 & (d1 >> 31)) << 1;
189
190 return d1 - d2; // == (b - d) - (a + d);
191}
192
193// Both a and b must not have the most significant bit set
194static inline uint32_t
195upos_min (uint32_t a, uint32_t b)
196{
197 int32_t d = b - a;
198 d &= d >> 31;
199 return a + d;
200}
201
202// Both a and b must not have the most significant bit set
203static inline uint32_t
204upos_max (uint32_t a, uint32_t b)
205{
206 int32_t d = b - a;
207 d &= d >> 31;
208 return b - d;
209}
37 210
38// this is much faster than crossfires original algorithm 211// this is much faster than crossfires original algorithm
39// on modern cpus 212// on modern cpus
40inline int 213inline int
41isqrt (int n) 214isqrt (int n)
42{ 215{
43 return (int)sqrtf ((float)n); 216 return (int)sqrtf ((float)n);
217}
218
219// this is kind of like the ^^ operator, if it would exist, without sequence point.
220// more handy than it looks like, due to the implicit !! done on its arguments
221inline bool
222logical_xor (bool a, bool b)
223{
224 return a != b;
225}
226
227inline bool
228logical_implies (bool a, bool b)
229{
230 return a <= b;
44} 231}
45 232
46// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 233// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
47#if 0 234#if 0
48// and has a max. error of 6 in the range -100..+100. 235// and has a max. error of 6 in the range -100..+100.
73absdir (int d) 260absdir (int d)
74{ 261{
75 return ((d - 1) & 7) + 1; 262 return ((d - 1) & 7) + 1;
76} 263}
77 264
265extern ssize_t slice_alloc; // statistics
266
267void *salloc_ (int n) throw (std::bad_alloc);
268void *salloc_ (int n, void *src) throw (std::bad_alloc);
269
270// strictly the same as g_slice_alloc, but never returns 0
271template<typename T>
272inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273
274// also copies src into the new area, like "memdup"
275// if src is 0, clears the memory
276template<typename T>
277inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278
279// clears the memory
280template<typename T>
281inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282
283// for symmetry
284template<typename T>
285inline void sfree (T *ptr, int n = 1) throw ()
286{
287 if (expect_true (ptr))
288 {
289 slice_alloc -= n * sizeof (T);
290 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 g_slice_free1 (n * sizeof (T), (void *)ptr);
292 assert (slice_alloc >= 0);//D
293 }
294}
295
296// nulls the pointer
297template<typename T>
298inline void sfree0 (T *&ptr, int n = 1) throw ()
299{
300 sfree<T> (ptr, n);
301 ptr = 0;
302}
303
78// makes dynamically allocated objects zero-initialised 304// makes dynamically allocated objects zero-initialised
79struct zero_initialised 305struct zero_initialised
80{ 306{
81 void *operator new (size_t s, void *p) 307 void *operator new (size_t s, void *p)
82 { 308 {
84 return p; 310 return p;
85 } 311 }
86 312
87 void *operator new (size_t s) 313 void *operator new (size_t s)
88 { 314 {
89 return g_slice_alloc0 (s); 315 return salloc0<char> (s);
90 } 316 }
91 317
92 void *operator new[] (size_t s) 318 void *operator new[] (size_t s)
93 { 319 {
94 return g_slice_alloc0 (s); 320 return salloc0<char> (s);
95 } 321 }
96 322
97 void operator delete (void *p, size_t s) 323 void operator delete (void *p, size_t s)
98 { 324 {
99 g_slice_free1 (s, p); 325 sfree ((char *)p, s);
100 } 326 }
101 327
102 void operator delete[] (void *p, size_t s) 328 void operator delete[] (void *p, size_t s)
103 { 329 {
104 g_slice_free1 (s, p); 330 sfree ((char *)p, s);
105 } 331 }
106}; 332};
107 333
108void *salloc_ (int n) throw (std::bad_alloc); 334// makes dynamically allocated objects zero-initialised
109void *salloc_ (int n, void *src) throw (std::bad_alloc); 335struct slice_allocated
110
111// strictly the same as g_slice_alloc, but never returns 0
112template<typename T>
113inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
114
115// also copies src into the new area, like "memdup"
116// if src is 0, clears the memory
117template<typename T>
118inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
119
120// clears the memory
121template<typename T>
122inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
123
124// for symmetry
125template<typename T>
126inline void sfree (T *ptr, int n = 1) throw ()
127{ 336{
128 g_slice_free1 (n * sizeof (T), (void *)ptr); 337 void *operator new (size_t s, void *p)
129} 338 {
339 return p;
340 }
341
342 void *operator new (size_t s)
343 {
344 return salloc<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361};
130 362
131// a STL-compatible allocator that uses g_slice 363// a STL-compatible allocator that uses g_slice
132// boy, this is verbose 364// boy, this is verbose
133template<typename Tp> 365template<typename Tp>
134struct slice_allocator 366struct slice_allocator
146 { 378 {
147 typedef slice_allocator<U> other; 379 typedef slice_allocator<U> other;
148 }; 380 };
149 381
150 slice_allocator () throw () { } 382 slice_allocator () throw () { }
151 slice_allocator (const slice_allocator &o) throw () { } 383 slice_allocator (const slice_allocator &) throw () { }
152 template<typename Tp2> 384 template<typename Tp2>
153 slice_allocator (const slice_allocator<Tp2> &) throw () { } 385 slice_allocator (const slice_allocator<Tp2> &) throw () { }
154 386
155 ~slice_allocator () { } 387 ~slice_allocator () { }
156 388
165 void deallocate (pointer p, size_type n) 397 void deallocate (pointer p, size_type n)
166 { 398 {
167 sfree<Tp> (p, n); 399 sfree<Tp> (p, n);
168 } 400 }
169 401
170 size_type max_size ()const throw () 402 size_type max_size () const throw ()
171 { 403 {
172 return size_t (-1) / sizeof (Tp); 404 return size_t (-1) / sizeof (Tp);
173 } 405 }
174 406
175 void construct (pointer p, const Tp &val) 407 void construct (pointer p, const Tp &val)
180 void destroy (pointer p) 412 void destroy (pointer p)
181 { 413 {
182 p->~Tp (); 414 p->~Tp ();
183 } 415 }
184}; 416};
417
418// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
419// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
420// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
421struct tausworthe_random_generator
422{
423 uint32_t state [4];
424
425 void operator =(const tausworthe_random_generator &src)
426 {
427 state [0] = src.state [0];
428 state [1] = src.state [1];
429 state [2] = src.state [2];
430 state [3] = src.state [3];
431 }
432
433 void seed (uint32_t seed);
434 uint32_t next ();
435};
436
437// Xorshift RNGs, George Marsaglia
438// http://www.jstatsoft.org/v08/i14/paper
439// this one is about 40% faster than the tausworthe one above (i.e. not much),
440// despite the inlining, and has the issue of only creating 2**32-1 numbers.
441// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442struct xorshift_random_generator
443{
444 uint32_t x, y;
445
446 void operator =(const xorshift_random_generator &src)
447 {
448 x = src.x;
449 y = src.y;
450 }
451
452 void seed (uint32_t seed)
453 {
454 x = seed;
455 y = seed * 69069U;
456 }
457
458 uint32_t next ()
459 {
460 uint32_t t = x ^ (x << 10);
461 x = y;
462 y = y ^ (y >> 13) ^ t ^ (t >> 10);
463 return y;
464 }
465};
466
467template<class generator>
468struct random_number_generator : generator
469{
470 // uniform distribution, 0 .. max (0, num - 1)
471 uint32_t operator ()(uint32_t num)
472 {
473 return !is_constant (num) ? get_range (num) // non-constant
474 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
475 : this->next () & (num - 1); // constant, power-of-two
476 }
477
478 // return a number within (min .. max)
479 int operator () (int r_min, int r_max)
480 {
481 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
482 ? r_min + operator ()(r_max - r_min + 1)
483 : get_range (r_min, r_max);
484 }
485
486 double operator ()()
487 {
488 return this->next () / (double)0xFFFFFFFFU;
489 }
490
491protected:
492 uint32_t get_range (uint32_t r_max);
493 int get_range (int r_min, int r_max);
494};
495
496typedef random_number_generator<tausworthe_random_generator> rand_gen;
497
498extern rand_gen rndm, rmg_rndm;
499
500INTERFACE_CLASS (attachable)
501struct refcnt_base
502{
503 typedef int refcnt_t;
504 mutable refcnt_t ACC (RW, refcnt);
505
506 MTH void refcnt_inc () const { ++refcnt; }
507 MTH void refcnt_dec () const { --refcnt; }
508
509 refcnt_base () : refcnt (0) { }
510};
511
512// to avoid branches with more advanced compilers
513extern refcnt_base::refcnt_t refcnt_dummy;
185 514
186template<class T> 515template<class T>
187struct refptr 516struct refptr
188{ 517{
518 // p if not null
519 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520
521 void refcnt_dec ()
522 {
523 if (!is_constant (p))
524 --*refcnt_ref ();
525 else if (p)
526 --p->refcnt;
527 }
528
529 void refcnt_inc ()
530 {
531 if (!is_constant (p))
532 ++*refcnt_ref ();
533 else if (p)
534 ++p->refcnt;
535 }
536
189 T *p; 537 T *p;
190 538
191 refptr () : p(0) { } 539 refptr () : p(0) { }
192 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 540 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
193 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 541 refptr (T *p) : p(p) { refcnt_inc (); }
194 ~refptr () { if (p) p->refcnt_dec (); } 542 ~refptr () { refcnt_dec (); }
195 543
196 const refptr<T> &operator =(T *o) 544 const refptr<T> &operator =(T *o)
197 { 545 {
546 // if decrementing ever destroys we need to reverse the order here
198 if (p) p->refcnt_dec (); 547 refcnt_dec ();
199 p = o; 548 p = o;
200 if (p) p->refcnt_inc (); 549 refcnt_inc ();
201
202 return *this; 550 return *this;
203 } 551 }
204 552
205 const refptr<T> &operator =(const refptr<T> o) 553 const refptr<T> &operator =(const refptr<T> &o)
206 { 554 {
207 *this = o.p; 555 *this = o.p;
208 return *this; 556 return *this;
209 } 557 }
210 558
211 T &operator * () const { return *p; } 559 T &operator * () const { return *p; }
212 T *operator ->() const { return p; } 560 T *operator ->() const { return p; }
213 561
214 operator T *() const { return p; } 562 operator T *() const { return p; }
215}; 563};
216 564
217typedef refptr<maptile> maptile_ptr; 565typedef refptr<maptile> maptile_ptr;
222 570
223struct str_hash 571struct str_hash
224{ 572{
225 std::size_t operator ()(const char *s) const 573 std::size_t operator ()(const char *s) const
226 { 574 {
227 unsigned long hash = 0; 575#if 0
576 uint32_t hash = 0;
228 577
229 /* use the one-at-a-time hash function, which supposedly is 578 /* use the one-at-a-time hash function, which supposedly is
230 * better than the djb2-like one used by perl5.005, but 579 * better than the djb2-like one used by perl5.005, but
231 * certainly is better then the bug used here before. 580 * certainly is better then the bug used here before.
232 * see http://burtleburtle.net/bob/hash/doobs.html 581 * see http://burtleburtle.net/bob/hash/doobs.html
239 } 588 }
240 589
241 hash += hash << 3; 590 hash += hash << 3;
242 hash ^= hash >> 11; 591 hash ^= hash >> 11;
243 hash += hash << 15; 592 hash += hash << 15;
593#else
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrent with the looping logic.
599 uint32_t hash = 2166136261;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619;
603#endif
244 604
245 return hash; 605 return hash;
246 } 606 }
247}; 607};
248 608
252 { 612 {
253 return !strcmp (a, b); 613 return !strcmp (a, b);
254 } 614 }
255}; 615};
256 616
617// Mostly the same as std::vector, but insert/erase can reorder
618// the elements, making append(=insert)/remove O(1) instead of O(n).
619//
620// NOTE: only some forms of erase are available
257template<class T> 621template<class T>
258struct unordered_vector : std::vector<T, slice_allocator<T> > 622struct unordered_vector : std::vector<T, slice_allocator<T> >
259{ 623{
260 typedef typename unordered_vector::iterator iterator; 624 typedef typename unordered_vector::iterator iterator;
261 625
271 { 635 {
272 erase ((unsigned int )(i - this->begin ())); 636 erase ((unsigned int )(i - this->begin ()));
273 } 637 }
274}; 638};
275 639
276template<class T, int T::* index> 640// This container blends advantages of linked lists
641// (efficiency) with vectors (random access) by
642// by using an unordered vector and storing the vector
643// index inside the object.
644//
645// + memory-efficient on most 64 bit archs
646// + O(1) insert/remove
647// + free unique (but varying) id for inserted objects
648// + cache-friendly iteration
649// - only works for pointers to structs
650//
651// NOTE: only some forms of erase/insert are available
652typedef int object_vector_index;
653
654template<class T, object_vector_index T::*indexmember>
277struct object_vector : std::vector<T *, slice_allocator<T *> > 655struct object_vector : std::vector<T *, slice_allocator<T *> >
278{ 656{
657 typedef typename object_vector::iterator iterator;
658
659 bool contains (const T *obj) const
660 {
661 return obj->*indexmember;
662 }
663
664 iterator find (const T *obj)
665 {
666 return obj->*indexmember
667 ? this->begin () + obj->*indexmember - 1
668 : this->end ();
669 }
670
671 void push_back (T *obj)
672 {
673 std::vector<T *, slice_allocator<T *> >::push_back (obj);
674 obj->*indexmember = this->size ();
675 }
676
279 void insert (T *obj) 677 void insert (T *obj)
280 { 678 {
281 assert (!(obj->*index));
282 push_back (obj); 679 push_back (obj);
283 obj->*index = this->size ();
284 } 680 }
285 681
286 void insert (T &obj) 682 void insert (T &obj)
287 { 683 {
288 insert (&obj); 684 insert (&obj);
289 } 685 }
290 686
291 void erase (T *obj) 687 void erase (T *obj)
292 { 688 {
293 assert (obj->*index);
294 int pos = obj->*index; 689 unsigned int pos = obj->*indexmember;
295 obj->*index = 0; 690 obj->*indexmember = 0;
296 691
297 if (pos < this->size ()) 692 if (pos < this->size ())
298 { 693 {
299 (*this)[pos - 1] = (*this)[this->size () - 1]; 694 (*this)[pos - 1] = (*this)[this->size () - 1];
300 (*this)[pos - 1]->*index = pos; 695 (*this)[pos - 1]->*indexmember = pos;
301 } 696 }
302 697
303 this->pop_back (); 698 this->pop_back ();
304 } 699 }
305 700
306 void erase (T &obj) 701 void erase (T &obj)
307 { 702 {
308 errase (&obj); 703 erase (&obj);
309 } 704 }
310}; 705};
311
312template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
313template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
314template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
315
316template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
317 706
318// basically does what strncpy should do, but appends "..." to strings exceeding length 707// basically does what strncpy should do, but appends "..." to strings exceeding length
708// returns the number of bytes actually used (including \0)
319void assign (char *dst, const char *src, int maxlen); 709int assign (char *dst, const char *src, int maxsize);
320 710
321// type-safe version of assign 711// type-safe version of assign
322template<int N> 712template<int N>
323inline void assign (char (&dst)[N], const char *src) 713inline int assign (char (&dst)[N], const char *src)
324{ 714{
325 assign ((char *)&dst, src, N); 715 return assign ((char *)&dst, src, N);
326} 716}
327 717
328typedef double tstamp; 718typedef double tstamp;
329 719
330// return current time as timestampe 720// return current time as timestamp
331tstamp now (); 721tstamp now ();
332 722
333int similar_direction (int a, int b); 723int similar_direction (int a, int b);
334 724
725// like v?sprintf, but returns a "static" buffer
726char *vformat (const char *format, va_list ap);
727char *format (const char *format, ...);
728
729// safety-check player input which will become object->msg
730bool msg_is_safe (const char *msg);
731
732/////////////////////////////////////////////////////////////////////////////
733// threads, very very thin wrappers around pthreads
734
735struct thread
736{
737 pthread_t id;
738
739 void start (void *(*start_routine)(void *), void *arg = 0);
740
741 void cancel ()
742 {
743 pthread_cancel (id);
744 }
745
746 void *join ()
747 {
748 void *ret;
749
750 if (pthread_join (id, &ret))
751 cleanup ("pthread_join failed", 1);
752
753 return ret;
754 }
755};
756
757// note that mutexes are not classes
758typedef pthread_mutex_t smutex;
759
760#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762#else
763 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
335#endif 764#endif
336 765
766#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769
770typedef pthread_cond_t scond;
771
772#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776
777#endif
778

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines