ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.93 by root, Sat Nov 7 18:30:05 2009 UTC vs.
Revision 1.131 by root, Wed Dec 5 21:18:37 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify it under 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the 8 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the Affero GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see 18 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>. 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25
26#include <compiler.h>
27 26
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator 29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 30
36#include <new> 35#include <new>
37#include <vector> 36#include <vector>
38 37
39#include <glib.h> 38#include <glib.h>
40 39
40#include <flat_hash_map.hpp>
41
41#include <shstr.h> 42#include <shstr.h>
42#include <traits.h> 43#include <traits.h>
44
45#include "ecb.h"
43 46
44#if DEBUG_SALLOC 47#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
52# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
55#endif 58#endif
56 59
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 63// (note: works great for pointers)
64// most ugly macro I ever wrote 64// most ugly macro I ever wrote
70 70
71// in range excluding end 71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 74
75void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
77 77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
93// sign returns -1 or +1 93// sign returns -1 or +1
94template<typename T> 94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; } 95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation 96// relies on 2c representation
97template<> 97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
99 103
100// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
101template<typename T> 105template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
103 111
104// div* only work correctly for div > 0 112// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
107{ 115{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109} 117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
110// div, round-up 122// div, round-up
111template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
112{ 124{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114} 126}
115// div, round-down 127// div, round-down
116template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
117{ 129{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119} 131}
120 132
121// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T> 135template<typename T>
186 int32_t d = b - a; 198 int32_t d = b - a;
187 d &= d >> 31; 199 d &= d >> 31;
188 return b - d; 200 return b - d;
189} 201}
190 202
191// this is much faster than crossfires original algorithm 203// this is much faster than crossfire's original algorithm
192// on modern cpus 204// on modern cpus
193inline int 205inline int
194isqrt (int n) 206isqrt (int n)
195{ 207{
196 return (int)sqrtf ((float)n); 208 return (int)sqrtf ((float)n);
214#if 0 226#if 0
215// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
216#else 228#else
217// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
218#endif 230#endif
219inline int 231inline int
220idistance (int dx, int dy) 232idistance (int dx, int dy)
221{ 233{
222 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
223 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
224 236
225#if 0 237#if 0
226 return dx_ > dy_ 238 return dx_ > dy_
229#else 241#else
230 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231#endif 243#endif
232} 244}
233 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
234/* 266/*
235 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
236 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
237 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
238 */ 270 */
240absdir (int d) 272absdir (int d)
241{ 273{
242 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
243} 275}
244 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
245extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
246 282
247void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
248void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
249 285
250// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
251template<typename T> 287template<typename T>
252inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
253 289
254// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
255// if src is 0, clears the memory 291// if src is 0, clears the memory
256template<typename T> 292template<typename T>
257inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
258 294
259// clears the memory 295// clears the memory
260template<typename T> 296template<typename T>
261inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
262 298
263// for symmetry 299// for symmetry
264template<typename T> 300template<typename T>
265inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
266{ 302{
267 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
268 { 304 {
269 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
270 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
271 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
272 assert (slice_alloc >= 0);//D
273 } 308 }
274} 309}
275 310
276// nulls the pointer 311// nulls the pointer
277template<typename T> 312template<typename T>
278inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
279{ 314{
280 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
281 ptr = 0; 316 ptr = 0;
282} 317}
283 318
351 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
352 typedef Tp &reference; 387 typedef Tp &reference;
353 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
354 typedef Tp value_type; 389 typedef Tp value_type;
355 390
356 template <class U> 391 template <class U>
357 struct rebind 392 struct rebind
358 { 393 {
359 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
360 }; 395 };
361 396
362 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
363 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
364 template<typename Tp2> 399 template<typename Tp2>
365 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
366 401
367 ~slice_allocator () { } 402 ~slice_allocator () { }
368 403
369 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
370 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
377 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
378 { 413 {
379 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
380 } 415 }
381 416
382 size_type max_size () const throw () 417 size_type max_size () const noexcept
383 { 418 {
384 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
385 } 420 }
386 421
387 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
393 { 428 {
394 p->~Tp (); 429 p->~Tp ();
395 } 430 }
396}; 431};
397 432
398// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
399// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
400// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
401struct tausworthe_random_generator
402{ 435{
403 uint32_t state [4]; 436 char *data;
404 437
405 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
406 { 439 refcnt_buf (void *data, size_t size);
407 state [0] = src.state [0];
408 state [1] = src.state [1];
409 state [2] = src.state [2];
410 state [3] = src.state [3];
411 }
412 440
413 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
414 uint32_t next ();
415};
416
417// Xorshift RNGs, George Marsaglia
418// http://www.jstatsoft.org/v08/i14/paper
419// this one is about 40% faster than the tausworthe one above (i.e. not much),
420// despite the inlining, and has the issue of only creating 2**32-1 numbers.
421// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
422struct xorshift_random_generator
423{
424 uint32_t x, y;
425
426 void operator =(const xorshift_random_generator &src)
427 { 442 {
428 x = src.x; 443 data = src.data;
429 y = src.y; 444 inc ();
430 } 445 }
431 446
432 void seed (uint32_t seed) 447 ~refcnt_buf ();
433 {
434 x = seed;
435 y = seed * 69069U;
436 }
437 448
438 uint32_t next () 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
439 { 452 {
440 uint32_t t = x ^ (x << 10);
441 x = y;
442 y = y ^ (y >> 13) ^ t ^ (t >> 10);
443 return y; 453 return data;
444 } 454 }
445};
446 455
447template<class generator> 456 size_t size () const
448struct random_number_generator : generator
449{
450 // uniform distribution, 0 .. max (0, num - 1)
451 uint32_t operator ()(uint32_t num)
452 { 457 {
453 return !is_constant (num) ? get_range (num) // non-constant 458 return _size ();
454 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
455 : this->next () & (num - 1); // constant, power-of-two
456 }
457
458 // return a number within (min .. max)
459 int operator () (int r_min, int r_max)
460 {
461 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
462 ? r_min + operator ()(r_max - r_min + 1)
463 : get_range (r_min, r_max);
464 }
465
466 double operator ()()
467 {
468 return this->next () / (double)0xFFFFFFFFU;
469 } 459 }
470 460
471protected: 461protected:
472 uint32_t get_range (uint32_t r_max); 462 enum {
473 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
474}; 464 };
475 465
476typedef random_number_generator<tausworthe_random_generator> rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
477 470
478extern rand_gen rndm, rmg_rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
479 496
480INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
481struct refcnt_base 498struct refcnt_base
482{ 499{
483 typedef int refcnt_t; 500 typedef int refcnt_t;
498 // p if not null 515 // p if not null
499 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
500 517
501 void refcnt_dec () 518 void refcnt_dec ()
502 { 519 {
503 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
504 --*refcnt_ref (); 521 --*refcnt_ref ();
505 else if (p) 522 else if (p)
506 --p->refcnt; 523 --p->refcnt;
507 } 524 }
508 525
509 void refcnt_inc () 526 void refcnt_inc ()
510 { 527 {
511 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
512 ++*refcnt_ref (); 529 ++*refcnt_ref ();
513 else if (p) 530 else if (p)
514 ++p->refcnt; 531 ++p->refcnt;
515 } 532 }
516 533
545typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
546typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
547typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
548typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
549typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
568
569#define STRHSH_NULL 2166136261
570
571static inline uint32_t
572strhsh (const char *s)
573{
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
580 uint32_t hash = STRHSH_NULL;
581
582 while (*s)
583 hash = (hash ^ *s++) * 16777619U;
584
585 return hash ^ (hash >> 16);
586}
587
588static inline uint32_t
589memhsh (const char *s, size_t len)
590{
591 uint32_t hash = STRHSH_NULL;
592
593 while (len--)
594 hash = (hash ^ *s++) * 16777619U;
595
596 return hash;
597}
550 598
551struct str_hash 599struct str_hash
552{ 600{
553 std::size_t operator ()(const char *s) const 601 std::size_t operator ()(const char *s) const
554 { 602 {
555#if 0
556 uint32_t hash = 0;
557
558 /* use the one-at-a-time hash function, which supposedly is
559 * better than the djb2-like one used by perl5.005, but
560 * certainly is better then the bug used here before.
561 * see http://burtleburtle.net/bob/hash/doobs.html
562 */
563 while (*s)
564 {
565 hash += *s++;
566 hash += hash << 10;
567 hash ^= hash >> 6;
568 }
569
570 hash += hash << 3;
571 hash ^= hash >> 11;
572 hash += hash << 15;
573#else
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrent with the looping logic.
579 uint32_t hash = 2166136261;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619;
583#endif
584
585 return hash; 603 return strhsh (s);
586 } 604 }
605
606 std::size_t operator ()(const shstr &s) const
607 {
608 return strhsh (s);
609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
587}; 612};
588 613
589struct str_equal 614struct str_equal
590{ 615{
591 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
617 } 642 }
618}; 643};
619 644
620// This container blends advantages of linked lists 645// This container blends advantages of linked lists
621// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
622// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
623// index inside the object. 648// index inside the object.
624// 649//
625// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
626// + O(1) insert/remove 651// + O(1) insert/remove
627// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
664 insert (&obj); 689 insert (&obj);
665 } 690 }
666 691
667 void erase (T *obj) 692 void erase (T *obj)
668 { 693 {
669 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
670 obj->*indexmember = 0; 695 obj->*indexmember = 0;
671 696
672 if (pos < this->size ()) 697 if (pos < this->size ())
673 { 698 {
674 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
682 { 707 {
683 erase (&obj); 708 erase (&obj);
684 } 709 }
685}; 710};
686 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
687// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
688// returns the number of bytes actually used (including \0) 781// returns the number of bytes actually used (including \0)
689int assign (char *dst, const char *src, int maxsize); 782int assign (char *dst, const char *src, int maxsize);
690 783
691// type-safe version of assign 784// type-safe version of assign
702 795
703int similar_direction (int a, int b); 796int similar_direction (int a, int b);
704 797
705// like v?sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
706char *vformat (const char *format, va_list ap); 799char *vformat (const char *format, va_list ap);
707char *format (const char *format, ...) attribute ((format (printf, 1, 2))); 800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
708 801
709// safety-check player input which will become object->msg 802// safety-check player input which will become object->msg
710bool msg_is_safe (const char *msg); 803bool msg_is_safe (const char *msg);
711 804
712///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines