ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.94 by root, Sun Nov 8 16:13:45 2009 UTC vs.
Revision 1.132 by root, Thu Dec 20 04:40:15 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify it under 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the 8 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the Affero GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see 18 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>. 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25
26#include <compiler.h>
27 26
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator 29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 30
36#include <new> 35#include <new>
37#include <vector> 36#include <vector>
38 37
39#include <glib.h> 38#include <glib.h>
40 39
40#include <flat_hash_map.hpp>
41
41#include <shstr.h> 42#include <shstr.h>
42#include <traits.h> 43#include <traits.h>
44
45#include "ecb.h"
43 46
44#if DEBUG_SALLOC 47#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
52# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
55#endif 58#endif
56 59
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 63// (note: works great for pointers)
64// most ugly macro I ever wrote 64// most ugly macro I ever wrote
70 70
71// in range excluding end 71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 74
75void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
77 77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
93// sign returns -1 or +1 93// sign returns -1 or +1
94template<typename T> 94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; } 95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation 96// relies on 2c representation
97template<> 97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
99 103
100// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
101template<typename T> 105template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
103 111
104// div* only work correctly for div > 0 112// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
107{ 115{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109} 117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
110// div, round-up 122// div, round-up
111template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
112{ 124{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114} 126}
115// div, round-down 127// div, round-down
116template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
117{ 129{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119} 131}
120 132
121// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T> 135template<typename T>
214#if 0 226#if 0
215// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
216#else 228#else
217// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
218#endif 230#endif
219inline int 231inline int
220idistance (int dx, int dy) 232idistance (int dx, int dy)
221{ 233{
222 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
223 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
224 236
225#if 0 237#if 0
226 return dx_ > dy_ 238 return dx_ > dy_
229#else 241#else
230 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231#endif 243#endif
232} 244}
233 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
234/* 266/*
235 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
236 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
237 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
238 */ 270 */
240absdir (int d) 272absdir (int d)
241{ 273{
242 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
243} 275}
244 276
277#define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
245extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
246 282
247void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
248void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
249 285
250// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
251template<typename T> 287template<typename T>
252inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
253 289
254// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
255// if src is 0, clears the memory 291// if src is 0, clears the memory
256template<typename T> 292template<typename T>
257inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
258 294
259// clears the memory 295// clears the memory
260template<typename T> 296template<typename T>
261inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
262 298
263// for symmetry 299// for symmetry
264template<typename T> 300template<typename T>
265inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
266{ 302{
267 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
268 { 304 {
269 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
270 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
271 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
272 assert (slice_alloc >= 0);//D
273 } 308 }
274} 309}
275 310
276// nulls the pointer 311// nulls the pointer
277template<typename T> 312template<typename T>
278inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
279{ 314{
280 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
281 ptr = 0; 316 ptr = 0;
282} 317}
283 318
339 sfree ((char *)p, s); 374 sfree ((char *)p, s);
340 } 375 }
341}; 376};
342 377
343// a STL-compatible allocator that uses g_slice 378// a STL-compatible allocator that uses g_slice
344// boy, this is verbose 379// boy, this is much less verbose in newer C++ versions
345template<typename Tp> 380template<typename Tp>
346struct slice_allocator 381struct slice_allocator
347{ 382{
348 typedef size_t size_type; 383 using value_type = Tp;
349 typedef ptrdiff_t difference_type;
350 typedef Tp *pointer;
351 typedef const Tp *const_pointer;
352 typedef Tp &reference;
353 typedef const Tp &const_reference;
354 typedef Tp value_type;
355 384
356 template <class U> 385 slice_allocator () noexcept { }
357 struct rebind 386 template<class U> slice_allocator (const slice_allocator<U> &) noexcept {}
387
388 value_type *allocate (std::size_t n)
358 { 389 {
359 typedef slice_allocator<U> other; 390 return salloc<Tp> (n);
391 }
392
393 void deallocate (value_type *p, std::size_t n)
394 {
395 sfree<Tp> (p, n);
396 }
397};
398
399template<class T, class U>
400bool operator == (const slice_allocator<T> &, const slice_allocator<U> &) noexcept
401{
402 return true;
403}
404
405template<class T, class U>
406bool operator != (const slice_allocator<T> &x, const slice_allocator<U> &y) noexcept
407{
408 return !(x == y);
409}
410
411// basically a memory area, but refcounted
412struct refcnt_buf
413{
414 char *data;
415
416 refcnt_buf (size_t size = 0);
417 refcnt_buf (void *data, size_t size);
418
419 refcnt_buf (const refcnt_buf &src)
420 {
421 data = src.data;
422 inc ();
423 }
424
425 ~refcnt_buf ();
426
427 refcnt_buf &operator =(const refcnt_buf &src);
428
429 operator char *()
430 {
431 return data;
432 }
433
434 size_t size () const
435 {
436 return _size ();
437 }
438
439protected:
440 enum {
441 overhead = sizeof (uint32_t) * 2
360 }; 442 };
361 443
362 slice_allocator () throw () { } 444 uint32_t &_size () const
363 slice_allocator (const slice_allocator &) throw () { }
364 template<typename Tp2>
365 slice_allocator (const slice_allocator<Tp2> &) throw () { }
366
367 ~slice_allocator () { }
368
369 pointer address (reference x) const { return &x; }
370 const_pointer address (const_reference x) const { return &x; }
371
372 pointer allocate (size_type n, const_pointer = 0)
373 { 445 {
374 return salloc<Tp> (n); 446 return ((unsigned int *)data)[-2];
375 } 447 }
376 448
377 void deallocate (pointer p, size_type n) 449 uint32_t &_refcnt () const
378 { 450 {
379 sfree<Tp> (p, n); 451 return ((unsigned int *)data)[-1];
380 } 452 }
381 453
382 size_type max_size () const throw ()
383 {
384 return size_t (-1) / sizeof (Tp);
385 }
386
387 void construct (pointer p, const Tp &val)
388 {
389 ::new (p) Tp (val);
390 }
391
392 void destroy (pointer p)
393 {
394 p->~Tp ();
395 }
396};
397
398// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
399// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
400// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
401struct tausworthe_random_generator
402{
403 uint32_t state [4];
404
405 void operator =(const tausworthe_random_generator &src)
406 {
407 state [0] = src.state [0];
408 state [1] = src.state [1];
409 state [2] = src.state [2];
410 state [3] = src.state [3];
411 }
412
413 void seed (uint32_t seed);
414 uint32_t next ();
415};
416
417// Xorshift RNGs, George Marsaglia
418// http://www.jstatsoft.org/v08/i14/paper
419// this one is about 40% faster than the tausworthe one above (i.e. not much),
420// despite the inlining, and has the issue of only creating 2**32-1 numbers.
421// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
422struct xorshift_random_generator
423{
424 uint32_t x, y;
425
426 void operator =(const xorshift_random_generator &src)
427 {
428 x = src.x;
429 y = src.y;
430 }
431
432 void seed (uint32_t seed) 454 void _alloc (uint32_t size)
433 { 455 {
434 x = seed; 456 data = ((char *)salloc<char> (size + overhead)) + overhead;
435 y = seed * 69069U; 457 _size () = size;
458 _refcnt () = 1;
436 } 459 }
437 460
438 uint32_t next () 461 void _dealloc ();
439 {
440 uint32_t t = x ^ (x << 10);
441 x = y;
442 y = y ^ (y >> 13) ^ t ^ (t >> 10);
443 return y;
444 }
445};
446 462
447template<class generator> 463 void inc ()
448struct random_number_generator : generator
449{
450 // uniform distribution, 0 .. max (0, num - 1)
451 uint32_t operator ()(uint32_t num)
452 { 464 {
453 return !is_constant (num) ? get_range (num) // non-constant 465 ++_refcnt ();
454 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
455 : this->next () & (num - 1); // constant, power-of-two
456 } 466 }
457 467
458 // return a number within (min .. max) 468 void dec ()
459 int operator () (int r_min, int r_max)
460 { 469 {
461 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max 470 if (!--_refcnt ())
462 ? r_min + operator ()(r_max - r_min + 1) 471 _dealloc ();
463 : get_range (r_min, r_max);
464 } 472 }
465
466 double operator ()()
467 {
468 return this->next () / (double)0xFFFFFFFFU;
469 }
470
471protected:
472 uint32_t get_range (uint32_t r_max);
473 int get_range (int r_min, int r_max);
474}; 473};
475
476typedef random_number_generator<tausworthe_random_generator> rand_gen;
477
478extern rand_gen rndm, rmg_rndm;
479 474
480INTERFACE_CLASS (attachable) 475INTERFACE_CLASS (attachable)
481struct refcnt_base 476struct refcnt_base
482{ 477{
483 typedef int refcnt_t; 478 typedef int refcnt_t;
498 // p if not null 493 // p if not null
499 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 494 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
500 495
501 void refcnt_dec () 496 void refcnt_dec ()
502 { 497 {
503 if (!is_constant (p)) 498 if (!ecb_is_constant (p))
504 --*refcnt_ref (); 499 --*refcnt_ref ();
505 else if (p) 500 else if (p)
506 --p->refcnt; 501 --p->refcnt;
507 } 502 }
508 503
509 void refcnt_inc () 504 void refcnt_inc ()
510 { 505 {
511 if (!is_constant (p)) 506 if (!ecb_is_constant (p))
512 ++*refcnt_ref (); 507 ++*refcnt_ref ();
513 else if (p) 508 else if (p)
514 ++p->refcnt; 509 ++p->refcnt;
515 } 510 }
516 511
545typedef refptr<maptile> maptile_ptr; 540typedef refptr<maptile> maptile_ptr;
546typedef refptr<object> object_ptr; 541typedef refptr<object> object_ptr;
547typedef refptr<archetype> arch_ptr; 542typedef refptr<archetype> arch_ptr;
548typedef refptr<client> client_ptr; 543typedef refptr<client> client_ptr;
549typedef refptr<player> player_ptr; 544typedef refptr<player> player_ptr;
545typedef refptr<region> region_ptr;
546
547#define STRHSH_NULL 2166136261
548
549static inline uint32_t
550strhsh (const char *s)
551{
552 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
553 // it is about twice as fast as the one-at-a-time one,
554 // with good distribution.
555 // FNV-1a is faster on many cpus because the multiplication
556 // runs concurrently with the looping logic.
557 // we modify the hash a bit to improve its distribution
558 uint32_t hash = STRHSH_NULL;
559
560 while (*s)
561 hash = (hash ^ *s++) * 16777619U;
562
563 return hash ^ (hash >> 16);
564}
565
566static inline uint32_t
567memhsh (const char *s, size_t len)
568{
569 uint32_t hash = STRHSH_NULL;
570
571 while (len--)
572 hash = (hash ^ *s++) * 16777619U;
573
574 return hash;
575}
550 576
551struct str_hash 577struct str_hash
552{ 578{
553 std::size_t operator ()(const char *s) const 579 std::size_t operator ()(const char *s) const
554 { 580 {
555#if 0
556 uint32_t hash = 0;
557
558 /* use the one-at-a-time hash function, which supposedly is
559 * better than the djb2-like one used by perl5.005, but
560 * certainly is better then the bug used here before.
561 * see http://burtleburtle.net/bob/hash/doobs.html
562 */
563 while (*s)
564 {
565 hash += *s++;
566 hash += hash << 10;
567 hash ^= hash >> 6;
568 }
569
570 hash += hash << 3;
571 hash ^= hash >> 11;
572 hash += hash << 15;
573#else
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrent with the looping logic.
579 uint32_t hash = 2166136261;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619;
583#endif
584
585 return hash; 581 return strhsh (s);
586 } 582 }
583
584 std::size_t operator ()(const shstr &s) const
585 {
586 return strhsh (s);
587 }
588
589 typedef ska::power_of_two_hash_policy hash_policy;
587}; 590};
588 591
589struct str_equal 592struct str_equal
590{ 593{
591 bool operator ()(const char *a, const char *b) const 594 bool operator ()(const char *a, const char *b) const
617 } 620 }
618}; 621};
619 622
620// This container blends advantages of linked lists 623// This container blends advantages of linked lists
621// (efficiency) with vectors (random access) by 624// (efficiency) with vectors (random access) by
622// by using an unordered vector and storing the vector 625// using an unordered vector and storing the vector
623// index inside the object. 626// index inside the object.
624// 627//
625// + memory-efficient on most 64 bit archs 628// + memory-efficient on most 64 bit archs
626// + O(1) insert/remove 629// + O(1) insert/remove
627// + free unique (but varying) id for inserted objects 630// + free unique (but varying) id for inserted objects
664 insert (&obj); 667 insert (&obj);
665 } 668 }
666 669
667 void erase (T *obj) 670 void erase (T *obj)
668 { 671 {
669 unsigned int pos = obj->*indexmember; 672 object_vector_index pos = obj->*indexmember;
670 obj->*indexmember = 0; 673 obj->*indexmember = 0;
671 674
672 if (pos < this->size ()) 675 if (pos < this->size ())
673 { 676 {
674 (*this)[pos - 1] = (*this)[this->size () - 1]; 677 (*this)[pos - 1] = (*this)[this->size () - 1];
682 { 685 {
683 erase (&obj); 686 erase (&obj);
684 } 687 }
685}; 688};
686 689
690/////////////////////////////////////////////////////////////////////////////
691
692// something like a vector or stack, but without
693// out of bounds checking
694template<typename T>
695struct fixed_stack
696{
697 T *data;
698 int size;
699 int max;
700
701 fixed_stack ()
702 : size (0), data (0)
703 {
704 }
705
706 fixed_stack (int max)
707 : size (0), max (max)
708 {
709 data = salloc<T> (max);
710 }
711
712 void reset (int new_max)
713 {
714 sfree (data, max);
715 size = 0;
716 max = new_max;
717 data = salloc<T> (max);
718 }
719
720 void free ()
721 {
722 sfree (data, max);
723 data = 0;
724 }
725
726 ~fixed_stack ()
727 {
728 sfree (data, max);
729 }
730
731 T &operator[](int idx)
732 {
733 return data [idx];
734 }
735
736 void push (T v)
737 {
738 data [size++] = v;
739 }
740
741 T &pop ()
742 {
743 return data [--size];
744 }
745
746 T remove (int idx)
747 {
748 T v = data [idx];
749
750 data [idx] = data [--size];
751
752 return v;
753 }
754};
755
756/////////////////////////////////////////////////////////////////////////////
757
687// basically does what strncpy should do, but appends "..." to strings exceeding length 758// basically does what strncpy should do, but appends "..." to strings exceeding length
688// returns the number of bytes actually used (including \0) 759// returns the number of bytes actually used (including \0)
689int assign (char *dst, const char *src, int maxsize); 760int assign (char *dst, const char *src, int maxsize);
690 761
691// type-safe version of assign 762// type-safe version of assign
702 773
703int similar_direction (int a, int b); 774int similar_direction (int a, int b);
704 775
705// like v?sprintf, but returns a "static" buffer 776// like v?sprintf, but returns a "static" buffer
706char *vformat (const char *format, va_list ap); 777char *vformat (const char *format, va_list ap);
707char *format (const char *format, ...) attribute ((format (printf, 1, 2))); 778char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
708 779
709// safety-check player input which will become object->msg 780// safety-check player input which will become object->msg
710bool msg_is_safe (const char *msg); 781bool msg_is_safe (const char *msg);
711 782
712///////////////////////////////////////////////////////////////////////////// 783/////////////////////////////////////////////////////////////////////////////

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines