ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.27 by root, Mon Jan 15 00:40:49 2007 UTC vs.
Revision 1.94 by root, Sun Nov 8 16:13:45 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
35#include <cmath>
11#include <new> 36#include <new>
12#include <vector> 37#include <vector>
13 38
14#include <glib.h> 39#include <glib.h>
15 40
16#include <shstr.h> 41#include <shstr.h>
17#include <traits.h> 42#include <traits.h>
18 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
19// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
20#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
21 59
22// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
23// that is in scope for the next statement only 61// that is in scope for the next statement only
24// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
25// (note: works great for pointers) 63// (note: works great for pointers)
26// most ugly macro I ever wrote 64// most ugly macro I ever wrote
27#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
28 66
29// in range including end 67// in range including end
30#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
31 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
32 70
33// in range excluding end 71// in range excluding end
34#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
35 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
36 74
75void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg);
77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div)
107{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109}
110// div, round-up
111template<typename T> static inline T div_ru (T val, T div)
112{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114}
115// div, round-down
116template<typename T> static inline T div_rd (T val, T div)
117{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119}
120
121// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T>
124static inline T
125lerp (T val, T min_in, T max_in, T min_out, T max_out)
126{
127 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128}
129
130// lerp, round-down
131template<typename T>
132static inline T
133lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134{
135 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136}
137
138// lerp, round-up
139template<typename T>
140static inline T
141lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144}
145
146// lots of stuff taken from FXT
147
148/* Rotate right. This is used in various places for checksumming */
149//TODO: that sucks, use a better checksum algo
150static inline uint32_t
151rotate_right (uint32_t c, uint32_t count = 1)
152{
153 return (c << (32 - count)) | (c >> count);
154}
155
156static inline uint32_t
157rotate_left (uint32_t c, uint32_t count = 1)
158{
159 return (c >> (32 - count)) | (c << count);
160}
161
162// Return abs(a-b)
163// Both a and b must not have the most significant bit set
164static inline uint32_t
165upos_abs_diff (uint32_t a, uint32_t b)
166{
167 long d1 = b - a;
168 long d2 = (d1 & (d1 >> 31)) << 1;
169
170 return d1 - d2; // == (b - d) - (a + d);
171}
172
173// Both a and b must not have the most significant bit set
174static inline uint32_t
175upos_min (uint32_t a, uint32_t b)
176{
177 int32_t d = b - a;
178 d &= d >> 31;
179 return a + d;
180}
181
182// Both a and b must not have the most significant bit set
183static inline uint32_t
184upos_max (uint32_t a, uint32_t b)
185{
186 int32_t d = b - a;
187 d &= d >> 31;
188 return b - d;
189}
190
191// this is much faster than crossfire's original algorithm
192// on modern cpus
193inline int
194isqrt (int n)
195{
196 return (int)sqrtf ((float)n);
197}
198
199// this is kind of like the ^^ operator, if it would exist, without sequence point.
200// more handy than it looks like, due to the implicit !! done on its arguments
201inline bool
202logical_xor (bool a, bool b)
203{
204 return a != b;
205}
206
207inline bool
208logical_implies (bool a, bool b)
209{
210 return a <= b;
211}
212
213// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
214#if 0
215// and has a max. error of 6 in the range -100..+100.
216#else
217// and has a max. error of 9 in the range -100..+100.
218#endif
219inline int
220idistance (int dx, int dy)
221{
222 unsigned int dx_ = abs (dx);
223 unsigned int dy_ = abs (dy);
224
225#if 0
226 return dx_ > dy_
227 ? (dx_ * 61685 + dy_ * 26870) >> 16
228 : (dy_ * 61685 + dx_ * 26870) >> 16;
229#else
230 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231#endif
232}
233
234/*
235 * absdir(int): Returns a number between 1 and 8, which represent
236 * the "absolute" direction of a number (it actually takes care of
237 * "overflow" in previous calculations of a direction).
238 */
239inline int
240absdir (int d)
241{
242 return ((d - 1) & 7) + 1;
243}
244
245extern ssize_t slice_alloc; // statistics
246
247void *salloc_ (int n) throw (std::bad_alloc);
248void *salloc_ (int n, void *src) throw (std::bad_alloc);
249
250// strictly the same as g_slice_alloc, but never returns 0
251template<typename T>
252inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
253
254// also copies src into the new area, like "memdup"
255// if src is 0, clears the memory
256template<typename T>
257inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
258
259// clears the memory
260template<typename T>
261inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
262
263// for symmetry
264template<typename T>
265inline void sfree (T *ptr, int n = 1) throw ()
266{
267 if (expect_true (ptr))
268 {
269 slice_alloc -= n * sizeof (T);
270 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
271 g_slice_free1 (n * sizeof (T), (void *)ptr);
272 assert (slice_alloc >= 0);//D
273 }
274}
275
276// nulls the pointer
277template<typename T>
278inline void sfree0 (T *&ptr, int n = 1) throw ()
279{
280 sfree<T> (ptr, n);
281 ptr = 0;
282}
283
37// makes dynamically allocated objects zero-initialised 284// makes dynamically allocated objects zero-initialised
38struct zero_initialised 285struct zero_initialised
39{ 286{
40 void *operator new (size_t s, void *p) 287 void *operator new (size_t s, void *p)
41 { 288 {
43 return p; 290 return p;
44 } 291 }
45 292
46 void *operator new (size_t s) 293 void *operator new (size_t s)
47 { 294 {
48 return g_slice_alloc0 (s); 295 return salloc0<char> (s);
49 } 296 }
50 297
51 void *operator new[] (size_t s) 298 void *operator new[] (size_t s)
52 { 299 {
53 return g_slice_alloc0 (s); 300 return salloc0<char> (s);
54 } 301 }
55 302
56 void operator delete (void *p, size_t s) 303 void operator delete (void *p, size_t s)
57 { 304 {
58 g_slice_free1 (s, p); 305 sfree ((char *)p, s);
59 } 306 }
60 307
61 void operator delete[] (void *p, size_t s) 308 void operator delete[] (void *p, size_t s)
62 { 309 {
63 g_slice_free1 (s, p); 310 sfree ((char *)p, s);
64 } 311 }
65}; 312};
66 313
67void *salloc_ (int n) throw (std::bad_alloc); 314// makes dynamically allocated objects zero-initialised
68void *salloc_ (int n, void *src) throw (std::bad_alloc); 315struct slice_allocated
69
70// strictly the same as g_slice_alloc, but never returns 0
71template<typename T>
72inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
73
74// also copies src into the new area, like "memdup"
75// if src is 0, clears the memory
76template<typename T>
77inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
78
79// clears the memory
80template<typename T>
81inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
82
83// for symmetry
84template<typename T>
85inline void sfree (T *ptr, int n = 1) throw ()
86{ 316{
87 g_slice_free1 (n * sizeof (T), (void *)ptr); 317 void *operator new (size_t s, void *p)
88} 318 {
319 return p;
320 }
321
322 void *operator new (size_t s)
323 {
324 return salloc<char> (s);
325 }
326
327 void *operator new[] (size_t s)
328 {
329 return salloc<char> (s);
330 }
331
332 void operator delete (void *p, size_t s)
333 {
334 sfree ((char *)p, s);
335 }
336
337 void operator delete[] (void *p, size_t s)
338 {
339 sfree ((char *)p, s);
340 }
341};
89 342
90// a STL-compatible allocator that uses g_slice 343// a STL-compatible allocator that uses g_slice
91// boy, this is verbose 344// boy, this is verbose
92template<typename Tp> 345template<typename Tp>
93struct slice_allocator 346struct slice_allocator
105 { 358 {
106 typedef slice_allocator<U> other; 359 typedef slice_allocator<U> other;
107 }; 360 };
108 361
109 slice_allocator () throw () { } 362 slice_allocator () throw () { }
110 slice_allocator (const slice_allocator &o) throw () { } 363 slice_allocator (const slice_allocator &) throw () { }
111 template<typename Tp2> 364 template<typename Tp2>
112 slice_allocator (const slice_allocator<Tp2> &) throw () { } 365 slice_allocator (const slice_allocator<Tp2> &) throw () { }
113 366
114 ~slice_allocator () { } 367 ~slice_allocator () { }
115 368
124 void deallocate (pointer p, size_type n) 377 void deallocate (pointer p, size_type n)
125 { 378 {
126 sfree<Tp> (p, n); 379 sfree<Tp> (p, n);
127 } 380 }
128 381
129 size_type max_size ()const throw () 382 size_type max_size () const throw ()
130 { 383 {
131 return size_t (-1) / sizeof (Tp); 384 return size_t (-1) / sizeof (Tp);
132 } 385 }
133 386
134 void construct (pointer p, const Tp &val) 387 void construct (pointer p, const Tp &val)
139 void destroy (pointer p) 392 void destroy (pointer p)
140 { 393 {
141 p->~Tp (); 394 p->~Tp ();
142 } 395 }
143}; 396};
397
398// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
399// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
400// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
401struct tausworthe_random_generator
402{
403 uint32_t state [4];
404
405 void operator =(const tausworthe_random_generator &src)
406 {
407 state [0] = src.state [0];
408 state [1] = src.state [1];
409 state [2] = src.state [2];
410 state [3] = src.state [3];
411 }
412
413 void seed (uint32_t seed);
414 uint32_t next ();
415};
416
417// Xorshift RNGs, George Marsaglia
418// http://www.jstatsoft.org/v08/i14/paper
419// this one is about 40% faster than the tausworthe one above (i.e. not much),
420// despite the inlining, and has the issue of only creating 2**32-1 numbers.
421// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
422struct xorshift_random_generator
423{
424 uint32_t x, y;
425
426 void operator =(const xorshift_random_generator &src)
427 {
428 x = src.x;
429 y = src.y;
430 }
431
432 void seed (uint32_t seed)
433 {
434 x = seed;
435 y = seed * 69069U;
436 }
437
438 uint32_t next ()
439 {
440 uint32_t t = x ^ (x << 10);
441 x = y;
442 y = y ^ (y >> 13) ^ t ^ (t >> 10);
443 return y;
444 }
445};
446
447template<class generator>
448struct random_number_generator : generator
449{
450 // uniform distribution, 0 .. max (0, num - 1)
451 uint32_t operator ()(uint32_t num)
452 {
453 return !is_constant (num) ? get_range (num) // non-constant
454 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
455 : this->next () & (num - 1); // constant, power-of-two
456 }
457
458 // return a number within (min .. max)
459 int operator () (int r_min, int r_max)
460 {
461 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
462 ? r_min + operator ()(r_max - r_min + 1)
463 : get_range (r_min, r_max);
464 }
465
466 double operator ()()
467 {
468 return this->next () / (double)0xFFFFFFFFU;
469 }
470
471protected:
472 uint32_t get_range (uint32_t r_max);
473 int get_range (int r_min, int r_max);
474};
475
476typedef random_number_generator<tausworthe_random_generator> rand_gen;
477
478extern rand_gen rndm, rmg_rndm;
479
480INTERFACE_CLASS (attachable)
481struct refcnt_base
482{
483 typedef int refcnt_t;
484 mutable refcnt_t ACC (RW, refcnt);
485
486 MTH void refcnt_inc () const { ++refcnt; }
487 MTH void refcnt_dec () const { --refcnt; }
488
489 refcnt_base () : refcnt (0) { }
490};
491
492// to avoid branches with more advanced compilers
493extern refcnt_base::refcnt_t refcnt_dummy;
144 494
145template<class T> 495template<class T>
146struct refptr 496struct refptr
147{ 497{
498 // p if not null
499 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
500
501 void refcnt_dec ()
502 {
503 if (!is_constant (p))
504 --*refcnt_ref ();
505 else if (p)
506 --p->refcnt;
507 }
508
509 void refcnt_inc ()
510 {
511 if (!is_constant (p))
512 ++*refcnt_ref ();
513 else if (p)
514 ++p->refcnt;
515 }
516
148 T *p; 517 T *p;
149 518
150 refptr () : p(0) { } 519 refptr () : p(0) { }
151 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 520 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
152 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 521 refptr (T *p) : p(p) { refcnt_inc (); }
153 ~refptr () { if (p) p->refcnt_dec (); } 522 ~refptr () { refcnt_dec (); }
154 523
155 const refptr<T> &operator =(T *o) 524 const refptr<T> &operator =(T *o)
156 { 525 {
526 // if decrementing ever destroys we need to reverse the order here
157 if (p) p->refcnt_dec (); 527 refcnt_dec ();
158 p = o; 528 p = o;
159 if (p) p->refcnt_inc (); 529 refcnt_inc ();
160
161 return *this; 530 return *this;
162 } 531 }
163 532
164 const refptr<T> &operator =(const refptr<T> o) 533 const refptr<T> &operator =(const refptr<T> &o)
165 { 534 {
166 *this = o.p; 535 *this = o.p;
167 return *this; 536 return *this;
168 } 537 }
169 538
170 T &operator * () const { return *p; } 539 T &operator * () const { return *p; }
171 T *operator ->() const { return p; } 540 T *operator ->() const { return p; }
172 541
173 operator T *() const { return p; } 542 operator T *() const { return p; }
174}; 543};
175 544
176typedef refptr<maptile> maptile_ptr; 545typedef refptr<maptile> maptile_ptr;
181 550
182struct str_hash 551struct str_hash
183{ 552{
184 std::size_t operator ()(const char *s) const 553 std::size_t operator ()(const char *s) const
185 { 554 {
186 unsigned long hash = 0; 555#if 0
556 uint32_t hash = 0;
187 557
188 /* use the one-at-a-time hash function, which supposedly is 558 /* use the one-at-a-time hash function, which supposedly is
189 * better than the djb2-like one used by perl5.005, but 559 * better than the djb2-like one used by perl5.005, but
190 * certainly is better then the bug used here before. 560 * certainly is better then the bug used here before.
191 * see http://burtleburtle.net/bob/hash/doobs.html 561 * see http://burtleburtle.net/bob/hash/doobs.html
198 } 568 }
199 569
200 hash += hash << 3; 570 hash += hash << 3;
201 hash ^= hash >> 11; 571 hash ^= hash >> 11;
202 hash += hash << 15; 572 hash += hash << 15;
573#else
574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
575 // it is about twice as fast as the one-at-a-time one,
576 // with good distribution.
577 // FNV-1a is faster on many cpus because the multiplication
578 // runs concurrent with the looping logic.
579 uint32_t hash = 2166136261;
580
581 while (*s)
582 hash = (hash ^ *s++) * 16777619;
583#endif
203 584
204 return hash; 585 return hash;
205 } 586 }
206}; 587};
207 588
211 { 592 {
212 return !strcmp (a, b); 593 return !strcmp (a, b);
213 } 594 }
214}; 595};
215 596
597// Mostly the same as std::vector, but insert/erase can reorder
598// the elements, making append(=insert)/remove O(1) instead of O(n).
599//
600// NOTE: only some forms of erase are available
216template<class T> 601template<class T>
217struct unordered_vector : std::vector<T, slice_allocator<T> > 602struct unordered_vector : std::vector<T, slice_allocator<T> >
218{ 603{
219 typedef typename unordered_vector::iterator iterator; 604 typedef typename unordered_vector::iterator iterator;
220 605
230 { 615 {
231 erase ((unsigned int )(i - this->begin ())); 616 erase ((unsigned int )(i - this->begin ()));
232 } 617 }
233}; 618};
234 619
235template<class T, int T::* index> 620// This container blends advantages of linked lists
621// (efficiency) with vectors (random access) by
622// by using an unordered vector and storing the vector
623// index inside the object.
624//
625// + memory-efficient on most 64 bit archs
626// + O(1) insert/remove
627// + free unique (but varying) id for inserted objects
628// + cache-friendly iteration
629// - only works for pointers to structs
630//
631// NOTE: only some forms of erase/insert are available
632typedef int object_vector_index;
633
634template<class T, object_vector_index T::*indexmember>
236struct object_vector : std::vector<T *, slice_allocator<T *> > 635struct object_vector : std::vector<T *, slice_allocator<T *> >
237{ 636{
637 typedef typename object_vector::iterator iterator;
638
639 bool contains (const T *obj) const
640 {
641 return obj->*indexmember;
642 }
643
644 iterator find (const T *obj)
645 {
646 return obj->*indexmember
647 ? this->begin () + obj->*indexmember - 1
648 : this->end ();
649 }
650
651 void push_back (T *obj)
652 {
653 std::vector<T *, slice_allocator<T *> >::push_back (obj);
654 obj->*indexmember = this->size ();
655 }
656
238 void insert (T *obj) 657 void insert (T *obj)
239 { 658 {
240 assert (!(obj->*index));
241 push_back (obj); 659 push_back (obj);
242 obj->*index = this->size ();
243 } 660 }
244 661
245 void insert (T &obj) 662 void insert (T &obj)
246 { 663 {
247 insert (&obj); 664 insert (&obj);
248 } 665 }
249 666
250 void erase (T *obj) 667 void erase (T *obj)
251 { 668 {
252 assert (obj->*index);
253 int pos = obj->*index; 669 unsigned int pos = obj->*indexmember;
254 obj->*index = 0; 670 obj->*indexmember = 0;
255 671
256 if (pos < this->size ()) 672 if (pos < this->size ())
257 { 673 {
258 (*this)[pos - 1] = (*this)[this->size () - 1]; 674 (*this)[pos - 1] = (*this)[this->size () - 1];
259 (*this)[pos - 1]->*index = pos; 675 (*this)[pos - 1]->*indexmember = pos;
260 } 676 }
261 677
262 this->pop_back (); 678 this->pop_back ();
263 } 679 }
264 680
265 void erase (T &obj) 681 void erase (T &obj)
266 { 682 {
267 errase (&obj); 683 erase (&obj);
268 } 684 }
269}; 685};
270
271template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
272template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
273template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; }
274
275template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
276 686
277// basically does what strncpy should do, but appends "..." to strings exceeding length 687// basically does what strncpy should do, but appends "..." to strings exceeding length
688// returns the number of bytes actually used (including \0)
278void assign (char *dst, const char *src, int maxlen); 689int assign (char *dst, const char *src, int maxsize);
279 690
280// type-safe version of assign 691// type-safe version of assign
281template<int N> 692template<int N>
282inline void assign (char (&dst)[N], const char *src) 693inline int assign (char (&dst)[N], const char *src)
283{ 694{
284 assign ((char *)&dst, src, N); 695 return assign ((char *)&dst, src, N);
285} 696}
286 697
287typedef double tstamp; 698typedef double tstamp;
288 699
289// return current time as timestampe 700// return current time as timestamp
290tstamp now (); 701tstamp now ();
291 702
292int similar_direction (int a, int b); 703int similar_direction (int a, int b);
293 704
705// like v?sprintf, but returns a "static" buffer
706char *vformat (const char *format, va_list ap);
707char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
708
709// safety-check player input which will become object->msg
710bool msg_is_safe (const char *msg);
711
712/////////////////////////////////////////////////////////////////////////////
713// threads, very very thin wrappers around pthreads
714
715struct thread
716{
717 pthread_t id;
718
719 void start (void *(*start_routine)(void *), void *arg = 0);
720
721 void cancel ()
722 {
723 pthread_cancel (id);
724 }
725
726 void *join ()
727 {
728 void *ret;
729
730 if (pthread_join (id, &ret))
731 cleanup ("pthread_join failed", 1);
732
733 return ret;
734 }
735};
736
737// note that mutexes are not classes
738typedef pthread_mutex_t smutex;
739
740#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
741 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
742#else
743 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
294#endif 744#endif
295 745
746#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
747#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
748#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
749
750typedef pthread_cond_t scond;
751
752#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
753#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
754#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
755#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
756
757#endif
758

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines