ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.97 by root, Fri Mar 26 01:04:44 2010 UTC vs.
Revision 1.131 by root, Wed Dec 5 21:18:37 2018 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2017,2018 Marc Alexander Lehmann / the Deliantra team
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 5 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 6 *
6 * Deliantra is free software: you can redistribute it and/or modify it under 7 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the 8 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your 9 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version. 10 * option) any later version.
10 * 11 *
11 * This program is distributed in the hope that it will be useful, 12 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 15 * GNU General Public License for more details.
15 * 16 *
16 * You should have received a copy of the Affero GNU General Public License 17 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see 18 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>. 19 * <http://www.gnu.org/licenses/>.
19 * 20 *
20 * The authors can be reached via e-mail to <support@deliantra.net> 21 * The authors can be reached via e-mail to <support@deliantra.net>
21 */ 22 */
22 23
23#ifndef UTIL_H__ 24#ifndef UTIL_H__
24#define UTIL_H__ 25#define UTIL_H__
25
26#include <compiler.h>
27 26
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0 27#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs 28#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator 29#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31 30
36#include <new> 35#include <new>
37#include <vector> 36#include <vector>
38 37
39#include <glib.h> 38#include <glib.h>
40 39
40#include <flat_hash_map.hpp>
41
41#include <shstr.h> 42#include <shstr.h>
42#include <traits.h> 43#include <traits.h>
44
45#include "ecb.h"
43 46
44#if DEBUG_SALLOC 47#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s) 48# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s) 49# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p) 50# define g_slice_free1(s,p) debug_slice_free1(s,p)
52# define g_slice_alloc0(s) calloc (1, (s)) 55# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s)) 56# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p)) 57# define g_slice_free1(s,p) free ((p))
55#endif 58#endif
56 59
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basically declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 63// (note: works great for pointers)
64// most ugly macro I ever wrote 64// most ugly macro I ever wrote
70 70
71// in range excluding end 71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 74
75void cleanup (const char *cause, bool make_core = false); 75ecb_cold void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg); 76ecb_cold void fork_abort (const char *msg);
77 77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); } 84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); } 85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); } 86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
93// sign returns -1 or +1 93// sign returns -1 or +1
94template<typename T> 94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; } 95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation 96// relies on 2c representation
97template<> 97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); } 98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99template<>
100inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
101template<>
102inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
99 103
100// sign0 returns -1, 0 or +1 104// sign0 returns -1, 0 or +1
101template<typename T> 105template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; } 106static inline T sign0 (T v) { return v ? sign (v) : 0; }
107
108//clashes with C++0x
109template<typename T, typename U>
110static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
103 111
104// div* only work correctly for div > 0 112// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards) 113// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div) 114template<typename T> static inline T div (T val, T div)
107{ 115{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div; 116 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109} 117}
118
119template<> inline float div (float val, float div) { return val / div; }
120template<> inline double div (double val, double div) { return val / div; }
121
110// div, round-up 122// div, round-up
111template<typename T> static inline T div_ru (T val, T div) 123template<typename T> static inline T div_ru (T val, T div)
112{ 124{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div; 125 return ecb_expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114} 126}
115// div, round-down 127// div, round-down
116template<typename T> static inline T div_rd (T val, T div) 128template<typename T> static inline T div_rd (T val, T div)
117{ 129{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div; 130 return ecb_expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119} 131}
120 132
121// lerp* only work correctly for min_in < max_in 133// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out 134// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
123template<typename T> 135template<typename T>
214#if 0 226#if 0
215// and has a max. error of 6 in the range -100..+100. 227// and has a max. error of 6 in the range -100..+100.
216#else 228#else
217// and has a max. error of 9 in the range -100..+100. 229// and has a max. error of 9 in the range -100..+100.
218#endif 230#endif
219inline int 231inline int
220idistance (int dx, int dy) 232idistance (int dx, int dy)
221{ 233{
222 unsigned int dx_ = abs (dx); 234 unsigned int dx_ = abs (dx);
223 unsigned int dy_ = abs (dy); 235 unsigned int dy_ = abs (dy);
224 236
225#if 0 237#if 0
226 return dx_ > dy_ 238 return dx_ > dy_
229#else 241#else
230 return dx_ + dy_ - min (dx_, dy_) * 5 / 8; 242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
231#endif 243#endif
232} 244}
233 245
246// can be substantially faster than floor, if your value range allows for it
247template<typename T>
248inline T
249fastfloor (T x)
250{
251 return std::floor (x);
252}
253
254inline float
255fastfloor (float x)
256{
257 return sint32(x) - (x < 0);
258}
259
260inline double
261fastfloor (double x)
262{
263 return sint64(x) - (x < 0);
264}
265
234/* 266/*
235 * absdir(int): Returns a number between 1 and 8, which represent 267 * absdir(int): Returns a number between 1 and 8, which represent
236 * the "absolute" direction of a number (it actually takes care of 268 * the "absolute" direction of a number (it actually takes care of
237 * "overflow" in previous calculations of a direction). 269 * "overflow" in previous calculations of a direction).
238 */ 270 */
240absdir (int d) 272absdir (int d)
241{ 273{
242 return ((d - 1) & 7) + 1; 274 return ((d - 1) & 7) + 1;
243} 275}
244 276
245// avoid ctz name because netbsd or freebsd spams it's namespace with it
246#if GCC_VERSION(3,4)
247static inline int least_significant_bit (uint32_t x)
248{
249 return __builtin_ctz (x);
250}
251#else
252int least_significant_bit (uint32_t x);
253#endif
254
255#define for_all_bits_sparse_32(mask, idxvar) \ 277#define for_all_bits_sparse_32(mask, idxvar) \
256 for (uint32_t idxvar, mask_ = mask; \ 278 for (uint32_t idxvar, mask_ = mask; \
257 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);) 279 mask_ && ((idxvar = ecb_ctz32 (mask_)), mask_ &= ~(1 << idxvar), 1);)
258 280
259extern ssize_t slice_alloc; // statistics 281extern ssize_t slice_alloc; // statistics
260 282
261void *salloc_ (int n) throw (std::bad_alloc); 283void *salloc_ (int n);
262void *salloc_ (int n, void *src) throw (std::bad_alloc); 284void *salloc_ (int n, void *src);
263 285
264// strictly the same as g_slice_alloc, but never returns 0 286// strictly the same as g_slice_alloc, but never returns 0
265template<typename T> 287template<typename T>
266inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); } 288inline T *salloc (int n = 1) { return (T *)salloc_ (n * sizeof (T)); }
267 289
268// also copies src into the new area, like "memdup" 290// also copies src into the new area, like "memdup"
269// if src is 0, clears the memory 291// if src is 0, clears the memory
270template<typename T> 292template<typename T>
271inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); } 293inline T *salloc (int n, T *src) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
272 294
273// clears the memory 295// clears the memory
274template<typename T> 296template<typename T>
275inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); } 297inline T *salloc0(int n = 1) { return (T *)salloc_ (n * sizeof (T), 0); }
276 298
277// for symmetry 299// for symmetry
278template<typename T> 300template<typename T>
279inline void sfree (T *ptr, int n = 1) throw () 301inline void sfree (T *ptr, int n = 1) noexcept
280{ 302{
281 if (expect_true (ptr)) 303 if (ecb_expect_true (ptr))
282 { 304 {
283 slice_alloc -= n * sizeof (T); 305 slice_alloc -= n * sizeof (T);
284 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T)); 306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
285 g_slice_free1 (n * sizeof (T), (void *)ptr); 307 g_slice_free1 (n * sizeof (T), (void *)ptr);
286 assert (slice_alloc >= 0);//D
287 } 308 }
288} 309}
289 310
290// nulls the pointer 311// nulls the pointer
291template<typename T> 312template<typename T>
292inline void sfree0 (T *&ptr, int n = 1) throw () 313inline void sfree0 (T *&ptr, int n = 1) noexcept
293{ 314{
294 sfree<T> (ptr, n); 315 sfree<T> (ptr, n);
295 ptr = 0; 316 ptr = 0;
296} 317}
297 318
365 typedef const Tp *const_pointer; 386 typedef const Tp *const_pointer;
366 typedef Tp &reference; 387 typedef Tp &reference;
367 typedef const Tp &const_reference; 388 typedef const Tp &const_reference;
368 typedef Tp value_type; 389 typedef Tp value_type;
369 390
370 template <class U> 391 template <class U>
371 struct rebind 392 struct rebind
372 { 393 {
373 typedef slice_allocator<U> other; 394 typedef slice_allocator<U> other;
374 }; 395 };
375 396
376 slice_allocator () throw () { } 397 slice_allocator () noexcept { }
377 slice_allocator (const slice_allocator &) throw () { } 398 slice_allocator (const slice_allocator &) noexcept { }
378 template<typename Tp2> 399 template<typename Tp2>
379 slice_allocator (const slice_allocator<Tp2> &) throw () { } 400 slice_allocator (const slice_allocator<Tp2> &) noexcept { }
380 401
381 ~slice_allocator () { } 402 ~slice_allocator () { }
382 403
383 pointer address (reference x) const { return &x; } 404 pointer address (reference x) const { return &x; }
384 const_pointer address (const_reference x) const { return &x; } 405 const_pointer address (const_reference x) const { return &x; }
391 void deallocate (pointer p, size_type n) 412 void deallocate (pointer p, size_type n)
392 { 413 {
393 sfree<Tp> (p, n); 414 sfree<Tp> (p, n);
394 } 415 }
395 416
396 size_type max_size () const throw () 417 size_type max_size () const noexcept
397 { 418 {
398 return size_t (-1) / sizeof (Tp); 419 return size_t (-1) / sizeof (Tp);
399 } 420 }
400 421
401 void construct (pointer p, const Tp &val) 422 void construct (pointer p, const Tp &val)
407 { 428 {
408 p->~Tp (); 429 p->~Tp ();
409 } 430 }
410}; 431};
411 432
412// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 433// basically a memory area, but refcounted
413// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 434struct refcnt_buf
414// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
415struct tausworthe_random_generator
416{ 435{
417 uint32_t state [4]; 436 char *data;
418 437
419 void operator =(const tausworthe_random_generator &src) 438 refcnt_buf (size_t size = 0);
420 { 439 refcnt_buf (void *data, size_t size);
421 state [0] = src.state [0];
422 state [1] = src.state [1];
423 state [2] = src.state [2];
424 state [3] = src.state [3];
425 }
426 440
427 void seed (uint32_t seed); 441 refcnt_buf (const refcnt_buf &src)
428 uint32_t next ();
429};
430
431// Xorshift RNGs, George Marsaglia
432// http://www.jstatsoft.org/v08/i14/paper
433// this one is about 40% faster than the tausworthe one above (i.e. not much),
434// despite the inlining, and has the issue of only creating 2**32-1 numbers.
435// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
436struct xorshift_random_generator
437{
438 uint32_t x, y;
439
440 void operator =(const xorshift_random_generator &src)
441 { 442 {
442 x = src.x; 443 data = src.data;
443 y = src.y; 444 inc ();
444 } 445 }
445 446
446 void seed (uint32_t seed) 447 ~refcnt_buf ();
447 {
448 x = seed;
449 y = seed * 69069U;
450 }
451 448
452 uint32_t next () 449 refcnt_buf &operator =(const refcnt_buf &src);
450
451 operator char *()
453 { 452 {
454 uint32_t t = x ^ (x << 10);
455 x = y;
456 y = y ^ (y >> 13) ^ t ^ (t >> 10);
457 return y; 453 return data;
458 } 454 }
459};
460 455
461template<class generator> 456 size_t size () const
462struct random_number_generator : generator
463{
464 // uniform distribution, 0 .. max (0, num - 1)
465 uint32_t operator ()(uint32_t num)
466 { 457 {
467 return !is_constant (num) ? get_range (num) // non-constant 458 return _size ();
468 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
469 : this->next () & (num - 1); // constant, power-of-two
470 }
471
472 // return a number within (min .. max)
473 int operator () (int r_min, int r_max)
474 {
475 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
476 ? r_min + operator ()(r_max - r_min + 1)
477 : get_range (r_min, r_max);
478 }
479
480 double operator ()()
481 {
482 return this->next () / (double)0xFFFFFFFFU;
483 } 459 }
484 460
485protected: 461protected:
486 uint32_t get_range (uint32_t r_max); 462 enum {
487 int get_range (int r_min, int r_max); 463 overhead = sizeof (uint32_t) * 2
488}; 464 };
489 465
490typedef random_number_generator<tausworthe_random_generator> rand_gen; 466 uint32_t &_size () const
467 {
468 return ((unsigned int *)data)[-2];
469 }
491 470
492extern rand_gen rndm, rmg_rndm; 471 uint32_t &_refcnt () const
472 {
473 return ((unsigned int *)data)[-1];
474 }
475
476 void _alloc (uint32_t size)
477 {
478 data = ((char *)salloc<char> (size + overhead)) + overhead;
479 _size () = size;
480 _refcnt () = 1;
481 }
482
483 void _dealloc ();
484
485 void inc ()
486 {
487 ++_refcnt ();
488 }
489
490 void dec ()
491 {
492 if (!--_refcnt ())
493 _dealloc ();
494 }
495};
493 496
494INTERFACE_CLASS (attachable) 497INTERFACE_CLASS (attachable)
495struct refcnt_base 498struct refcnt_base
496{ 499{
497 typedef int refcnt_t; 500 typedef int refcnt_t;
512 // p if not null 515 // p if not null
513 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; } 516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
514 517
515 void refcnt_dec () 518 void refcnt_dec ()
516 { 519 {
517 if (!is_constant (p)) 520 if (!ecb_is_constant (p))
518 --*refcnt_ref (); 521 --*refcnt_ref ();
519 else if (p) 522 else if (p)
520 --p->refcnt; 523 --p->refcnt;
521 } 524 }
522 525
523 void refcnt_inc () 526 void refcnt_inc ()
524 { 527 {
525 if (!is_constant (p)) 528 if (!ecb_is_constant (p))
526 ++*refcnt_ref (); 529 ++*refcnt_ref ();
527 else if (p) 530 else if (p)
528 ++p->refcnt; 531 ++p->refcnt;
529 } 532 }
530 533
559typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
560typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
561typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
562typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
563typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
567typedef refptr<region> region_ptr;
564 568
565#define STRHSH_NULL 2166136261 569#define STRHSH_NULL 2166136261
566 570
567static inline uint32_t 571static inline uint32_t
568strhsh (const char *s) 572strhsh (const char *s)
570 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/) 574 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
571 // it is about twice as fast as the one-at-a-time one, 575 // it is about twice as fast as the one-at-a-time one,
572 // with good distribution. 576 // with good distribution.
573 // FNV-1a is faster on many cpus because the multiplication 577 // FNV-1a is faster on many cpus because the multiplication
574 // runs concurrently with the looping logic. 578 // runs concurrently with the looping logic.
579 // we modify the hash a bit to improve its distribution
575 uint32_t hash = STRHSH_NULL; 580 uint32_t hash = STRHSH_NULL;
576 581
577 while (*s) 582 while (*s)
578 hash = (hash ^ *s++) * 16777619; 583 hash = (hash ^ *s++) * 16777619U;
579 584
580 return hash; 585 return hash ^ (hash >> 16);
581} 586}
582 587
583static inline uint32_t 588static inline uint32_t
584memhsh (const char *s, size_t len) 589memhsh (const char *s, size_t len)
585{ 590{
586 uint32_t hash = STRHSH_NULL; 591 uint32_t hash = STRHSH_NULL;
587 592
588 while (len--) 593 while (len--)
589 hash = (hash ^ *s++) * 16777619; 594 hash = (hash ^ *s++) * 16777619U;
590 595
591 return hash; 596 return hash;
592} 597}
593 598
594struct str_hash 599struct str_hash
600 605
601 std::size_t operator ()(const shstr &s) const 606 std::size_t operator ()(const shstr &s) const
602 { 607 {
603 return strhsh (s); 608 return strhsh (s);
604 } 609 }
610
611 typedef ska::power_of_two_hash_policy hash_policy;
605}; 612};
606 613
607struct str_equal 614struct str_equal
608{ 615{
609 bool operator ()(const char *a, const char *b) const 616 bool operator ()(const char *a, const char *b) const
635 } 642 }
636}; 643};
637 644
638// This container blends advantages of linked lists 645// This container blends advantages of linked lists
639// (efficiency) with vectors (random access) by 646// (efficiency) with vectors (random access) by
640// by using an unordered vector and storing the vector 647// using an unordered vector and storing the vector
641// index inside the object. 648// index inside the object.
642// 649//
643// + memory-efficient on most 64 bit archs 650// + memory-efficient on most 64 bit archs
644// + O(1) insert/remove 651// + O(1) insert/remove
645// + free unique (but varying) id for inserted objects 652// + free unique (but varying) id for inserted objects
682 insert (&obj); 689 insert (&obj);
683 } 690 }
684 691
685 void erase (T *obj) 692 void erase (T *obj)
686 { 693 {
687 unsigned int pos = obj->*indexmember; 694 object_vector_index pos = obj->*indexmember;
688 obj->*indexmember = 0; 695 obj->*indexmember = 0;
689 696
690 if (pos < this->size ()) 697 if (pos < this->size ())
691 { 698 {
692 (*this)[pos - 1] = (*this)[this->size () - 1]; 699 (*this)[pos - 1] = (*this)[this->size () - 1];
700 { 707 {
701 erase (&obj); 708 erase (&obj);
702 } 709 }
703}; 710};
704 711
712/////////////////////////////////////////////////////////////////////////////
713
714// something like a vector or stack, but without
715// out of bounds checking
716template<typename T>
717struct fixed_stack
718{
719 T *data;
720 int size;
721 int max;
722
723 fixed_stack ()
724 : size (0), data (0)
725 {
726 }
727
728 fixed_stack (int max)
729 : size (0), max (max)
730 {
731 data = salloc<T> (max);
732 }
733
734 void reset (int new_max)
735 {
736 sfree (data, max);
737 size = 0;
738 max = new_max;
739 data = salloc<T> (max);
740 }
741
742 void free ()
743 {
744 sfree (data, max);
745 data = 0;
746 }
747
748 ~fixed_stack ()
749 {
750 sfree (data, max);
751 }
752
753 T &operator[](int idx)
754 {
755 return data [idx];
756 }
757
758 void push (T v)
759 {
760 data [size++] = v;
761 }
762
763 T &pop ()
764 {
765 return data [--size];
766 }
767
768 T remove (int idx)
769 {
770 T v = data [idx];
771
772 data [idx] = data [--size];
773
774 return v;
775 }
776};
777
778/////////////////////////////////////////////////////////////////////////////
779
705// basically does what strncpy should do, but appends "..." to strings exceeding length 780// basically does what strncpy should do, but appends "..." to strings exceeding length
706// returns the number of bytes actually used (including \0) 781// returns the number of bytes actually used (including \0)
707int assign (char *dst, const char *src, int maxsize); 782int assign (char *dst, const char *src, int maxsize);
708 783
709// type-safe version of assign 784// type-safe version of assign
720 795
721int similar_direction (int a, int b); 796int similar_direction (int a, int b);
722 797
723// like v?sprintf, but returns a "static" buffer 798// like v?sprintf, but returns a "static" buffer
724char *vformat (const char *format, va_list ap); 799char *vformat (const char *format, va_list ap);
725char *format (const char *format, ...) attribute ((format (printf, 1, 2))); 800char *format (const char *format, ...) ecb_attribute ((format (printf, 1, 2)));
726 801
727// safety-check player input which will become object->msg 802// safety-check player input which will become object->msg
728bool msg_is_safe (const char *msg); 803bool msg_is_safe (const char *msg);
729 804
730///////////////////////////////////////////////////////////////////////////// 805/////////////////////////////////////////////////////////////////////////////

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines