ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.59 by root, Sun Dec 16 02:50:33 2007 UTC vs.
Revision 1.97 by root, Fri Mar 26 01:04:44 2010 UTC

1/* 1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG. 2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 * 3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team 4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * 5 *
6 * Deliantra is free software: you can redistribute it and/or modify 6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * it under the terms of the GNU General Public License as published by 7 * the terms of the Affero GNU General Public License as published by the
8 * the Free Software Foundation, either version 3 of the License, or 8 * Free Software Foundation, either version 3 of the License, or (at your
9 * (at your option) any later version. 9 * option) any later version.
10 * 10 *
11 * This program is distributed in the hope that it will be useful, 11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details. 14 * GNU General Public License for more details.
15 * 15 *
16 * You should have received a copy of the GNU General Public License 16 * You should have received a copy of the Affero GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
18 * 19 *
19 * The authors can be reached via e-mail to <support@deliantra.net> 20 * The authors can be reached via e-mail to <support@deliantra.net>
20 */ 21 */
21 22
22#ifndef UTIL_H__ 23#ifndef UTIL_H__
23#define UTIL_H__ 24#define UTIL_H__
24 25
25//#define PREFER_MALLOC 26#include <compiler.h>
26 27
27#if __GNUC__ >= 3 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
28# define is_constant(c) __builtin_constant_p (c) 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
29# define expect(expr,value) __builtin_expect ((expr),(value)) 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
30# define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
31#else
32# define is_constant(c) 0
33# define expect(expr,value) (expr)
34# define prefetch(addr,rw,locality)
35#endif
36 31
37#if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4) 32#include <pthread.h>
38# define decltype(x) typeof(x)
39#endif
40
41// put into ifs if you are very sure that the expression
42// is mostly true or mosty false. note that these return
43// booleans, not the expression.
44#define expect_false(expr) expect ((expr) != 0, 0)
45#define expect_true(expr) expect ((expr) != 0, 1)
46 33
47#include <cstddef> 34#include <cstddef>
48#include <cmath> 35#include <cmath>
49#include <new> 36#include <new>
50#include <vector> 37#include <vector>
52#include <glib.h> 39#include <glib.h>
53 40
54#include <shstr.h> 41#include <shstr.h>
55#include <traits.h> 42#include <traits.h>
56 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever) 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
59 59
60// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only 61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers) 63// (note: works great for pointers)
64// most ugly macro I ever wrote 64// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
70 70
71// in range excluding end 71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74 74
75void cleanup (const char *cause, bool make_core = false);
75void fork_abort (const char *msg); 76void fork_abort (const char *msg);
76 77
77// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
78// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
79template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
83template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104// div* only work correctly for div > 0
105// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
106template<typename T> static inline T div (T val, T div)
107{
108 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
109}
110// div, round-up
111template<typename T> static inline T div_ru (T val, T div)
112{
113 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
114}
115// div, round-down
116template<typename T> static inline T div_rd (T val, T div)
117{
118 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
119}
120
121// lerp* only work correctly for min_in < max_in
122// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
85template<typename T> 123template<typename T>
86static inline T 124static inline T
87lerp (T val, T min_in, T max_in, T min_out, T max_out) 125lerp (T val, T min_in, T max_in, T min_out, T max_out)
88{ 126{
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out; 127 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
128}
129
130// lerp, round-down
131template<typename T>
132static inline T
133lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
134{
135 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
136}
137
138// lerp, round-up
139template<typename T>
140static inline T
141lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
142{
143 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
90} 144}
91 145
92// lots of stuff taken from FXT 146// lots of stuff taken from FXT
93 147
94/* Rotate right. This is used in various places for checksumming */ 148/* Rotate right. This is used in various places for checksumming */
132 int32_t d = b - a; 186 int32_t d = b - a;
133 d &= d >> 31; 187 d &= d >> 31;
134 return b - d; 188 return b - d;
135} 189}
136 190
137// this is much faster than crossfires original algorithm 191// this is much faster than crossfire's original algorithm
138// on modern cpus 192// on modern cpus
139inline int 193inline int
140isqrt (int n) 194isqrt (int n)
141{ 195{
142 return (int)sqrtf ((float)n); 196 return (int)sqrtf ((float)n);
197}
198
199// this is kind of like the ^^ operator, if it would exist, without sequence point.
200// more handy than it looks like, due to the implicit !! done on its arguments
201inline bool
202logical_xor (bool a, bool b)
203{
204 return a != b;
205}
206
207inline bool
208logical_implies (bool a, bool b)
209{
210 return a <= b;
143} 211}
144 212
145// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 213// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
146#if 0 214#if 0
147// and has a max. error of 6 in the range -100..+100. 215// and has a max. error of 6 in the range -100..+100.
172absdir (int d) 240absdir (int d)
173{ 241{
174 return ((d - 1) & 7) + 1; 242 return ((d - 1) & 7) + 1;
175} 243}
176 244
245// avoid ctz name because netbsd or freebsd spams it's namespace with it
246#if GCC_VERSION(3,4)
247static inline int least_significant_bit (uint32_t x)
248{
249 return __builtin_ctz (x);
250}
251#else
252int least_significant_bit (uint32_t x);
253#endif
254
255#define for_all_bits_sparse_32(mask, idxvar) \
256 for (uint32_t idxvar, mask_ = mask; \
257 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
258
177extern size_t slice_alloc; // statistics 259extern ssize_t slice_alloc; // statistics
260
261void *salloc_ (int n) throw (std::bad_alloc);
262void *salloc_ (int n, void *src) throw (std::bad_alloc);
263
264// strictly the same as g_slice_alloc, but never returns 0
265template<typename T>
266inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
267
268// also copies src into the new area, like "memdup"
269// if src is 0, clears the memory
270template<typename T>
271inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
272
273// clears the memory
274template<typename T>
275inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
276
277// for symmetry
278template<typename T>
279inline void sfree (T *ptr, int n = 1) throw ()
280{
281 if (expect_true (ptr))
282 {
283 slice_alloc -= n * sizeof (T);
284 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
285 g_slice_free1 (n * sizeof (T), (void *)ptr);
286 assert (slice_alloc >= 0);//D
287 }
288}
289
290// nulls the pointer
291template<typename T>
292inline void sfree0 (T *&ptr, int n = 1) throw ()
293{
294 sfree<T> (ptr, n);
295 ptr = 0;
296}
178 297
179// makes dynamically allocated objects zero-initialised 298// makes dynamically allocated objects zero-initialised
180struct zero_initialised 299struct zero_initialised
181{ 300{
182 void *operator new (size_t s, void *p) 301 void *operator new (size_t s, void *p)
185 return p; 304 return p;
186 } 305 }
187 306
188 void *operator new (size_t s) 307 void *operator new (size_t s)
189 { 308 {
190 slice_alloc += s;
191 return g_slice_alloc0 (s); 309 return salloc0<char> (s);
192 } 310 }
193 311
194 void *operator new[] (size_t s) 312 void *operator new[] (size_t s)
195 { 313 {
196 slice_alloc += s;
197 return g_slice_alloc0 (s); 314 return salloc0<char> (s);
198 } 315 }
199 316
200 void operator delete (void *p, size_t s) 317 void operator delete (void *p, size_t s)
201 { 318 {
202 slice_alloc -= s; 319 sfree ((char *)p, s);
203 g_slice_free1 (s, p);
204 } 320 }
205 321
206 void operator delete[] (void *p, size_t s) 322 void operator delete[] (void *p, size_t s)
207 { 323 {
208 slice_alloc -= s; 324 sfree ((char *)p, s);
209 g_slice_free1 (s, p);
210 } 325 }
211}; 326};
212 327
213void *salloc_ (int n) throw (std::bad_alloc); 328// makes dynamically allocated objects zero-initialised
214void *salloc_ (int n, void *src) throw (std::bad_alloc); 329struct slice_allocated
215
216// strictly the same as g_slice_alloc, but never returns 0
217template<typename T>
218inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
219
220// also copies src into the new area, like "memdup"
221// if src is 0, clears the memory
222template<typename T>
223inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
224
225// clears the memory
226template<typename T>
227inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
228
229// for symmetry
230template<typename T>
231inline void sfree (T *ptr, int n = 1) throw ()
232{ 330{
233#ifdef PREFER_MALLOC 331 void *operator new (size_t s, void *p)
234 free (ptr); 332 {
235#else 333 return p;
236 slice_alloc -= n * sizeof (T); 334 }
237 g_slice_free1 (n * sizeof (T), (void *)ptr); 335
238#endif 336 void *operator new (size_t s)
239} 337 {
338 return salloc<char> (s);
339 }
340
341 void *operator new[] (size_t s)
342 {
343 return salloc<char> (s);
344 }
345
346 void operator delete (void *p, size_t s)
347 {
348 sfree ((char *)p, s);
349 }
350
351 void operator delete[] (void *p, size_t s)
352 {
353 sfree ((char *)p, s);
354 }
355};
240 356
241// a STL-compatible allocator that uses g_slice 357// a STL-compatible allocator that uses g_slice
242// boy, this is verbose 358// boy, this is verbose
243template<typename Tp> 359template<typename Tp>
244struct slice_allocator 360struct slice_allocator
256 { 372 {
257 typedef slice_allocator<U> other; 373 typedef slice_allocator<U> other;
258 }; 374 };
259 375
260 slice_allocator () throw () { } 376 slice_allocator () throw () { }
261 slice_allocator (const slice_allocator &o) throw () { } 377 slice_allocator (const slice_allocator &) throw () { }
262 template<typename Tp2> 378 template<typename Tp2>
263 slice_allocator (const slice_allocator<Tp2> &) throw () { } 379 slice_allocator (const slice_allocator<Tp2> &) throw () { }
264 380
265 ~slice_allocator () { } 381 ~slice_allocator () { }
266 382
275 void deallocate (pointer p, size_type n) 391 void deallocate (pointer p, size_type n)
276 { 392 {
277 sfree<Tp> (p, n); 393 sfree<Tp> (p, n);
278 } 394 }
279 395
280 size_type max_size ()const throw () 396 size_type max_size () const throw ()
281 { 397 {
282 return size_t (-1) / sizeof (Tp); 398 return size_t (-1) / sizeof (Tp);
283 } 399 }
284 400
285 void construct (pointer p, const Tp &val) 401 void construct (pointer p, const Tp &val)
296// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 412// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
297// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 413// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
298// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 414// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
299struct tausworthe_random_generator 415struct tausworthe_random_generator
300{ 416{
301 // generator
302 uint32_t state [4]; 417 uint32_t state [4];
303 418
304 void operator =(const tausworthe_random_generator &src) 419 void operator =(const tausworthe_random_generator &src)
305 { 420 {
306 state [0] = src.state [0]; 421 state [0] = src.state [0];
309 state [3] = src.state [3]; 424 state [3] = src.state [3];
310 } 425 }
311 426
312 void seed (uint32_t seed); 427 void seed (uint32_t seed);
313 uint32_t next (); 428 uint32_t next ();
429};
314 430
315 // uniform distribution 431// Xorshift RNGs, George Marsaglia
432// http://www.jstatsoft.org/v08/i14/paper
433// this one is about 40% faster than the tausworthe one above (i.e. not much),
434// despite the inlining, and has the issue of only creating 2**32-1 numbers.
435// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
436struct xorshift_random_generator
437{
438 uint32_t x, y;
439
440 void operator =(const xorshift_random_generator &src)
441 {
442 x = src.x;
443 y = src.y;
444 }
445
446 void seed (uint32_t seed)
447 {
448 x = seed;
449 y = seed * 69069U;
450 }
451
452 uint32_t next ()
453 {
454 uint32_t t = x ^ (x << 10);
455 x = y;
456 y = y ^ (y >> 13) ^ t ^ (t >> 10);
457 return y;
458 }
459};
460
461template<class generator>
462struct random_number_generator : generator
463{
464 // uniform distribution, 0 .. max (0, num - 1)
316 uint32_t operator ()(uint32_t num) 465 uint32_t operator ()(uint32_t num)
317 { 466 {
318 return is_constant (num) 467 return !is_constant (num) ? get_range (num) // non-constant
319 ? (next () * (uint64_t)num) >> 32U 468 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
320 : get_range (num); 469 : this->next () & (num - 1); // constant, power-of-two
321 } 470 }
322 471
323 // return a number within (min .. max) 472 // return a number within (min .. max)
324 int operator () (int r_min, int r_max) 473 int operator () (int r_min, int r_max)
325 { 474 {
336protected: 485protected:
337 uint32_t get_range (uint32_t r_max); 486 uint32_t get_range (uint32_t r_max);
338 int get_range (int r_min, int r_max); 487 int get_range (int r_min, int r_max);
339}; 488};
340 489
341typedef tausworthe_random_generator rand_gen; 490typedef random_number_generator<tausworthe_random_generator> rand_gen;
342 491
343extern rand_gen rndm; 492extern rand_gen rndm, rmg_rndm;
344 493
345INTERFACE_CLASS (attachable) 494INTERFACE_CLASS (attachable)
346struct refcnt_base 495struct refcnt_base
347{ 496{
348 typedef int refcnt_t; 497 typedef int refcnt_t;
411typedef refptr<object> object_ptr; 560typedef refptr<object> object_ptr;
412typedef refptr<archetype> arch_ptr; 561typedef refptr<archetype> arch_ptr;
413typedef refptr<client> client_ptr; 562typedef refptr<client> client_ptr;
414typedef refptr<player> player_ptr; 563typedef refptr<player> player_ptr;
415 564
565#define STRHSH_NULL 2166136261
566
567static inline uint32_t
568strhsh (const char *s)
569{
570 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
571 // it is about twice as fast as the one-at-a-time one,
572 // with good distribution.
573 // FNV-1a is faster on many cpus because the multiplication
574 // runs concurrently with the looping logic.
575 uint32_t hash = STRHSH_NULL;
576
577 while (*s)
578 hash = (hash ^ *s++) * 16777619;
579
580 return hash;
581}
582
583static inline uint32_t
584memhsh (const char *s, size_t len)
585{
586 uint32_t hash = STRHSH_NULL;
587
588 while (len--)
589 hash = (hash ^ *s++) * 16777619;
590
591 return hash;
592}
593
416struct str_hash 594struct str_hash
417{ 595{
418 std::size_t operator ()(const char *s) const 596 std::size_t operator ()(const char *s) const
419 { 597 {
420 unsigned long hash = 0;
421
422 /* use the one-at-a-time hash function, which supposedly is
423 * better than the djb2-like one used by perl5.005, but
424 * certainly is better then the bug used here before.
425 * see http://burtleburtle.net/bob/hash/doobs.html
426 */
427 while (*s)
428 {
429 hash += *s++;
430 hash += hash << 10;
431 hash ^= hash >> 6;
432 }
433
434 hash += hash << 3;
435 hash ^= hash >> 11;
436 hash += hash << 15;
437
438 return hash; 598 return strhsh (s);
599 }
600
601 std::size_t operator ()(const shstr &s) const
602 {
603 return strhsh (s);
439 } 604 }
440}; 605};
441 606
442struct str_equal 607struct str_equal
443{ 608{
536 erase (&obj); 701 erase (&obj);
537 } 702 }
538}; 703};
539 704
540// basically does what strncpy should do, but appends "..." to strings exceeding length 705// basically does what strncpy should do, but appends "..." to strings exceeding length
706// returns the number of bytes actually used (including \0)
541void assign (char *dst, const char *src, int maxlen); 707int assign (char *dst, const char *src, int maxsize);
542 708
543// type-safe version of assign 709// type-safe version of assign
544template<int N> 710template<int N>
545inline void assign (char (&dst)[N], const char *src) 711inline int assign (char (&dst)[N], const char *src)
546{ 712{
547 assign ((char *)&dst, src, N); 713 return assign ((char *)&dst, src, N);
548} 714}
549 715
550typedef double tstamp; 716typedef double tstamp;
551 717
552// return current time as timestamp 718// return current time as timestamp
553tstamp now (); 719tstamp now ();
554 720
555int similar_direction (int a, int b); 721int similar_direction (int a, int b);
556 722
557// like sprintf, but returns a "static" buffer 723// like v?sprintf, but returns a "static" buffer
558const char *format (const char *format, ...); 724char *vformat (const char *format, va_list ap);
725char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
559 726
727// safety-check player input which will become object->msg
728bool msg_is_safe (const char *msg);
729
730/////////////////////////////////////////////////////////////////////////////
731// threads, very very thin wrappers around pthreads
732
733struct thread
734{
735 pthread_t id;
736
737 void start (void *(*start_routine)(void *), void *arg = 0);
738
739 void cancel ()
740 {
741 pthread_cancel (id);
742 }
743
744 void *join ()
745 {
746 void *ret;
747
748 if (pthread_join (id, &ret))
749 cleanup ("pthread_join failed", 1);
750
751 return ret;
752 }
753};
754
755// note that mutexes are not classes
756typedef pthread_mutex_t smutex;
757
758#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
759 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
760#else
761 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
560#endif 762#endif
561 763
764#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
765#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
766#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
767
768typedef pthread_cond_t scond;
769
770#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
771#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
772#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
773#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
774
775#endif
776

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines