ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.22 by root, Sat Dec 23 06:21:02 2006 UTC vs.
Revision 1.99 by root, Fri Apr 9 02:45:16 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
33
34#include <cstddef>
35#include <cmath>
36#include <new>
37#include <vector>
38
39#include <glib.h>
40
41#include <shstr.h>
42#include <traits.h>
43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58#define auto(var,expr) decltype(expr) var = (expr)
59
60// very ugly macro that basically declares and initialises a variable
61// that is in scope for the next statement only
62// works only for stuff that can be assigned 0 and converts to false
63// (note: works great for pointers)
64// most ugly macro I ever wrote
65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67// in range including end
68#define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71// in range excluding end
72#define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75void cleanup (const char *cause, bool make_core = false);
76void fork_abort (const char *msg);
77
78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
79// as a is often a constant while b is the variable. it is still a bug, though.
80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104template<typename T, typename U>
105static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106
107// div* only work correctly for div > 0
108// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109template<typename T> static inline T div (T val, T div)
110{
111 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112}
113// div, round-up
114template<typename T> static inline T div_ru (T val, T div)
115{
116 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117}
118// div, round-down
119template<typename T> static inline T div_rd (T val, T div)
120{
121 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122}
123
124// lerp* only work correctly for min_in < max_in
125// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
126template<typename T>
127static inline T
128lerp (T val, T min_in, T max_in, T min_out, T max_out)
129{
130 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131}
132
133// lerp, round-down
134template<typename T>
135static inline T
136lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137{
138 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139}
140
141// lerp, round-up
142template<typename T>
143static inline T
144lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147}
148
149// lots of stuff taken from FXT
150
151/* Rotate right. This is used in various places for checksumming */
152//TODO: that sucks, use a better checksum algo
153static inline uint32_t
154rotate_right (uint32_t c, uint32_t count = 1)
155{
156 return (c << (32 - count)) | (c >> count);
157}
158
159static inline uint32_t
160rotate_left (uint32_t c, uint32_t count = 1)
161{
162 return (c >> (32 - count)) | (c << count);
163}
164
165// Return abs(a-b)
166// Both a and b must not have the most significant bit set
167static inline uint32_t
168upos_abs_diff (uint32_t a, uint32_t b)
169{
170 long d1 = b - a;
171 long d2 = (d1 & (d1 >> 31)) << 1;
172
173 return d1 - d2; // == (b - d) - (a + d);
174}
175
176// Both a and b must not have the most significant bit set
177static inline uint32_t
178upos_min (uint32_t a, uint32_t b)
179{
180 int32_t d = b - a;
181 d &= d >> 31;
182 return a + d;
183}
184
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_max (uint32_t a, uint32_t b)
188{
189 int32_t d = b - a;
190 d &= d >> 31;
191 return b - d;
192}
193
194// this is much faster than crossfire's original algorithm
195// on modern cpus
196inline int
197isqrt (int n)
198{
199 return (int)sqrtf ((float)n);
200}
201
202// this is kind of like the ^^ operator, if it would exist, without sequence point.
203// more handy than it looks like, due to the implicit !! done on its arguments
204inline bool
205logical_xor (bool a, bool b)
206{
207 return a != b;
208}
209
210inline bool
211logical_implies (bool a, bool b)
212{
213 return a <= b;
214}
215
216// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
217#if 0
218// and has a max. error of 6 in the range -100..+100.
6#else 219#else
7# define is_constant(c) 0 220// and has a max. error of 9 in the range -100..+100.
8#endif 221#endif
222inline int
223idistance (int dx, int dy)
224{
225 unsigned int dx_ = abs (dx);
226 unsigned int dy_ = abs (dy);
9 227
10#include <cstddef> 228#if 0
229 return dx_ > dy_
230 ? (dx_ * 61685 + dy_ * 26870) >> 16
231 : (dy_ * 61685 + dx_ * 26870) >> 16;
232#else
233 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
234#endif
235}
11 236
12#include <glib.h> 237/*
238 * absdir(int): Returns a number between 1 and 8, which represent
239 * the "absolute" direction of a number (it actually takes care of
240 * "overflow" in previous calculations of a direction).
241 */
242inline int
243absdir (int d)
244{
245 return ((d - 1) & 7) + 1;
246}
13 247
14// use a gcc extension for auto declarations until ISO C++ sanctifies them 248// avoid ctz name because netbsd or freebsd spams it's namespace with it
15#define AUTODECL(var,expr) typeof(expr) var = (expr) 249#if GCC_VERSION(3,4)
250static inline int least_significant_bit (uint32_t x)
251{
252 return __builtin_ctz (x);
253}
254#else
255int least_significant_bit (uint32_t x);
256#endif
257
258#define for_all_bits_sparse_32(mask, idxvar) \
259 for (uint32_t idxvar, mask_ = mask; \
260 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261
262extern ssize_t slice_alloc; // statistics
263
264void *salloc_ (int n) throw (std::bad_alloc);
265void *salloc_ (int n, void *src) throw (std::bad_alloc);
266
267// strictly the same as g_slice_alloc, but never returns 0
268template<typename T>
269inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270
271// also copies src into the new area, like "memdup"
272// if src is 0, clears the memory
273template<typename T>
274inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275
276// clears the memory
277template<typename T>
278inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279
280// for symmetry
281template<typename T>
282inline void sfree (T *ptr, int n = 1) throw ()
283{
284 if (expect_true (ptr))
285 {
286 slice_alloc -= n * sizeof (T);
287 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 g_slice_free1 (n * sizeof (T), (void *)ptr);
289 assert (slice_alloc >= 0);//D
290 }
291}
292
293// nulls the pointer
294template<typename T>
295inline void sfree0 (T *&ptr, int n = 1) throw ()
296{
297 sfree<T> (ptr, n);
298 ptr = 0;
299}
16 300
17// makes dynamically allocated objects zero-initialised 301// makes dynamically allocated objects zero-initialised
18struct zero_initialised 302struct zero_initialised
19{ 303{
20 void *operator new (size_t s, void *p) 304 void *operator new (size_t s, void *p)
23 return p; 307 return p;
24 } 308 }
25 309
26 void *operator new (size_t s) 310 void *operator new (size_t s)
27 { 311 {
28 return g_slice_alloc0 (s); 312 return salloc0<char> (s);
29 } 313 }
30 314
31 void *operator new[] (size_t s) 315 void *operator new[] (size_t s)
32 { 316 {
33 return g_slice_alloc0 (s); 317 return salloc0<char> (s);
34 } 318 }
35 319
36 void operator delete (void *p, size_t s) 320 void operator delete (void *p, size_t s)
37 { 321 {
38 g_slice_free1 (s, p); 322 sfree ((char *)p, s);
39 } 323 }
40 324
41 void operator delete[] (void *p, size_t s) 325 void operator delete[] (void *p, size_t s)
42 { 326 {
43 g_slice_free1 (s, p); 327 sfree ((char *)p, s);
44 } 328 }
45}; 329};
46 330
47void *salloc_ (int n) throw (std::bad_alloc); 331// makes dynamically allocated objects zero-initialised
48void *salloc_ (int n, void *src) throw (std::bad_alloc); 332struct slice_allocated
49
50// strictly the same as g_slice_alloc, but never returns 0
51template<typename T>
52inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
53
54// also copies src into the new area, like "memdup"
55// if src is 0, clears the memory
56template<typename T>
57inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
58
59// clears the memory
60template<typename T>
61inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
62
63// for symmetry
64template<typename T>
65inline void sfree (T *ptr, int n = 1) throw ()
66{ 333{
67 g_slice_free1 (n * sizeof (T), (void *)ptr); 334 void *operator new (size_t s, void *p)
68} 335 {
336 return p;
337 }
338
339 void *operator new (size_t s)
340 {
341 return salloc<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358};
69 359
70// a STL-compatible allocator that uses g_slice 360// a STL-compatible allocator that uses g_slice
71// boy, this is verbose 361// boy, this is verbose
72template<typename Tp> 362template<typename Tp>
73struct slice_allocator 363struct slice_allocator
85 { 375 {
86 typedef slice_allocator<U> other; 376 typedef slice_allocator<U> other;
87 }; 377 };
88 378
89 slice_allocator () throw () { } 379 slice_allocator () throw () { }
90 slice_allocator (const slice_allocator &o) throw () { } 380 slice_allocator (const slice_allocator &) throw () { }
91 template<typename Tp2> 381 template<typename Tp2>
92 slice_allocator (const slice_allocator<Tp2> &) throw () { } 382 slice_allocator (const slice_allocator<Tp2> &) throw () { }
93 383
94 ~slice_allocator () { } 384 ~slice_allocator () { }
95 385
104 void deallocate (pointer p, size_type n) 394 void deallocate (pointer p, size_type n)
105 { 395 {
106 sfree<Tp> (p, n); 396 sfree<Tp> (p, n);
107 } 397 }
108 398
109 size_type max_size ()const throw () 399 size_type max_size () const throw ()
110 { 400 {
111 return size_t (-1) / sizeof (Tp); 401 return size_t (-1) / sizeof (Tp);
112 } 402 }
113 403
114 void construct (pointer p, const Tp &val) 404 void construct (pointer p, const Tp &val)
120 { 410 {
121 p->~Tp (); 411 p->~Tp ();
122 } 412 }
123}; 413};
124 414
415// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
416// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
417// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
418struct tausworthe_random_generator
419{
420 uint32_t state [4];
421
422 void operator =(const tausworthe_random_generator &src)
423 {
424 state [0] = src.state [0];
425 state [1] = src.state [1];
426 state [2] = src.state [2];
427 state [3] = src.state [3];
428 }
429
430 void seed (uint32_t seed);
431 uint32_t next ();
432};
433
434// Xorshift RNGs, George Marsaglia
435// http://www.jstatsoft.org/v08/i14/paper
436// this one is about 40% faster than the tausworthe one above (i.e. not much),
437// despite the inlining, and has the issue of only creating 2**32-1 numbers.
438// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439struct xorshift_random_generator
440{
441 uint32_t x, y;
442
443 void operator =(const xorshift_random_generator &src)
444 {
445 x = src.x;
446 y = src.y;
447 }
448
449 void seed (uint32_t seed)
450 {
451 x = seed;
452 y = seed * 69069U;
453 }
454
455 uint32_t next ()
456 {
457 uint32_t t = x ^ (x << 10);
458 x = y;
459 y = y ^ (y >> 13) ^ t ^ (t >> 10);
460 return y;
461 }
462};
463
464template<class generator>
465struct random_number_generator : generator
466{
467 // uniform distribution, 0 .. max (0, num - 1)
468 uint32_t operator ()(uint32_t num)
469 {
470 return !is_constant (num) ? get_range (num) // non-constant
471 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
472 : this->next () & (num - 1); // constant, power-of-two
473 }
474
475 // return a number within (min .. max)
476 int operator () (int r_min, int r_max)
477 {
478 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
479 ? r_min + operator ()(r_max - r_min + 1)
480 : get_range (r_min, r_max);
481 }
482
483 double operator ()()
484 {
485 return this->next () / (double)0xFFFFFFFFU;
486 }
487
488protected:
489 uint32_t get_range (uint32_t r_max);
490 int get_range (int r_min, int r_max);
491};
492
493typedef random_number_generator<tausworthe_random_generator> rand_gen;
494
495extern rand_gen rndm, rmg_rndm;
496
497INTERFACE_CLASS (attachable)
125struct refcounted 498struct refcnt_base
126{ 499{
127 refcounted () : refcnt (0) { } 500 typedef int refcnt_t;
128// virtual ~refcounted (); 501 mutable refcnt_t ACC (RW, refcnt);
502
129 void refcnt_inc () { ++refcnt; } 503 MTH void refcnt_inc () const { ++refcnt; }
130 void refcnt_dec () { --refcnt; } 504 MTH void refcnt_dec () const { --refcnt; }
131 bool dead () { return refcnt == 0; } 505
132 mutable int refcnt; 506 refcnt_base () : refcnt (0) { }
133#if 0
134private:
135 static refcounted *rc_first;
136 refcounted *rc_next;
137#endif
138}; 507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
139 511
140template<class T> 512template<class T>
141struct refptr 513struct refptr
142{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
143 T *p; 534 T *p;
144 535
145 refptr () : p(0) { } 536 refptr () : p(0) { }
146 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
147 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
148 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
149 540
150 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
151 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
152 if (p) p->refcnt_dec (); 544 refcnt_dec ();
153 p = o; 545 p = o;
154 if (p) p->refcnt_inc (); 546 refcnt_inc ();
155
156 return *this; 547 return *this;
157 } 548 }
158 549
159 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
160 { 551 {
161 *this = o.p; 552 *this = o.p;
162 return *this; 553 return *this;
163 } 554 }
164 555
165 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
166 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
167 558
168 operator T *() const { return p; } 559 operator T *() const { return p; }
169}; 560};
170 561
171typedef refptr<player> player_ptr; 562typedef refptr<maptile> maptile_ptr;
172typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
173typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
565typedef refptr<client> client_ptr;
566typedef refptr<player> player_ptr;
567
568#define STRHSH_NULL 2166136261
569
570static inline uint32_t
571strhsh (const char *s)
572{
573 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
574 // it is about twice as fast as the one-at-a-time one,
575 // with good distribution.
576 // FNV-1a is faster on many cpus because the multiplication
577 // runs concurrently with the looping logic.
578 uint32_t hash = STRHSH_NULL;
579
580 while (*s)
581 hash = (hash ^ *s++) * 16777619U;
582
583 return hash;
584}
585
586static inline uint32_t
587memhsh (const char *s, size_t len)
588{
589 uint32_t hash = STRHSH_NULL;
590
591 while (len--)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595}
174 596
175struct str_hash 597struct str_hash
176{ 598{
177 std::size_t operator ()(const char *s) const 599 std::size_t operator ()(const char *s) const
178 { 600 {
179 unsigned long hash = 0;
180
181 /* use the one-at-a-time hash function, which supposedly is
182 * better than the djb2-like one used by perl5.005, but
183 * certainly is better then the bug used here before.
184 * see http://burtleburtle.net/bob/hash/doobs.html
185 */
186 while (*s)
187 {
188 hash += *s++;
189 hash += hash << 10;
190 hash ^= hash >> 6;
191 }
192
193 hash += hash << 3;
194 hash ^= hash >> 11;
195 hash += hash << 15;
196
197 return hash; 601 return strhsh (s);
602 }
603
604 std::size_t operator ()(const shstr &s) const
605 {
606 return strhsh (s);
198 } 607 }
199}; 608};
200 609
201struct str_equal 610struct str_equal
202{ 611{
204 { 613 {
205 return !strcmp (a, b); 614 return !strcmp (a, b);
206 } 615 }
207}; 616};
208 617
209#include <vector> 618// Mostly the same as std::vector, but insert/erase can reorder
210 619// the elements, making append(=insert)/remove O(1) instead of O(n).
620//
621// NOTE: only some forms of erase are available
211template<class obj> 622template<class T>
212struct unordered_vector : std::vector<obj, slice_allocator<obj> > 623struct unordered_vector : std::vector<T, slice_allocator<T> >
213{ 624{
214 typedef typename unordered_vector::iterator iterator; 625 typedef typename unordered_vector::iterator iterator;
215 626
216 void erase (unsigned int pos) 627 void erase (unsigned int pos)
217 { 628 {
225 { 636 {
226 erase ((unsigned int )(i - this->begin ())); 637 erase ((unsigned int )(i - this->begin ()));
227 } 638 }
228}; 639};
229 640
230template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; } 641// This container blends advantages of linked lists
231template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; } 642// (efficiency) with vectors (random access) by
232template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? a : v >(T)b ? b : v; } 643// by using an unordered vector and storing the vector
644// index inside the object.
645//
646// + memory-efficient on most 64 bit archs
647// + O(1) insert/remove
648// + free unique (but varying) id for inserted objects
649// + cache-friendly iteration
650// - only works for pointers to structs
651//
652// NOTE: only some forms of erase/insert are available
653typedef int object_vector_index;
233 654
234template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 655template<class T, object_vector_index T::*indexmember>
656struct object_vector : std::vector<T *, slice_allocator<T *> >
657{
658 typedef typename object_vector::iterator iterator;
659
660 bool contains (const T *obj) const
661 {
662 return obj->*indexmember;
663 }
664
665 iterator find (const T *obj)
666 {
667 return obj->*indexmember
668 ? this->begin () + obj->*indexmember - 1
669 : this->end ();
670 }
671
672 void push_back (T *obj)
673 {
674 std::vector<T *, slice_allocator<T *> >::push_back (obj);
675 obj->*indexmember = this->size ();
676 }
677
678 void insert (T *obj)
679 {
680 push_back (obj);
681 }
682
683 void insert (T &obj)
684 {
685 insert (&obj);
686 }
687
688 void erase (T *obj)
689 {
690 unsigned int pos = obj->*indexmember;
691 obj->*indexmember = 0;
692
693 if (pos < this->size ())
694 {
695 (*this)[pos - 1] = (*this)[this->size () - 1];
696 (*this)[pos - 1]->*indexmember = pos;
697 }
698
699 this->pop_back ();
700 }
701
702 void erase (T &obj)
703 {
704 erase (&obj);
705 }
706};
235 707
236// basically does what strncpy should do, but appends "..." to strings exceeding length 708// basically does what strncpy should do, but appends "..." to strings exceeding length
709// returns the number of bytes actually used (including \0)
237void assign (char *dst, const char *src, int maxlen); 710int assign (char *dst, const char *src, int maxsize);
238 711
239// type-safe version of assign 712// type-safe version of assign
240template<int N> 713template<int N>
241inline void assign (char (&dst)[N], const char *src) 714inline int assign (char (&dst)[N], const char *src)
242{ 715{
243 assign ((char *)&dst, src, N); 716 return assign ((char *)&dst, src, N);
244} 717}
245 718
246typedef double tstamp; 719typedef double tstamp;
247 720
248// return current time as timestampe 721// return current time as timestamp
249tstamp now (); 722tstamp now ();
250 723
724int similar_direction (int a, int b);
725
726// like v?sprintf, but returns a "static" buffer
727char *vformat (const char *format, va_list ap);
728char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
729
730// safety-check player input which will become object->msg
731bool msg_is_safe (const char *msg);
732
733/////////////////////////////////////////////////////////////////////////////
734// threads, very very thin wrappers around pthreads
735
736struct thread
737{
738 pthread_t id;
739
740 void start (void *(*start_routine)(void *), void *arg = 0);
741
742 void cancel ()
743 {
744 pthread_cancel (id);
745 }
746
747 void *join ()
748 {
749 void *ret;
750
751 if (pthread_join (id, &ret))
752 cleanup ("pthread_join failed", 1);
753
754 return ret;
755 }
756};
757
758// note that mutexes are not classes
759typedef pthread_mutex_t smutex;
760
761#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
762 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
763#else
764 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
251#endif 765#endif
252 766
767#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
768#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
769#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
770
771typedef pthread_cond_t scond;
772
773#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
774#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
775#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
776#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
777
778#endif
779

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines