ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
(Generate patch)

Comparing deliantra/server/include/util.h (file contents):
Revision 1.35 by root, Fri Jan 19 22:47:57 2007 UTC vs.
Revision 1.99 by root, Fri Apr 9 02:45:16 2010 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
1#ifndef UTIL_H__ 23#ifndef UTIL_H__
2#define UTIL_H__ 24#define UTIL_H__
3 25
4#if __GNUC__ >= 3 26#include <compiler.h>
5# define is_constant(c) __builtin_constant_p (c) 27
6#else 28#define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
7# define is_constant(c) 0 29#define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
8#endif 30#define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32#include <pthread.h>
9 33
10#include <cstddef> 34#include <cstddef>
11#include <cmath> 35#include <cmath>
12#include <new> 36#include <new>
13#include <vector> 37#include <vector>
15#include <glib.h> 39#include <glib.h>
16 40
17#include <shstr.h> 41#include <shstr.h>
18#include <traits.h> 42#include <traits.h>
19 43
44#if DEBUG_SALLOC
45# define g_slice_alloc0(s) debug_slice_alloc0(s)
46# define g_slice_alloc(s) debug_slice_alloc(s)
47# define g_slice_free1(s,p) debug_slice_free1(s,p)
48void *g_slice_alloc (unsigned long size);
49void *g_slice_alloc0 (unsigned long size);
50void g_slice_free1 (unsigned long size, void *ptr);
51#elif PREFER_MALLOC
52# define g_slice_alloc0(s) calloc (1, (s))
53# define g_slice_alloc(s) malloc ((s))
54# define g_slice_free1(s,p) free ((p))
55#endif
56
20// use a gcc extension for auto declarations until ISO C++ sanctifies them 57// use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
21#define AUTODECL(var,expr) typeof(expr) var = (expr) 58#define auto(var,expr) decltype(expr) var = (expr)
22 59
23// very ugly macro that basicaly declares and initialises a variable 60// very ugly macro that basically declares and initialises a variable
24// that is in scope for the next statement only 61// that is in scope for the next statement only
25// works only for stuff that can be assigned 0 and converts to false 62// works only for stuff that can be assigned 0 and converts to false
26// (note: works great for pointers) 63// (note: works great for pointers)
27// most ugly macro I ever wrote 64// most ugly macro I ever wrote
28#define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1) 65#define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
29 66
30// in range including end 67// in range including end
31#define IN_RANGE_INC(val,beg,end) \ 68#define IN_RANGE_INC(val,beg,end) \
32 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg)) 69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
33 70
34// in range excluding end 71// in range excluding end
35#define IN_RANGE_EXC(val,beg,end) \ 72#define IN_RANGE_EXC(val,beg,end) \
36 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg)) 73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
37 74
75void cleanup (const char *cause, bool make_core = false);
38void fork_abort (const char *msg); 76void fork_abort (const char *msg);
39 77
40// rationale for using (U) not (T) is to reduce signed/unsigned issues, 78// rationale for using (U) not (T) is to reduce signed/unsigned issues,
41// as a is often a constant while b is the variable. it is still a bug, though. 79// as a is often a constant while b is the variable. it is still a bug, though.
42template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; } 80template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
43template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; } 81template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
44template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; } 82template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
45 83
84template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
46template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; } 88template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
47 89
90template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93// sign returns -1 or +1
94template<typename T>
95static inline T sign (T v) { return v < 0 ? -1 : +1; }
96// relies on 2c representation
97template<>
98inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100// sign0 returns -1, 0 or +1
101template<typename T>
102static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104template<typename T, typename U>
105static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106
107// div* only work correctly for div > 0
108// div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109template<typename T> static inline T div (T val, T div)
110{
111 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112}
113// div, round-up
114template<typename T> static inline T div_ru (T val, T div)
115{
116 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117}
118// div, round-down
119template<typename T> static inline T div_rd (T val, T div)
120{
121 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122}
123
124// lerp* only work correctly for min_in < max_in
125// Linear intERPolate, scales val from min_in..max_in to min_out..max_out
126template<typename T>
127static inline T
128lerp (T val, T min_in, T max_in, T min_out, T max_out)
129{
130 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131}
132
133// lerp, round-down
134template<typename T>
135static inline T
136lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137{
138 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139}
140
141// lerp, round-up
142template<typename T>
143static inline T
144lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145{
146 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147}
148
149// lots of stuff taken from FXT
150
151/* Rotate right. This is used in various places for checksumming */
152//TODO: that sucks, use a better checksum algo
153static inline uint32_t
154rotate_right (uint32_t c, uint32_t count = 1)
155{
156 return (c << (32 - count)) | (c >> count);
157}
158
159static inline uint32_t
160rotate_left (uint32_t c, uint32_t count = 1)
161{
162 return (c >> (32 - count)) | (c << count);
163}
164
165// Return abs(a-b)
166// Both a and b must not have the most significant bit set
167static inline uint32_t
168upos_abs_diff (uint32_t a, uint32_t b)
169{
170 long d1 = b - a;
171 long d2 = (d1 & (d1 >> 31)) << 1;
172
173 return d1 - d2; // == (b - d) - (a + d);
174}
175
176// Both a and b must not have the most significant bit set
177static inline uint32_t
178upos_min (uint32_t a, uint32_t b)
179{
180 int32_t d = b - a;
181 d &= d >> 31;
182 return a + d;
183}
184
185// Both a and b must not have the most significant bit set
186static inline uint32_t
187upos_max (uint32_t a, uint32_t b)
188{
189 int32_t d = b - a;
190 d &= d >> 31;
191 return b - d;
192}
193
48// this is much faster than crossfires original algorithm 194// this is much faster than crossfire's original algorithm
49// on modern cpus 195// on modern cpus
50inline int 196inline int
51isqrt (int n) 197isqrt (int n)
52{ 198{
53 return (int)sqrtf ((float)n); 199 return (int)sqrtf ((float)n);
200}
201
202// this is kind of like the ^^ operator, if it would exist, without sequence point.
203// more handy than it looks like, due to the implicit !! done on its arguments
204inline bool
205logical_xor (bool a, bool b)
206{
207 return a != b;
208}
209
210inline bool
211logical_implies (bool a, bool b)
212{
213 return a <= b;
54} 214}
55 215
56// this is only twice as fast as naive sqrtf (dx*dy+dy*dy) 216// this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
57#if 0 217#if 0
58// and has a max. error of 6 in the range -100..+100. 218// and has a max. error of 6 in the range -100..+100.
83absdir (int d) 243absdir (int d)
84{ 244{
85 return ((d - 1) & 7) + 1; 245 return ((d - 1) & 7) + 1;
86} 246}
87 247
248// avoid ctz name because netbsd or freebsd spams it's namespace with it
249#if GCC_VERSION(3,4)
250static inline int least_significant_bit (uint32_t x)
251{
252 return __builtin_ctz (x);
253}
254#else
255int least_significant_bit (uint32_t x);
256#endif
257
258#define for_all_bits_sparse_32(mask, idxvar) \
259 for (uint32_t idxvar, mask_ = mask; \
260 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261
262extern ssize_t slice_alloc; // statistics
263
264void *salloc_ (int n) throw (std::bad_alloc);
265void *salloc_ (int n, void *src) throw (std::bad_alloc);
266
267// strictly the same as g_slice_alloc, but never returns 0
268template<typename T>
269inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270
271// also copies src into the new area, like "memdup"
272// if src is 0, clears the memory
273template<typename T>
274inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275
276// clears the memory
277template<typename T>
278inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279
280// for symmetry
281template<typename T>
282inline void sfree (T *ptr, int n = 1) throw ()
283{
284 if (expect_true (ptr))
285 {
286 slice_alloc -= n * sizeof (T);
287 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 g_slice_free1 (n * sizeof (T), (void *)ptr);
289 assert (slice_alloc >= 0);//D
290 }
291}
292
293// nulls the pointer
294template<typename T>
295inline void sfree0 (T *&ptr, int n = 1) throw ()
296{
297 sfree<T> (ptr, n);
298 ptr = 0;
299}
300
88// makes dynamically allocated objects zero-initialised 301// makes dynamically allocated objects zero-initialised
89struct zero_initialised 302struct zero_initialised
90{ 303{
91 void *operator new (size_t s, void *p) 304 void *operator new (size_t s, void *p)
92 { 305 {
94 return p; 307 return p;
95 } 308 }
96 309
97 void *operator new (size_t s) 310 void *operator new (size_t s)
98 { 311 {
99 return g_slice_alloc0 (s); 312 return salloc0<char> (s);
100 } 313 }
101 314
102 void *operator new[] (size_t s) 315 void *operator new[] (size_t s)
103 { 316 {
104 return g_slice_alloc0 (s); 317 return salloc0<char> (s);
105 } 318 }
106 319
107 void operator delete (void *p, size_t s) 320 void operator delete (void *p, size_t s)
108 { 321 {
109 g_slice_free1 (s, p); 322 sfree ((char *)p, s);
110 } 323 }
111 324
112 void operator delete[] (void *p, size_t s) 325 void operator delete[] (void *p, size_t s)
113 { 326 {
114 g_slice_free1 (s, p); 327 sfree ((char *)p, s);
115 } 328 }
116}; 329};
117 330
118void *salloc_ (int n) throw (std::bad_alloc); 331// makes dynamically allocated objects zero-initialised
119void *salloc_ (int n, void *src) throw (std::bad_alloc); 332struct slice_allocated
120
121// strictly the same as g_slice_alloc, but never returns 0
122template<typename T>
123inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
124
125// also copies src into the new area, like "memdup"
126// if src is 0, clears the memory
127template<typename T>
128inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
129
130// clears the memory
131template<typename T>
132inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
133
134// for symmetry
135template<typename T>
136inline void sfree (T *ptr, int n = 1) throw ()
137{ 333{
138 g_slice_free1 (n * sizeof (T), (void *)ptr); 334 void *operator new (size_t s, void *p)
139} 335 {
336 return p;
337 }
338
339 void *operator new (size_t s)
340 {
341 return salloc<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358};
140 359
141// a STL-compatible allocator that uses g_slice 360// a STL-compatible allocator that uses g_slice
142// boy, this is verbose 361// boy, this is verbose
143template<typename Tp> 362template<typename Tp>
144struct slice_allocator 363struct slice_allocator
156 { 375 {
157 typedef slice_allocator<U> other; 376 typedef slice_allocator<U> other;
158 }; 377 };
159 378
160 slice_allocator () throw () { } 379 slice_allocator () throw () { }
161 slice_allocator (const slice_allocator &o) throw () { } 380 slice_allocator (const slice_allocator &) throw () { }
162 template<typename Tp2> 381 template<typename Tp2>
163 slice_allocator (const slice_allocator<Tp2> &) throw () { } 382 slice_allocator (const slice_allocator<Tp2> &) throw () { }
164 383
165 ~slice_allocator () { } 384 ~slice_allocator () { }
166 385
175 void deallocate (pointer p, size_type n) 394 void deallocate (pointer p, size_type n)
176 { 395 {
177 sfree<Tp> (p, n); 396 sfree<Tp> (p, n);
178 } 397 }
179 398
180 size_type max_size ()const throw () 399 size_type max_size () const throw ()
181 { 400 {
182 return size_t (-1) / sizeof (Tp); 401 return size_t (-1) / sizeof (Tp);
183 } 402 }
184 403
185 void construct (pointer p, const Tp &val) 404 void construct (pointer p, const Tp &val)
196// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213. 415// P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
197// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps 416// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
198// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps 417// http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
199struct tausworthe_random_generator 418struct tausworthe_random_generator
200{ 419{
201 // generator
202 uint32_t state [4]; 420 uint32_t state [4];
203 421
204 void operator =(const tausworthe_random_generator &src) 422 void operator =(const tausworthe_random_generator &src)
205 { 423 {
206 state [0] = src.state [0]; 424 state [0] = src.state [0];
209 state [3] = src.state [3]; 427 state [3] = src.state [3];
210 } 428 }
211 429
212 void seed (uint32_t seed); 430 void seed (uint32_t seed);
213 uint32_t next (); 431 uint32_t next ();
432};
214 433
215 // uniform distribution 434// Xorshift RNGs, George Marsaglia
435// http://www.jstatsoft.org/v08/i14/paper
436// this one is about 40% faster than the tausworthe one above (i.e. not much),
437// despite the inlining, and has the issue of only creating 2**32-1 numbers.
438// see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439struct xorshift_random_generator
440{
441 uint32_t x, y;
442
443 void operator =(const xorshift_random_generator &src)
444 {
445 x = src.x;
446 y = src.y;
447 }
448
449 void seed (uint32_t seed)
450 {
451 x = seed;
452 y = seed * 69069U;
453 }
454
455 uint32_t next ()
456 {
457 uint32_t t = x ^ (x << 10);
458 x = y;
459 y = y ^ (y >> 13) ^ t ^ (t >> 10);
460 return y;
461 }
462};
463
464template<class generator>
465struct random_number_generator : generator
466{
467 // uniform distribution, 0 .. max (0, num - 1)
216 uint32_t operator ()(uint32_t r_max) 468 uint32_t operator ()(uint32_t num)
217 { 469 {
218 return is_constant (r_max) 470 return !is_constant (num) ? get_range (num) // non-constant
219 ? this->next () % r_max 471 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
220 : get_range (r_max); 472 : this->next () & (num - 1); // constant, power-of-two
221 } 473 }
222 474
223 // return a number within (min .. max) 475 // return a number within (min .. max)
224 int operator () (int r_min, int r_max) 476 int operator () (int r_min, int r_max)
225 { 477 {
226 return is_constant (r_min) && is_constant (r_max) 478 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
227 ? r_min + (*this) (max (r_max - r_min + 1, 1)) 479 ? r_min + operator ()(r_max - r_min + 1)
228 : get_range (r_min, r_max); 480 : get_range (r_min, r_max);
229 } 481 }
230 482
231 double operator ()() 483 double operator ()()
232 { 484 {
236protected: 488protected:
237 uint32_t get_range (uint32_t r_max); 489 uint32_t get_range (uint32_t r_max);
238 int get_range (int r_min, int r_max); 490 int get_range (int r_min, int r_max);
239}; 491};
240 492
241typedef tausworthe_random_generator rand_gen; 493typedef random_number_generator<tausworthe_random_generator> rand_gen;
242 494
243extern rand_gen rndm; 495extern rand_gen rndm, rmg_rndm;
496
497INTERFACE_CLASS (attachable)
498struct refcnt_base
499{
500 typedef int refcnt_t;
501 mutable refcnt_t ACC (RW, refcnt);
502
503 MTH void refcnt_inc () const { ++refcnt; }
504 MTH void refcnt_dec () const { --refcnt; }
505
506 refcnt_base () : refcnt (0) { }
507};
508
509// to avoid branches with more advanced compilers
510extern refcnt_base::refcnt_t refcnt_dummy;
244 511
245template<class T> 512template<class T>
246struct refptr 513struct refptr
247{ 514{
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
248 T *p; 534 T *p;
249 535
250 refptr () : p(0) { } 536 refptr () : p(0) { }
251 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); } 537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
252 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); } 538 refptr (T *p) : p(p) { refcnt_inc (); }
253 ~refptr () { if (p) p->refcnt_dec (); } 539 ~refptr () { refcnt_dec (); }
254 540
255 const refptr<T> &operator =(T *o) 541 const refptr<T> &operator =(T *o)
256 { 542 {
543 // if decrementing ever destroys we need to reverse the order here
257 if (p) p->refcnt_dec (); 544 refcnt_dec ();
258 p = o; 545 p = o;
259 if (p) p->refcnt_inc (); 546 refcnt_inc ();
260
261 return *this; 547 return *this;
262 } 548 }
263 549
264 const refptr<T> &operator =(const refptr<T> o) 550 const refptr<T> &operator =(const refptr<T> &o)
265 { 551 {
266 *this = o.p; 552 *this = o.p;
267 return *this; 553 return *this;
268 } 554 }
269 555
270 T &operator * () const { return *p; } 556 T &operator * () const { return *p; }
271 T *operator ->() const { return p; } 557 T *operator ->() const { return p; }
272 558
273 operator T *() const { return p; } 559 operator T *() const { return p; }
274}; 560};
275 561
276typedef refptr<maptile> maptile_ptr; 562typedef refptr<maptile> maptile_ptr;
277typedef refptr<object> object_ptr; 563typedef refptr<object> object_ptr;
278typedef refptr<archetype> arch_ptr; 564typedef refptr<archetype> arch_ptr;
279typedef refptr<client> client_ptr; 565typedef refptr<client> client_ptr;
280typedef refptr<player> player_ptr; 566typedef refptr<player> player_ptr;
281 567
568#define STRHSH_NULL 2166136261
569
570static inline uint32_t
571strhsh (const char *s)
572{
573 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
574 // it is about twice as fast as the one-at-a-time one,
575 // with good distribution.
576 // FNV-1a is faster on many cpus because the multiplication
577 // runs concurrently with the looping logic.
578 uint32_t hash = STRHSH_NULL;
579
580 while (*s)
581 hash = (hash ^ *s++) * 16777619U;
582
583 return hash;
584}
585
586static inline uint32_t
587memhsh (const char *s, size_t len)
588{
589 uint32_t hash = STRHSH_NULL;
590
591 while (len--)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595}
596
282struct str_hash 597struct str_hash
283{ 598{
284 std::size_t operator ()(const char *s) const 599 std::size_t operator ()(const char *s) const
285 { 600 {
286 unsigned long hash = 0;
287
288 /* use the one-at-a-time hash function, which supposedly is
289 * better than the djb2-like one used by perl5.005, but
290 * certainly is better then the bug used here before.
291 * see http://burtleburtle.net/bob/hash/doobs.html
292 */
293 while (*s)
294 {
295 hash += *s++;
296 hash += hash << 10;
297 hash ^= hash >> 6;
298 }
299
300 hash += hash << 3;
301 hash ^= hash >> 11;
302 hash += hash << 15;
303
304 return hash; 601 return strhsh (s);
602 }
603
604 std::size_t operator ()(const shstr &s) const
605 {
606 return strhsh (s);
305 } 607 }
306}; 608};
307 609
308struct str_equal 610struct str_equal
309{ 611{
311 { 613 {
312 return !strcmp (a, b); 614 return !strcmp (a, b);
313 } 615 }
314}; 616};
315 617
618// Mostly the same as std::vector, but insert/erase can reorder
619// the elements, making append(=insert)/remove O(1) instead of O(n).
620//
621// NOTE: only some forms of erase are available
316template<class T> 622template<class T>
317struct unordered_vector : std::vector<T, slice_allocator<T> > 623struct unordered_vector : std::vector<T, slice_allocator<T> >
318{ 624{
319 typedef typename unordered_vector::iterator iterator; 625 typedef typename unordered_vector::iterator iterator;
320 626
330 { 636 {
331 erase ((unsigned int )(i - this->begin ())); 637 erase ((unsigned int )(i - this->begin ()));
332 } 638 }
333}; 639};
334 640
335template<class T, int T::* index> 641// This container blends advantages of linked lists
642// (efficiency) with vectors (random access) by
643// by using an unordered vector and storing the vector
644// index inside the object.
645//
646// + memory-efficient on most 64 bit archs
647// + O(1) insert/remove
648// + free unique (but varying) id for inserted objects
649// + cache-friendly iteration
650// - only works for pointers to structs
651//
652// NOTE: only some forms of erase/insert are available
653typedef int object_vector_index;
654
655template<class T, object_vector_index T::*indexmember>
336struct object_vector : std::vector<T *, slice_allocator<T *> > 656struct object_vector : std::vector<T *, slice_allocator<T *> >
337{ 657{
658 typedef typename object_vector::iterator iterator;
659
660 bool contains (const T *obj) const
661 {
662 return obj->*indexmember;
663 }
664
665 iterator find (const T *obj)
666 {
667 return obj->*indexmember
668 ? this->begin () + obj->*indexmember - 1
669 : this->end ();
670 }
671
672 void push_back (T *obj)
673 {
674 std::vector<T *, slice_allocator<T *> >::push_back (obj);
675 obj->*indexmember = this->size ();
676 }
677
338 void insert (T *obj) 678 void insert (T *obj)
339 { 679 {
340 assert (!(obj->*index));
341 push_back (obj); 680 push_back (obj);
342 obj->*index = this->size ();
343 } 681 }
344 682
345 void insert (T &obj) 683 void insert (T &obj)
346 { 684 {
347 insert (&obj); 685 insert (&obj);
348 } 686 }
349 687
350 void erase (T *obj) 688 void erase (T *obj)
351 { 689 {
352 assert (obj->*index);
353 int pos = obj->*index; 690 unsigned int pos = obj->*indexmember;
354 obj->*index = 0; 691 obj->*indexmember = 0;
355 692
356 if (pos < this->size ()) 693 if (pos < this->size ())
357 { 694 {
358 (*this)[pos - 1] = (*this)[this->size () - 1]; 695 (*this)[pos - 1] = (*this)[this->size () - 1];
359 (*this)[pos - 1]->*index = pos; 696 (*this)[pos - 1]->*indexmember = pos;
360 } 697 }
361 698
362 this->pop_back (); 699 this->pop_back ();
363 } 700 }
364 701
365 void erase (T &obj) 702 void erase (T &obj)
366 { 703 {
367 errase (&obj); 704 erase (&obj);
368 } 705 }
369}; 706};
370 707
371// basically does what strncpy should do, but appends "..." to strings exceeding length 708// basically does what strncpy should do, but appends "..." to strings exceeding length
709// returns the number of bytes actually used (including \0)
372void assign (char *dst, const char *src, int maxlen); 710int assign (char *dst, const char *src, int maxsize);
373 711
374// type-safe version of assign 712// type-safe version of assign
375template<int N> 713template<int N>
376inline void assign (char (&dst)[N], const char *src) 714inline int assign (char (&dst)[N], const char *src)
377{ 715{
378 assign ((char *)&dst, src, N); 716 return assign ((char *)&dst, src, N);
379} 717}
380 718
381typedef double tstamp; 719typedef double tstamp;
382 720
383// return current time as timestampe 721// return current time as timestamp
384tstamp now (); 722tstamp now ();
385 723
386int similar_direction (int a, int b); 724int similar_direction (int a, int b);
387 725
726// like v?sprintf, but returns a "static" buffer
727char *vformat (const char *format, va_list ap);
728char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
729
730// safety-check player input which will become object->msg
731bool msg_is_safe (const char *msg);
732
733/////////////////////////////////////////////////////////////////////////////
734// threads, very very thin wrappers around pthreads
735
736struct thread
737{
738 pthread_t id;
739
740 void start (void *(*start_routine)(void *), void *arg = 0);
741
742 void cancel ()
743 {
744 pthread_cancel (id);
745 }
746
747 void *join ()
748 {
749 void *ret;
750
751 if (pthread_join (id, &ret))
752 cleanup ("pthread_join failed", 1);
753
754 return ret;
755 }
756};
757
758// note that mutexes are not classes
759typedef pthread_mutex_t smutex;
760
761#if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
762 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
763#else
764 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
388#endif 765#endif
389 766
767#define SMUTEX(name) smutex name = SMUTEX_INITIALISER
768#define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
769#define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
770
771typedef pthread_cond_t scond;
772
773#define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
774#define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
775#define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
776#define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
777
778#endif
779

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines