ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.102
Committed: Thu Apr 29 12:24:04 2010 UTC (14 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.101: +1 -0 lines
Log Message:
correctly flag parse errors for materials

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 // could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61 // much more obfuscated... :)
62
63 template<typename T, int N>
64 inline int array_length (const T (&arr)[N])
65 {
66 return N;
67 }
68
69 // very ugly macro that basically declares and initialises a variable
70 // that is in scope for the next statement only
71 // works only for stuff that can be assigned 0 and converts to false
72 // (note: works great for pointers)
73 // most ugly macro I ever wrote
74 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
75
76 // in range including end
77 #define IN_RANGE_INC(val,beg,end) \
78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
79
80 // in range excluding end
81 #define IN_RANGE_EXC(val,beg,end) \
82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
83
84 void cleanup (const char *cause, bool make_core = false);
85 void fork_abort (const char *msg);
86
87 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
88 // as a is often a constant while b is the variable. it is still a bug, though.
89 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92
93 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
97 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98
99 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102 // sign returns -1 or +1
103 template<typename T>
104 static inline T sign (T v) { return v < 0 ? -1 : +1; }
105 // relies on 2c representation
106 template<>
107 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108
109 // sign0 returns -1, 0 or +1
110 template<typename T>
111 static inline T sign0 (T v) { return v ? sign (v) : 0; }
112
113 template<typename T, typename U>
114 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
115
116 // div* only work correctly for div > 0
117 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
118 template<typename T> static inline T div (T val, T div)
119 {
120 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
121 }
122 // div, round-up
123 template<typename T> static inline T div_ru (T val, T div)
124 {
125 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
126 }
127 // div, round-down
128 template<typename T> static inline T div_rd (T val, T div)
129 {
130 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
131 }
132
133 // lerp* only work correctly for min_in < max_in
134 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
135 template<typename T>
136 static inline T
137 lerp (T val, T min_in, T max_in, T min_out, T max_out)
138 {
139 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
140 }
141
142 // lerp, round-down
143 template<typename T>
144 static inline T
145 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
146 {
147 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148 }
149
150 // lerp, round-up
151 template<typename T>
152 static inline T
153 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
154 {
155 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 }
157
158 // lots of stuff taken from FXT
159
160 /* Rotate right. This is used in various places for checksumming */
161 //TODO: that sucks, use a better checksum algo
162 static inline uint32_t
163 rotate_right (uint32_t c, uint32_t count = 1)
164 {
165 return (c << (32 - count)) | (c >> count);
166 }
167
168 static inline uint32_t
169 rotate_left (uint32_t c, uint32_t count = 1)
170 {
171 return (c >> (32 - count)) | (c << count);
172 }
173
174 // Return abs(a-b)
175 // Both a and b must not have the most significant bit set
176 static inline uint32_t
177 upos_abs_diff (uint32_t a, uint32_t b)
178 {
179 long d1 = b - a;
180 long d2 = (d1 & (d1 >> 31)) << 1;
181
182 return d1 - d2; // == (b - d) - (a + d);
183 }
184
185 // Both a and b must not have the most significant bit set
186 static inline uint32_t
187 upos_min (uint32_t a, uint32_t b)
188 {
189 int32_t d = b - a;
190 d &= d >> 31;
191 return a + d;
192 }
193
194 // Both a and b must not have the most significant bit set
195 static inline uint32_t
196 upos_max (uint32_t a, uint32_t b)
197 {
198 int32_t d = b - a;
199 d &= d >> 31;
200 return b - d;
201 }
202
203 // this is much faster than crossfire's original algorithm
204 // on modern cpus
205 inline int
206 isqrt (int n)
207 {
208 return (int)sqrtf ((float)n);
209 }
210
211 // this is kind of like the ^^ operator, if it would exist, without sequence point.
212 // more handy than it looks like, due to the implicit !! done on its arguments
213 inline bool
214 logical_xor (bool a, bool b)
215 {
216 return a != b;
217 }
218
219 inline bool
220 logical_implies (bool a, bool b)
221 {
222 return a <= b;
223 }
224
225 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
226 #if 0
227 // and has a max. error of 6 in the range -100..+100.
228 #else
229 // and has a max. error of 9 in the range -100..+100.
230 #endif
231 inline int
232 idistance (int dx, int dy)
233 {
234 unsigned int dx_ = abs (dx);
235 unsigned int dy_ = abs (dy);
236
237 #if 0
238 return dx_ > dy_
239 ? (dx_ * 61685 + dy_ * 26870) >> 16
240 : (dy_ * 61685 + dx_ * 26870) >> 16;
241 #else
242 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
243 #endif
244 }
245
246 /*
247 * absdir(int): Returns a number between 1 and 8, which represent
248 * the "absolute" direction of a number (it actually takes care of
249 * "overflow" in previous calculations of a direction).
250 */
251 inline int
252 absdir (int d)
253 {
254 return ((d - 1) & 7) + 1;
255 }
256
257 // avoid ctz name because netbsd or freebsd spams it's namespace with it
258 #if GCC_VERSION(3,4)
259 static inline int least_significant_bit (uint32_t x)
260 {
261 return __builtin_ctz (x);
262 }
263 #else
264 int least_significant_bit (uint32_t x);
265 #endif
266
267 #define for_all_bits_sparse_32(mask, idxvar) \
268 for (uint32_t idxvar, mask_ = mask; \
269 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
270
271 extern ssize_t slice_alloc; // statistics
272
273 void *salloc_ (int n) throw (std::bad_alloc);
274 void *salloc_ (int n, void *src) throw (std::bad_alloc);
275
276 // strictly the same as g_slice_alloc, but never returns 0
277 template<typename T>
278 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
279
280 // also copies src into the new area, like "memdup"
281 // if src is 0, clears the memory
282 template<typename T>
283 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
284
285 // clears the memory
286 template<typename T>
287 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
288
289 // for symmetry
290 template<typename T>
291 inline void sfree (T *ptr, int n = 1) throw ()
292 {
293 if (expect_true (ptr))
294 {
295 slice_alloc -= n * sizeof (T);
296 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
297 g_slice_free1 (n * sizeof (T), (void *)ptr);
298 assert (slice_alloc >= 0);//D
299 }
300 }
301
302 // nulls the pointer
303 template<typename T>
304 inline void sfree0 (T *&ptr, int n = 1) throw ()
305 {
306 sfree<T> (ptr, n);
307 ptr = 0;
308 }
309
310 // makes dynamically allocated objects zero-initialised
311 struct zero_initialised
312 {
313 void *operator new (size_t s, void *p)
314 {
315 memset (p, 0, s);
316 return p;
317 }
318
319 void *operator new (size_t s)
320 {
321 return salloc0<char> (s);
322 }
323
324 void *operator new[] (size_t s)
325 {
326 return salloc0<char> (s);
327 }
328
329 void operator delete (void *p, size_t s)
330 {
331 sfree ((char *)p, s);
332 }
333
334 void operator delete[] (void *p, size_t s)
335 {
336 sfree ((char *)p, s);
337 }
338 };
339
340 // makes dynamically allocated objects zero-initialised
341 struct slice_allocated
342 {
343 void *operator new (size_t s, void *p)
344 {
345 return p;
346 }
347
348 void *operator new (size_t s)
349 {
350 return salloc<char> (s);
351 }
352
353 void *operator new[] (size_t s)
354 {
355 return salloc<char> (s);
356 }
357
358 void operator delete (void *p, size_t s)
359 {
360 sfree ((char *)p, s);
361 }
362
363 void operator delete[] (void *p, size_t s)
364 {
365 sfree ((char *)p, s);
366 }
367 };
368
369 // a STL-compatible allocator that uses g_slice
370 // boy, this is verbose
371 template<typename Tp>
372 struct slice_allocator
373 {
374 typedef size_t size_type;
375 typedef ptrdiff_t difference_type;
376 typedef Tp *pointer;
377 typedef const Tp *const_pointer;
378 typedef Tp &reference;
379 typedef const Tp &const_reference;
380 typedef Tp value_type;
381
382 template <class U>
383 struct rebind
384 {
385 typedef slice_allocator<U> other;
386 };
387
388 slice_allocator () throw () { }
389 slice_allocator (const slice_allocator &) throw () { }
390 template<typename Tp2>
391 slice_allocator (const slice_allocator<Tp2> &) throw () { }
392
393 ~slice_allocator () { }
394
395 pointer address (reference x) const { return &x; }
396 const_pointer address (const_reference x) const { return &x; }
397
398 pointer allocate (size_type n, const_pointer = 0)
399 {
400 return salloc<Tp> (n);
401 }
402
403 void deallocate (pointer p, size_type n)
404 {
405 sfree<Tp> (p, n);
406 }
407
408 size_type max_size () const throw ()
409 {
410 return size_t (-1) / sizeof (Tp);
411 }
412
413 void construct (pointer p, const Tp &val)
414 {
415 ::new (p) Tp (val);
416 }
417
418 void destroy (pointer p)
419 {
420 p->~Tp ();
421 }
422 };
423
424 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
425 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
426 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
427 struct tausworthe_random_generator
428 {
429 uint32_t state [4];
430
431 void operator =(const tausworthe_random_generator &src)
432 {
433 state [0] = src.state [0];
434 state [1] = src.state [1];
435 state [2] = src.state [2];
436 state [3] = src.state [3];
437 }
438
439 void seed (uint32_t seed);
440 uint32_t next ();
441 };
442
443 // Xorshift RNGs, George Marsaglia
444 // http://www.jstatsoft.org/v08/i14/paper
445 // this one is about 40% faster than the tausworthe one above (i.e. not much),
446 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
447 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
448 struct xorshift_random_generator
449 {
450 uint32_t x, y;
451
452 void operator =(const xorshift_random_generator &src)
453 {
454 x = src.x;
455 y = src.y;
456 }
457
458 void seed (uint32_t seed)
459 {
460 x = seed;
461 y = seed * 69069U;
462 }
463
464 uint32_t next ()
465 {
466 uint32_t t = x ^ (x << 10);
467 x = y;
468 y = y ^ (y >> 13) ^ t ^ (t >> 10);
469 return y;
470 }
471 };
472
473 template<class generator>
474 struct random_number_generator : generator
475 {
476 // uniform distribution, 0 .. max (0, num - 1)
477 uint32_t operator ()(uint32_t num)
478 {
479 return !is_constant (num) ? get_range (num) // non-constant
480 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
481 : this->next () & (num - 1); // constant, power-of-two
482 }
483
484 // return a number within the closed interval [min .. max]
485 int operator () (int r_min, int r_max)
486 {
487 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
488 ? r_min + operator ()(r_max - r_min + 1)
489 : get_range (r_min, r_max);
490 }
491
492 // return a number within the closed interval [0..1]
493 double operator ()()
494 {
495 return this->next () / (double)0xFFFFFFFFU;
496 }
497
498 protected:
499 uint32_t get_range (uint32_t r_max);
500 int get_range (int r_min, int r_max);
501 };
502
503 typedef random_number_generator<tausworthe_random_generator> rand_gen;
504
505 extern rand_gen rndm, rmg_rndm;
506
507 INTERFACE_CLASS (attachable)
508 struct refcnt_base
509 {
510 typedef int refcnt_t;
511 mutable refcnt_t ACC (RW, refcnt);
512
513 MTH void refcnt_inc () const { ++refcnt; }
514 MTH void refcnt_dec () const { --refcnt; }
515
516 refcnt_base () : refcnt (0) { }
517 };
518
519 // to avoid branches with more advanced compilers
520 extern refcnt_base::refcnt_t refcnt_dummy;
521
522 template<class T>
523 struct refptr
524 {
525 // p if not null
526 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
527
528 void refcnt_dec ()
529 {
530 if (!is_constant (p))
531 --*refcnt_ref ();
532 else if (p)
533 --p->refcnt;
534 }
535
536 void refcnt_inc ()
537 {
538 if (!is_constant (p))
539 ++*refcnt_ref ();
540 else if (p)
541 ++p->refcnt;
542 }
543
544 T *p;
545
546 refptr () : p(0) { }
547 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
548 refptr (T *p) : p(p) { refcnt_inc (); }
549 ~refptr () { refcnt_dec (); }
550
551 const refptr<T> &operator =(T *o)
552 {
553 // if decrementing ever destroys we need to reverse the order here
554 refcnt_dec ();
555 p = o;
556 refcnt_inc ();
557 return *this;
558 }
559
560 const refptr<T> &operator =(const refptr<T> &o)
561 {
562 *this = o.p;
563 return *this;
564 }
565
566 T &operator * () const { return *p; }
567 T *operator ->() const { return p; }
568
569 operator T *() const { return p; }
570 };
571
572 typedef refptr<maptile> maptile_ptr;
573 typedef refptr<object> object_ptr;
574 typedef refptr<archetype> arch_ptr;
575 typedef refptr<client> client_ptr;
576 typedef refptr<player> player_ptr;
577 typedef refptr<region> region_ptr;
578
579 #define STRHSH_NULL 2166136261
580
581 static inline uint32_t
582 strhsh (const char *s)
583 {
584 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
585 // it is about twice as fast as the one-at-a-time one,
586 // with good distribution.
587 // FNV-1a is faster on many cpus because the multiplication
588 // runs concurrently with the looping logic.
589 uint32_t hash = STRHSH_NULL;
590
591 while (*s)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595 }
596
597 static inline uint32_t
598 memhsh (const char *s, size_t len)
599 {
600 uint32_t hash = STRHSH_NULL;
601
602 while (len--)
603 hash = (hash ^ *s++) * 16777619U;
604
605 return hash;
606 }
607
608 struct str_hash
609 {
610 std::size_t operator ()(const char *s) const
611 {
612 return strhsh (s);
613 }
614
615 std::size_t operator ()(const shstr &s) const
616 {
617 return strhsh (s);
618 }
619 };
620
621 struct str_equal
622 {
623 bool operator ()(const char *a, const char *b) const
624 {
625 return !strcmp (a, b);
626 }
627 };
628
629 // Mostly the same as std::vector, but insert/erase can reorder
630 // the elements, making append(=insert)/remove O(1) instead of O(n).
631 //
632 // NOTE: only some forms of erase are available
633 template<class T>
634 struct unordered_vector : std::vector<T, slice_allocator<T> >
635 {
636 typedef typename unordered_vector::iterator iterator;
637
638 void erase (unsigned int pos)
639 {
640 if (pos < this->size () - 1)
641 (*this)[pos] = (*this)[this->size () - 1];
642
643 this->pop_back ();
644 }
645
646 void erase (iterator i)
647 {
648 erase ((unsigned int )(i - this->begin ()));
649 }
650 };
651
652 // This container blends advantages of linked lists
653 // (efficiency) with vectors (random access) by
654 // by using an unordered vector and storing the vector
655 // index inside the object.
656 //
657 // + memory-efficient on most 64 bit archs
658 // + O(1) insert/remove
659 // + free unique (but varying) id for inserted objects
660 // + cache-friendly iteration
661 // - only works for pointers to structs
662 //
663 // NOTE: only some forms of erase/insert are available
664 typedef int object_vector_index;
665
666 template<class T, object_vector_index T::*indexmember>
667 struct object_vector : std::vector<T *, slice_allocator<T *> >
668 {
669 typedef typename object_vector::iterator iterator;
670
671 bool contains (const T *obj) const
672 {
673 return obj->*indexmember;
674 }
675
676 iterator find (const T *obj)
677 {
678 return obj->*indexmember
679 ? this->begin () + obj->*indexmember - 1
680 : this->end ();
681 }
682
683 void push_back (T *obj)
684 {
685 std::vector<T *, slice_allocator<T *> >::push_back (obj);
686 obj->*indexmember = this->size ();
687 }
688
689 void insert (T *obj)
690 {
691 push_back (obj);
692 }
693
694 void insert (T &obj)
695 {
696 insert (&obj);
697 }
698
699 void erase (T *obj)
700 {
701 unsigned int pos = obj->*indexmember;
702 obj->*indexmember = 0;
703
704 if (pos < this->size ())
705 {
706 (*this)[pos - 1] = (*this)[this->size () - 1];
707 (*this)[pos - 1]->*indexmember = pos;
708 }
709
710 this->pop_back ();
711 }
712
713 void erase (T &obj)
714 {
715 erase (&obj);
716 }
717 };
718
719 // basically does what strncpy should do, but appends "..." to strings exceeding length
720 // returns the number of bytes actually used (including \0)
721 int assign (char *dst, const char *src, int maxsize);
722
723 // type-safe version of assign
724 template<int N>
725 inline int assign (char (&dst)[N], const char *src)
726 {
727 return assign ((char *)&dst, src, N);
728 }
729
730 typedef double tstamp;
731
732 // return current time as timestamp
733 tstamp now ();
734
735 int similar_direction (int a, int b);
736
737 // like v?sprintf, but returns a "static" buffer
738 char *vformat (const char *format, va_list ap);
739 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
740
741 // safety-check player input which will become object->msg
742 bool msg_is_safe (const char *msg);
743
744 /////////////////////////////////////////////////////////////////////////////
745 // threads, very very thin wrappers around pthreads
746
747 struct thread
748 {
749 pthread_t id;
750
751 void start (void *(*start_routine)(void *), void *arg = 0);
752
753 void cancel ()
754 {
755 pthread_cancel (id);
756 }
757
758 void *join ()
759 {
760 void *ret;
761
762 if (pthread_join (id, &ret))
763 cleanup ("pthread_join failed", 1);
764
765 return ret;
766 }
767 };
768
769 // note that mutexes are not classes
770 typedef pthread_mutex_t smutex;
771
772 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
773 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
774 #else
775 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
776 #endif
777
778 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
779 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
780 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
781
782 typedef pthread_cond_t scond;
783
784 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
785 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
786 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
787 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
788
789 #endif
790