ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.103
Committed: Thu Apr 29 15:49:04 2010 UTC (14 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.102: +5 -1 lines
Log Message:
indent

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 // could use the sizeof (arr) /( sizeof (arr [0]) here, but C++ is
61 // much more obfuscated... :)
62
63 template<typename T, int N>
64 inline int array_length (const T (&arr)[N])
65 {
66 return N;
67 }
68
69 // very ugly macro that basically declares and initialises a variable
70 // that is in scope for the next statement only
71 // works only for stuff that can be assigned 0 and converts to false
72 // (note: works great for pointers)
73 // most ugly macro I ever wrote
74 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
75
76 // in range including end
77 #define IN_RANGE_INC(val,beg,end) \
78 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
79
80 // in range excluding end
81 #define IN_RANGE_EXC(val,beg,end) \
82 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
83
84 void cleanup (const char *cause, bool make_core = false);
85 void fork_abort (const char *msg);
86
87 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
88 // as a is often a constant while b is the variable. it is still a bug, though.
89 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92
93 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
94 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
95 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
96
97 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
98
99 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
100 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
101
102 // sign returns -1 or +1
103 template<typename T>
104 static inline T sign (T v) { return v < 0 ? -1 : +1; }
105 // relies on 2c representation
106 template<>
107 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
108 template<>
109 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
110 template<>
111 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
112
113 // sign0 returns -1, 0 or +1
114 template<typename T>
115 static inline T sign0 (T v) { return v ? sign (v) : 0; }
116
117 template<typename T, typename U>
118 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
119
120 // div* only work correctly for div > 0
121 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122 template<typename T> static inline T div (T val, T div)
123 {
124 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
125 }
126 // div, round-up
127 template<typename T> static inline T div_ru (T val, T div)
128 {
129 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
130 }
131 // div, round-down
132 template<typename T> static inline T div_rd (T val, T div)
133 {
134 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
135 }
136
137 // lerp* only work correctly for min_in < max_in
138 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
139 template<typename T>
140 static inline T
141 lerp (T val, T min_in, T max_in, T min_out, T max_out)
142 {
143 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
144 }
145
146 // lerp, round-down
147 template<typename T>
148 static inline T
149 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
150 {
151 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
152 }
153
154 // lerp, round-up
155 template<typename T>
156 static inline T
157 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
158 {
159 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
160 }
161
162 // lots of stuff taken from FXT
163
164 /* Rotate right. This is used in various places for checksumming */
165 //TODO: that sucks, use a better checksum algo
166 static inline uint32_t
167 rotate_right (uint32_t c, uint32_t count = 1)
168 {
169 return (c << (32 - count)) | (c >> count);
170 }
171
172 static inline uint32_t
173 rotate_left (uint32_t c, uint32_t count = 1)
174 {
175 return (c >> (32 - count)) | (c << count);
176 }
177
178 // Return abs(a-b)
179 // Both a and b must not have the most significant bit set
180 static inline uint32_t
181 upos_abs_diff (uint32_t a, uint32_t b)
182 {
183 long d1 = b - a;
184 long d2 = (d1 & (d1 >> 31)) << 1;
185
186 return d1 - d2; // == (b - d) - (a + d);
187 }
188
189 // Both a and b must not have the most significant bit set
190 static inline uint32_t
191 upos_min (uint32_t a, uint32_t b)
192 {
193 int32_t d = b - a;
194 d &= d >> 31;
195 return a + d;
196 }
197
198 // Both a and b must not have the most significant bit set
199 static inline uint32_t
200 upos_max (uint32_t a, uint32_t b)
201 {
202 int32_t d = b - a;
203 d &= d >> 31;
204 return b - d;
205 }
206
207 // this is much faster than crossfire's original algorithm
208 // on modern cpus
209 inline int
210 isqrt (int n)
211 {
212 return (int)sqrtf ((float)n);
213 }
214
215 // this is kind of like the ^^ operator, if it would exist, without sequence point.
216 // more handy than it looks like, due to the implicit !! done on its arguments
217 inline bool
218 logical_xor (bool a, bool b)
219 {
220 return a != b;
221 }
222
223 inline bool
224 logical_implies (bool a, bool b)
225 {
226 return a <= b;
227 }
228
229 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
230 #if 0
231 // and has a max. error of 6 in the range -100..+100.
232 #else
233 // and has a max. error of 9 in the range -100..+100.
234 #endif
235 inline int
236 idistance (int dx, int dy)
237 {
238 unsigned int dx_ = abs (dx);
239 unsigned int dy_ = abs (dy);
240
241 #if 0
242 return dx_ > dy_
243 ? (dx_ * 61685 + dy_ * 26870) >> 16
244 : (dy_ * 61685 + dx_ * 26870) >> 16;
245 #else
246 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
247 #endif
248 }
249
250 /*
251 * absdir(int): Returns a number between 1 and 8, which represent
252 * the "absolute" direction of a number (it actually takes care of
253 * "overflow" in previous calculations of a direction).
254 */
255 inline int
256 absdir (int d)
257 {
258 return ((d - 1) & 7) + 1;
259 }
260
261 // avoid ctz name because netbsd or freebsd spams it's namespace with it
262 #if GCC_VERSION(3,4)
263 static inline int least_significant_bit (uint32_t x)
264 {
265 return __builtin_ctz (x);
266 }
267 #else
268 int least_significant_bit (uint32_t x);
269 #endif
270
271 #define for_all_bits_sparse_32(mask, idxvar) \
272 for (uint32_t idxvar, mask_ = mask; \
273 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
274
275 extern ssize_t slice_alloc; // statistics
276
277 void *salloc_ (int n) throw (std::bad_alloc);
278 void *salloc_ (int n, void *src) throw (std::bad_alloc);
279
280 // strictly the same as g_slice_alloc, but never returns 0
281 template<typename T>
282 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
283
284 // also copies src into the new area, like "memdup"
285 // if src is 0, clears the memory
286 template<typename T>
287 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
288
289 // clears the memory
290 template<typename T>
291 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
292
293 // for symmetry
294 template<typename T>
295 inline void sfree (T *ptr, int n = 1) throw ()
296 {
297 if (expect_true (ptr))
298 {
299 slice_alloc -= n * sizeof (T);
300 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
301 g_slice_free1 (n * sizeof (T), (void *)ptr);
302 assert (slice_alloc >= 0);//D
303 }
304 }
305
306 // nulls the pointer
307 template<typename T>
308 inline void sfree0 (T *&ptr, int n = 1) throw ()
309 {
310 sfree<T> (ptr, n);
311 ptr = 0;
312 }
313
314 // makes dynamically allocated objects zero-initialised
315 struct zero_initialised
316 {
317 void *operator new (size_t s, void *p)
318 {
319 memset (p, 0, s);
320 return p;
321 }
322
323 void *operator new (size_t s)
324 {
325 return salloc0<char> (s);
326 }
327
328 void *operator new[] (size_t s)
329 {
330 return salloc0<char> (s);
331 }
332
333 void operator delete (void *p, size_t s)
334 {
335 sfree ((char *)p, s);
336 }
337
338 void operator delete[] (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342 };
343
344 // makes dynamically allocated objects zero-initialised
345 struct slice_allocated
346 {
347 void *operator new (size_t s, void *p)
348 {
349 return p;
350 }
351
352 void *operator new (size_t s)
353 {
354 return salloc<char> (s);
355 }
356
357 void *operator new[] (size_t s)
358 {
359 return salloc<char> (s);
360 }
361
362 void operator delete (void *p, size_t s)
363 {
364 sfree ((char *)p, s);
365 }
366
367 void operator delete[] (void *p, size_t s)
368 {
369 sfree ((char *)p, s);
370 }
371 };
372
373 // a STL-compatible allocator that uses g_slice
374 // boy, this is verbose
375 template<typename Tp>
376 struct slice_allocator
377 {
378 typedef size_t size_type;
379 typedef ptrdiff_t difference_type;
380 typedef Tp *pointer;
381 typedef const Tp *const_pointer;
382 typedef Tp &reference;
383 typedef const Tp &const_reference;
384 typedef Tp value_type;
385
386 template <class U>
387 struct rebind
388 {
389 typedef slice_allocator<U> other;
390 };
391
392 slice_allocator () throw () { }
393 slice_allocator (const slice_allocator &) throw () { }
394 template<typename Tp2>
395 slice_allocator (const slice_allocator<Tp2> &) throw () { }
396
397 ~slice_allocator () { }
398
399 pointer address (reference x) const { return &x; }
400 const_pointer address (const_reference x) const { return &x; }
401
402 pointer allocate (size_type n, const_pointer = 0)
403 {
404 return salloc<Tp> (n);
405 }
406
407 void deallocate (pointer p, size_type n)
408 {
409 sfree<Tp> (p, n);
410 }
411
412 size_type max_size () const throw ()
413 {
414 return size_t (-1) / sizeof (Tp);
415 }
416
417 void construct (pointer p, const Tp &val)
418 {
419 ::new (p) Tp (val);
420 }
421
422 void destroy (pointer p)
423 {
424 p->~Tp ();
425 }
426 };
427
428 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
429 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
430 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
431 struct tausworthe_random_generator
432 {
433 uint32_t state [4];
434
435 void operator =(const tausworthe_random_generator &src)
436 {
437 state [0] = src.state [0];
438 state [1] = src.state [1];
439 state [2] = src.state [2];
440 state [3] = src.state [3];
441 }
442
443 void seed (uint32_t seed);
444 uint32_t next ();
445 };
446
447 // Xorshift RNGs, George Marsaglia
448 // http://www.jstatsoft.org/v08/i14/paper
449 // this one is about 40% faster than the tausworthe one above (i.e. not much),
450 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
451 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
452 struct xorshift_random_generator
453 {
454 uint32_t x, y;
455
456 void operator =(const xorshift_random_generator &src)
457 {
458 x = src.x;
459 y = src.y;
460 }
461
462 void seed (uint32_t seed)
463 {
464 x = seed;
465 y = seed * 69069U;
466 }
467
468 uint32_t next ()
469 {
470 uint32_t t = x ^ (x << 10);
471 x = y;
472 y = y ^ (y >> 13) ^ t ^ (t >> 10);
473 return y;
474 }
475 };
476
477 template<class generator>
478 struct random_number_generator : generator
479 {
480 // uniform distribution, 0 .. max (0, num - 1)
481 uint32_t operator ()(uint32_t num)
482 {
483 return !is_constant (num) ? get_range (num) // non-constant
484 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
485 : this->next () & (num - 1); // constant, power-of-two
486 }
487
488 // return a number within the closed interval [min .. max]
489 int operator () (int r_min, int r_max)
490 {
491 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
492 ? r_min + operator ()(r_max - r_min + 1)
493 : get_range (r_min, r_max);
494 }
495
496 // return a number within the closed interval [0..1]
497 double operator ()()
498 {
499 return this->next () / (double)0xFFFFFFFFU;
500 }
501
502 protected:
503 uint32_t get_range (uint32_t r_max);
504 int get_range (int r_min, int r_max);
505 };
506
507 typedef random_number_generator<tausworthe_random_generator> rand_gen;
508
509 extern rand_gen rndm, rmg_rndm;
510
511 INTERFACE_CLASS (attachable)
512 struct refcnt_base
513 {
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521 };
522
523 // to avoid branches with more advanced compilers
524 extern refcnt_base::refcnt_t refcnt_dummy;
525
526 template<class T>
527 struct refptr
528 {
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
548 T *p;
549
550 refptr () : p(0) { }
551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
552 refptr (T *p) : p(p) { refcnt_inc (); }
553 ~refptr () { refcnt_dec (); }
554
555 const refptr<T> &operator =(T *o)
556 {
557 // if decrementing ever destroys we need to reverse the order here
558 refcnt_dec ();
559 p = o;
560 refcnt_inc ();
561 return *this;
562 }
563
564 const refptr<T> &operator =(const refptr<T> &o)
565 {
566 *this = o.p;
567 return *this;
568 }
569
570 T &operator * () const { return *p; }
571 T *operator ->() const { return p; }
572
573 operator T *() const { return p; }
574 };
575
576 typedef refptr<maptile> maptile_ptr;
577 typedef refptr<object> object_ptr;
578 typedef refptr<archetype> arch_ptr;
579 typedef refptr<client> client_ptr;
580 typedef refptr<player> player_ptr;
581 typedef refptr<region> region_ptr;
582
583 #define STRHSH_NULL 2166136261
584
585 static inline uint32_t
586 strhsh (const char *s)
587 {
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 uint32_t hash = STRHSH_NULL;
594
595 while (*s)
596 hash = (hash ^ *s++) * 16777619U;
597
598 return hash;
599 }
600
601 static inline uint32_t
602 memhsh (const char *s, size_t len)
603 {
604 uint32_t hash = STRHSH_NULL;
605
606 while (len--)
607 hash = (hash ^ *s++) * 16777619U;
608
609 return hash;
610 }
611
612 struct str_hash
613 {
614 std::size_t operator ()(const char *s) const
615 {
616 return strhsh (s);
617 }
618
619 std::size_t operator ()(const shstr &s) const
620 {
621 return strhsh (s);
622 }
623 };
624
625 struct str_equal
626 {
627 bool operator ()(const char *a, const char *b) const
628 {
629 return !strcmp (a, b);
630 }
631 };
632
633 // Mostly the same as std::vector, but insert/erase can reorder
634 // the elements, making append(=insert)/remove O(1) instead of O(n).
635 //
636 // NOTE: only some forms of erase are available
637 template<class T>
638 struct unordered_vector : std::vector<T, slice_allocator<T> >
639 {
640 typedef typename unordered_vector::iterator iterator;
641
642 void erase (unsigned int pos)
643 {
644 if (pos < this->size () - 1)
645 (*this)[pos] = (*this)[this->size () - 1];
646
647 this->pop_back ();
648 }
649
650 void erase (iterator i)
651 {
652 erase ((unsigned int )(i - this->begin ()));
653 }
654 };
655
656 // This container blends advantages of linked lists
657 // (efficiency) with vectors (random access) by
658 // by using an unordered vector and storing the vector
659 // index inside the object.
660 //
661 // + memory-efficient on most 64 bit archs
662 // + O(1) insert/remove
663 // + free unique (but varying) id for inserted objects
664 // + cache-friendly iteration
665 // - only works for pointers to structs
666 //
667 // NOTE: only some forms of erase/insert are available
668 typedef int object_vector_index;
669
670 template<class T, object_vector_index T::*indexmember>
671 struct object_vector : std::vector<T *, slice_allocator<T *> >
672 {
673 typedef typename object_vector::iterator iterator;
674
675 bool contains (const T *obj) const
676 {
677 return obj->*indexmember;
678 }
679
680 iterator find (const T *obj)
681 {
682 return obj->*indexmember
683 ? this->begin () + obj->*indexmember - 1
684 : this->end ();
685 }
686
687 void push_back (T *obj)
688 {
689 std::vector<T *, slice_allocator<T *> >::push_back (obj);
690 obj->*indexmember = this->size ();
691 }
692
693 void insert (T *obj)
694 {
695 push_back (obj);
696 }
697
698 void insert (T &obj)
699 {
700 insert (&obj);
701 }
702
703 void erase (T *obj)
704 {
705 unsigned int pos = obj->*indexmember;
706 obj->*indexmember = 0;
707
708 if (pos < this->size ())
709 {
710 (*this)[pos - 1] = (*this)[this->size () - 1];
711 (*this)[pos - 1]->*indexmember = pos;
712 }
713
714 this->pop_back ();
715 }
716
717 void erase (T &obj)
718 {
719 erase (&obj);
720 }
721 };
722
723 // basically does what strncpy should do, but appends "..." to strings exceeding length
724 // returns the number of bytes actually used (including \0)
725 int assign (char *dst, const char *src, int maxsize);
726
727 // type-safe version of assign
728 template<int N>
729 inline int assign (char (&dst)[N], const char *src)
730 {
731 return assign ((char *)&dst, src, N);
732 }
733
734 typedef double tstamp;
735
736 // return current time as timestamp
737 tstamp now ();
738
739 int similar_direction (int a, int b);
740
741 // like v?sprintf, but returns a "static" buffer
742 char *vformat (const char *format, va_list ap);
743 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
744
745 // safety-check player input which will become object->msg
746 bool msg_is_safe (const char *msg);
747
748 /////////////////////////////////////////////////////////////////////////////
749 // threads, very very thin wrappers around pthreads
750
751 struct thread
752 {
753 pthread_t id;
754
755 void start (void *(*start_routine)(void *), void *arg = 0);
756
757 void cancel ()
758 {
759 pthread_cancel (id);
760 }
761
762 void *join ()
763 {
764 void *ret;
765
766 if (pthread_join (id, &ret))
767 cleanup ("pthread_join failed", 1);
768
769 return ret;
770 }
771 };
772
773 // note that mutexes are not classes
774 typedef pthread_mutex_t smutex;
775
776 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
777 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
778 #else
779 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
780 #endif
781
782 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
783 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
784 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
785
786 typedef pthread_cond_t scond;
787
788 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
789 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
790 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
791 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
792
793 #endif
794