ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.111
Committed: Tue Jul 6 20:00:46 2010 UTC (13 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.110: +68 -0 lines
Log Message:
move layout stuff to it's own include file

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 #if cplusplus_does_not_suck
61 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 template<typename T, int N>
63 static inline int array_length (const T (&arr)[N])
64 {
65 return N;
66 }
67 #else
68 #define array_length(name) (sizeof (name) / sizeof (name [0]))
69 #endif
70
71 // very ugly macro that basically declares and initialises a variable
72 // that is in scope for the next statement only
73 // works only for stuff that can be assigned 0 and converts to false
74 // (note: works great for pointers)
75 // most ugly macro I ever wrote
76 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77
78 // in range including end
79 #define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82 // in range excluding end
83 #define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86 void cleanup (const char *cause, bool make_core = false);
87 void fork_abort (const char *msg);
88
89 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90 // as a is often a constant while b is the variable. it is still a bug, though.
91 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104 // sign returns -1 or +1
105 template<typename T>
106 static inline T sign (T v) { return v < 0 ? -1 : +1; }
107 // relies on 2c representation
108 template<>
109 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110 template<>
111 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112 template<>
113 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115 // sign0 returns -1, 0 or +1
116 template<typename T>
117 static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119 template<typename T, typename U>
120 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
121
122 // div* only work correctly for div > 0
123 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124 template<typename T> static inline T div (T val, T div)
125 {
126 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
127 }
128
129 template<> inline float div (float val, float div) { return val / div; }
130 template<> inline double div (double val, double div) { return val / div; }
131
132 // div, round-up
133 template<typename T> static inline T div_ru (T val, T div)
134 {
135 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
136 }
137 // div, round-down
138 template<typename T> static inline T div_rd (T val, T div)
139 {
140 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
141 }
142
143 // lerp* only work correctly for min_in < max_in
144 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
145 template<typename T>
146 static inline T
147 lerp (T val, T min_in, T max_in, T min_out, T max_out)
148 {
149 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
150 }
151
152 // lerp, round-down
153 template<typename T>
154 static inline T
155 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
156 {
157 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
158 }
159
160 // lerp, round-up
161 template<typename T>
162 static inline T
163 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
164 {
165 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
166 }
167
168 // lots of stuff taken from FXT
169
170 /* Rotate right. This is used in various places for checksumming */
171 //TODO: that sucks, use a better checksum algo
172 static inline uint32_t
173 rotate_right (uint32_t c, uint32_t count = 1)
174 {
175 return (c << (32 - count)) | (c >> count);
176 }
177
178 static inline uint32_t
179 rotate_left (uint32_t c, uint32_t count = 1)
180 {
181 return (c >> (32 - count)) | (c << count);
182 }
183
184 // Return abs(a-b)
185 // Both a and b must not have the most significant bit set
186 static inline uint32_t
187 upos_abs_diff (uint32_t a, uint32_t b)
188 {
189 long d1 = b - a;
190 long d2 = (d1 & (d1 >> 31)) << 1;
191
192 return d1 - d2; // == (b - d) - (a + d);
193 }
194
195 // Both a and b must not have the most significant bit set
196 static inline uint32_t
197 upos_min (uint32_t a, uint32_t b)
198 {
199 int32_t d = b - a;
200 d &= d >> 31;
201 return a + d;
202 }
203
204 // Both a and b must not have the most significant bit set
205 static inline uint32_t
206 upos_max (uint32_t a, uint32_t b)
207 {
208 int32_t d = b - a;
209 d &= d >> 31;
210 return b - d;
211 }
212
213 // this is much faster than crossfire's original algorithm
214 // on modern cpus
215 inline int
216 isqrt (int n)
217 {
218 return (int)sqrtf ((float)n);
219 }
220
221 // this is kind of like the ^^ operator, if it would exist, without sequence point.
222 // more handy than it looks like, due to the implicit !! done on its arguments
223 inline bool
224 logical_xor (bool a, bool b)
225 {
226 return a != b;
227 }
228
229 inline bool
230 logical_implies (bool a, bool b)
231 {
232 return a <= b;
233 }
234
235 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
236 #if 0
237 // and has a max. error of 6 in the range -100..+100.
238 #else
239 // and has a max. error of 9 in the range -100..+100.
240 #endif
241 inline int
242 idistance (int dx, int dy)
243 {
244 unsigned int dx_ = abs (dx);
245 unsigned int dy_ = abs (dy);
246
247 #if 0
248 return dx_ > dy_
249 ? (dx_ * 61685 + dy_ * 26870) >> 16
250 : (dy_ * 61685 + dx_ * 26870) >> 16;
251 #else
252 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
253 #endif
254 }
255
256 /*
257 * absdir(int): Returns a number between 1 and 8, which represent
258 * the "absolute" direction of a number (it actually takes care of
259 * "overflow" in previous calculations of a direction).
260 */
261 inline int
262 absdir (int d)
263 {
264 return ((d - 1) & 7) + 1;
265 }
266
267 // avoid ctz name because netbsd or freebsd spams it's namespace with it
268 #if GCC_VERSION(3,4)
269 static inline int least_significant_bit (uint32_t x)
270 {
271 return __builtin_ctz (x);
272 }
273 #else
274 int least_significant_bit (uint32_t x);
275 #endif
276
277 #define for_all_bits_sparse_32(mask, idxvar) \
278 for (uint32_t idxvar, mask_ = mask; \
279 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
280
281 extern ssize_t slice_alloc; // statistics
282
283 void *salloc_ (int n) throw (std::bad_alloc);
284 void *salloc_ (int n, void *src) throw (std::bad_alloc);
285
286 // strictly the same as g_slice_alloc, but never returns 0
287 template<typename T>
288 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
289
290 // also copies src into the new area, like "memdup"
291 // if src is 0, clears the memory
292 template<typename T>
293 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
294
295 // clears the memory
296 template<typename T>
297 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
298
299 // for symmetry
300 template<typename T>
301 inline void sfree (T *ptr, int n = 1) throw ()
302 {
303 if (expect_true (ptr))
304 {
305 slice_alloc -= n * sizeof (T);
306 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
307 g_slice_free1 (n * sizeof (T), (void *)ptr);
308 assert (slice_alloc >= 0);//D
309 }
310 }
311
312 // nulls the pointer
313 template<typename T>
314 inline void sfree0 (T *&ptr, int n = 1) throw ()
315 {
316 sfree<T> (ptr, n);
317 ptr = 0;
318 }
319
320 // makes dynamically allocated objects zero-initialised
321 struct zero_initialised
322 {
323 void *operator new (size_t s, void *p)
324 {
325 memset (p, 0, s);
326 return p;
327 }
328
329 void *operator new (size_t s)
330 {
331 return salloc0<char> (s);
332 }
333
334 void *operator new[] (size_t s)
335 {
336 return salloc0<char> (s);
337 }
338
339 void operator delete (void *p, size_t s)
340 {
341 sfree ((char *)p, s);
342 }
343
344 void operator delete[] (void *p, size_t s)
345 {
346 sfree ((char *)p, s);
347 }
348 };
349
350 // makes dynamically allocated objects zero-initialised
351 struct slice_allocated
352 {
353 void *operator new (size_t s, void *p)
354 {
355 return p;
356 }
357
358 void *operator new (size_t s)
359 {
360 return salloc<char> (s);
361 }
362
363 void *operator new[] (size_t s)
364 {
365 return salloc<char> (s);
366 }
367
368 void operator delete (void *p, size_t s)
369 {
370 sfree ((char *)p, s);
371 }
372
373 void operator delete[] (void *p, size_t s)
374 {
375 sfree ((char *)p, s);
376 }
377 };
378
379 // a STL-compatible allocator that uses g_slice
380 // boy, this is verbose
381 template<typename Tp>
382 struct slice_allocator
383 {
384 typedef size_t size_type;
385 typedef ptrdiff_t difference_type;
386 typedef Tp *pointer;
387 typedef const Tp *const_pointer;
388 typedef Tp &reference;
389 typedef const Tp &const_reference;
390 typedef Tp value_type;
391
392 template <class U>
393 struct rebind
394 {
395 typedef slice_allocator<U> other;
396 };
397
398 slice_allocator () throw () { }
399 slice_allocator (const slice_allocator &) throw () { }
400 template<typename Tp2>
401 slice_allocator (const slice_allocator<Tp2> &) throw () { }
402
403 ~slice_allocator () { }
404
405 pointer address (reference x) const { return &x; }
406 const_pointer address (const_reference x) const { return &x; }
407
408 pointer allocate (size_type n, const_pointer = 0)
409 {
410 return salloc<Tp> (n);
411 }
412
413 void deallocate (pointer p, size_type n)
414 {
415 sfree<Tp> (p, n);
416 }
417
418 size_type max_size () const throw ()
419 {
420 return size_t (-1) / sizeof (Tp);
421 }
422
423 void construct (pointer p, const Tp &val)
424 {
425 ::new (p) Tp (val);
426 }
427
428 void destroy (pointer p)
429 {
430 p->~Tp ();
431 }
432 };
433
434 INTERFACE_CLASS (attachable)
435 struct refcnt_base
436 {
437 typedef int refcnt_t;
438 mutable refcnt_t ACC (RW, refcnt);
439
440 MTH void refcnt_inc () const { ++refcnt; }
441 MTH void refcnt_dec () const { --refcnt; }
442
443 refcnt_base () : refcnt (0) { }
444 };
445
446 // to avoid branches with more advanced compilers
447 extern refcnt_base::refcnt_t refcnt_dummy;
448
449 template<class T>
450 struct refptr
451 {
452 // p if not null
453 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
454
455 void refcnt_dec ()
456 {
457 if (!is_constant (p))
458 --*refcnt_ref ();
459 else if (p)
460 --p->refcnt;
461 }
462
463 void refcnt_inc ()
464 {
465 if (!is_constant (p))
466 ++*refcnt_ref ();
467 else if (p)
468 ++p->refcnt;
469 }
470
471 T *p;
472
473 refptr () : p(0) { }
474 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
475 refptr (T *p) : p(p) { refcnt_inc (); }
476 ~refptr () { refcnt_dec (); }
477
478 const refptr<T> &operator =(T *o)
479 {
480 // if decrementing ever destroys we need to reverse the order here
481 refcnt_dec ();
482 p = o;
483 refcnt_inc ();
484 return *this;
485 }
486
487 const refptr<T> &operator =(const refptr<T> &o)
488 {
489 *this = o.p;
490 return *this;
491 }
492
493 T &operator * () const { return *p; }
494 T *operator ->() const { return p; }
495
496 operator T *() const { return p; }
497 };
498
499 typedef refptr<maptile> maptile_ptr;
500 typedef refptr<object> object_ptr;
501 typedef refptr<archetype> arch_ptr;
502 typedef refptr<client> client_ptr;
503 typedef refptr<player> player_ptr;
504 typedef refptr<region> region_ptr;
505
506 #define STRHSH_NULL 2166136261
507
508 static inline uint32_t
509 strhsh (const char *s)
510 {
511 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
512 // it is about twice as fast as the one-at-a-time one,
513 // with good distribution.
514 // FNV-1a is faster on many cpus because the multiplication
515 // runs concurrently with the looping logic.
516 uint32_t hash = STRHSH_NULL;
517
518 while (*s)
519 hash = (hash ^ *s++) * 16777619U;
520
521 return hash;
522 }
523
524 static inline uint32_t
525 memhsh (const char *s, size_t len)
526 {
527 uint32_t hash = STRHSH_NULL;
528
529 while (len--)
530 hash = (hash ^ *s++) * 16777619U;
531
532 return hash;
533 }
534
535 struct str_hash
536 {
537 std::size_t operator ()(const char *s) const
538 {
539 return strhsh (s);
540 }
541
542 std::size_t operator ()(const shstr &s) const
543 {
544 return strhsh (s);
545 }
546 };
547
548 struct str_equal
549 {
550 bool operator ()(const char *a, const char *b) const
551 {
552 return !strcmp (a, b);
553 }
554 };
555
556 // Mostly the same as std::vector, but insert/erase can reorder
557 // the elements, making append(=insert)/remove O(1) instead of O(n).
558 //
559 // NOTE: only some forms of erase are available
560 template<class T>
561 struct unordered_vector : std::vector<T, slice_allocator<T> >
562 {
563 typedef typename unordered_vector::iterator iterator;
564
565 void erase (unsigned int pos)
566 {
567 if (pos < this->size () - 1)
568 (*this)[pos] = (*this)[this->size () - 1];
569
570 this->pop_back ();
571 }
572
573 void erase (iterator i)
574 {
575 erase ((unsigned int )(i - this->begin ()));
576 }
577 };
578
579 // This container blends advantages of linked lists
580 // (efficiency) with vectors (random access) by
581 // by using an unordered vector and storing the vector
582 // index inside the object.
583 //
584 // + memory-efficient on most 64 bit archs
585 // + O(1) insert/remove
586 // + free unique (but varying) id for inserted objects
587 // + cache-friendly iteration
588 // - only works for pointers to structs
589 //
590 // NOTE: only some forms of erase/insert are available
591 typedef int object_vector_index;
592
593 template<class T, object_vector_index T::*indexmember>
594 struct object_vector : std::vector<T *, slice_allocator<T *> >
595 {
596 typedef typename object_vector::iterator iterator;
597
598 bool contains (const T *obj) const
599 {
600 return obj->*indexmember;
601 }
602
603 iterator find (const T *obj)
604 {
605 return obj->*indexmember
606 ? this->begin () + obj->*indexmember - 1
607 : this->end ();
608 }
609
610 void push_back (T *obj)
611 {
612 std::vector<T *, slice_allocator<T *> >::push_back (obj);
613 obj->*indexmember = this->size ();
614 }
615
616 void insert (T *obj)
617 {
618 push_back (obj);
619 }
620
621 void insert (T &obj)
622 {
623 insert (&obj);
624 }
625
626 void erase (T *obj)
627 {
628 unsigned int pos = obj->*indexmember;
629 obj->*indexmember = 0;
630
631 if (pos < this->size ())
632 {
633 (*this)[pos - 1] = (*this)[this->size () - 1];
634 (*this)[pos - 1]->*indexmember = pos;
635 }
636
637 this->pop_back ();
638 }
639
640 void erase (T &obj)
641 {
642 erase (&obj);
643 }
644 };
645
646 /////////////////////////////////////////////////////////////////////////////
647
648 // something like a vector or stack, but without
649 // out of bounds checking
650 template<typename T>
651 struct fixed_stack
652 {
653 T *data;
654 int size;
655 int max;
656
657 fixed_stack ()
658 : size (0), data (0)
659 {
660 }
661
662 fixed_stack (int max)
663 : size (0), max (max)
664 {
665 data = salloc<T> (max);
666 }
667
668 void reset (int new_max)
669 {
670 sfree (data, max);
671 size = 0;
672 max = new_max;
673 data = salloc<T> (max);
674 }
675
676 void free ()
677 {
678 sfree (data, max);
679 data = 0;
680 }
681
682 ~fixed_stack ()
683 {
684 sfree (data, max);
685 }
686
687 T &operator[](int idx)
688 {
689 return data [idx];
690 }
691
692 void push (T v)
693 {
694 data [size++] = v;
695 }
696
697 T &pop ()
698 {
699 return data [--size];
700 }
701
702 T remove (int idx)
703 {
704 T v = data [idx];
705
706 data [idx] = data [--size];
707
708 return v;
709 }
710 };
711
712 /////////////////////////////////////////////////////////////////////////////
713
714 // basically does what strncpy should do, but appends "..." to strings exceeding length
715 // returns the number of bytes actually used (including \0)
716 int assign (char *dst, const char *src, int maxsize);
717
718 // type-safe version of assign
719 template<int N>
720 inline int assign (char (&dst)[N], const char *src)
721 {
722 return assign ((char *)&dst, src, N);
723 }
724
725 typedef double tstamp;
726
727 // return current time as timestamp
728 tstamp now ();
729
730 int similar_direction (int a, int b);
731
732 // like v?sprintf, but returns a "static" buffer
733 char *vformat (const char *format, va_list ap);
734 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
735
736 // safety-check player input which will become object->msg
737 bool msg_is_safe (const char *msg);
738
739 /////////////////////////////////////////////////////////////////////////////
740 // threads, very very thin wrappers around pthreads
741
742 struct thread
743 {
744 pthread_t id;
745
746 void start (void *(*start_routine)(void *), void *arg = 0);
747
748 void cancel ()
749 {
750 pthread_cancel (id);
751 }
752
753 void *join ()
754 {
755 void *ret;
756
757 if (pthread_join (id, &ret))
758 cleanup ("pthread_join failed", 1);
759
760 return ret;
761 }
762 };
763
764 // note that mutexes are not classes
765 typedef pthread_mutex_t smutex;
766
767 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
768 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
769 #else
770 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
771 #endif
772
773 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
774 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
775 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
776
777 typedef pthread_cond_t scond;
778
779 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
780 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
781 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
782 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
783
784 #endif
785