ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.114
Committed: Sat Apr 23 04:56:51 2011 UTC (13 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.113: +1 -1 lines
Log Message:
update copyright to 2011

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 #if cplusplus_does_not_suck
61 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 template<typename T, int N>
63 static inline int array_length (const T (&arr)[N])
64 {
65 return N;
66 }
67 #else
68 #define array_length(name) (sizeof (name) / sizeof (name [0]))
69 #endif
70
71 // very ugly macro that basically declares and initialises a variable
72 // that is in scope for the next statement only
73 // works only for stuff that can be assigned 0 and converts to false
74 // (note: works great for pointers)
75 // most ugly macro I ever wrote
76 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77
78 // in range including end
79 #define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82 // in range excluding end
83 #define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86 void cleanup (const char *cause, bool make_core = false);
87 void fork_abort (const char *msg);
88
89 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90 // as a is often a constant while b is the variable. it is still a bug, though.
91 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
92 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
93 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104 // sign returns -1 or +1
105 template<typename T>
106 static inline T sign (T v) { return v < 0 ? -1 : +1; }
107 // relies on 2c representation
108 template<>
109 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110 template<>
111 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112 template<>
113 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115 // sign0 returns -1, 0 or +1
116 template<typename T>
117 static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119 //clashes with C++0x
120 template<typename T, typename U>
121 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123 // div* only work correctly for div > 0
124 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 template<typename T> static inline T div (T val, T div)
126 {
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128 }
129
130 template<> inline float div (float val, float div) { return val / div; }
131 template<> inline double div (double val, double div) { return val / div; }
132
133 // div, round-up
134 template<typename T> static inline T div_ru (T val, T div)
135 {
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137 }
138 // div, round-down
139 template<typename T> static inline T div_rd (T val, T div)
140 {
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142 }
143
144 // lerp* only work correctly for min_in < max_in
145 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 template<typename T>
147 static inline T
148 lerp (T val, T min_in, T max_in, T min_out, T max_out)
149 {
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 }
152
153 // lerp, round-down
154 template<typename T>
155 static inline T
156 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157 {
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159 }
160
161 // lerp, round-up
162 template<typename T>
163 static inline T
164 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165 {
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 }
168
169 // lots of stuff taken from FXT
170
171 /* Rotate right. This is used in various places for checksumming */
172 //TODO: that sucks, use a better checksum algo
173 static inline uint32_t
174 rotate_right (uint32_t c, uint32_t count = 1)
175 {
176 return (c << (32 - count)) | (c >> count);
177 }
178
179 static inline uint32_t
180 rotate_left (uint32_t c, uint32_t count = 1)
181 {
182 return (c >> (32 - count)) | (c << count);
183 }
184
185 // Return abs(a-b)
186 // Both a and b must not have the most significant bit set
187 static inline uint32_t
188 upos_abs_diff (uint32_t a, uint32_t b)
189 {
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194 }
195
196 // Both a and b must not have the most significant bit set
197 static inline uint32_t
198 upos_min (uint32_t a, uint32_t b)
199 {
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203 }
204
205 // Both a and b must not have the most significant bit set
206 static inline uint32_t
207 upos_max (uint32_t a, uint32_t b)
208 {
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212 }
213
214 // this is much faster than crossfire's original algorithm
215 // on modern cpus
216 inline int
217 isqrt (int n)
218 {
219 return (int)sqrtf ((float)n);
220 }
221
222 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223 // more handy than it looks like, due to the implicit !! done on its arguments
224 inline bool
225 logical_xor (bool a, bool b)
226 {
227 return a != b;
228 }
229
230 inline bool
231 logical_implies (bool a, bool b)
232 {
233 return a <= b;
234 }
235
236 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237 #if 0
238 // and has a max. error of 6 in the range -100..+100.
239 #else
240 // and has a max. error of 9 in the range -100..+100.
241 #endif
242 inline int
243 idistance (int dx, int dy)
244 {
245 unsigned int dx_ = abs (dx);
246 unsigned int dy_ = abs (dy);
247
248 #if 0
249 return dx_ > dy_
250 ? (dx_ * 61685 + dy_ * 26870) >> 16
251 : (dy_ * 61685 + dx_ * 26870) >> 16;
252 #else
253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 #endif
255 }
256
257 /*
258 * absdir(int): Returns a number between 1 and 8, which represent
259 * the "absolute" direction of a number (it actually takes care of
260 * "overflow" in previous calculations of a direction).
261 */
262 inline int
263 absdir (int d)
264 {
265 return ((d - 1) & 7) + 1;
266 }
267
268 // avoid ctz name because netbsd or freebsd spams it's namespace with it
269 #if GCC_VERSION(3,4)
270 static inline int least_significant_bit (uint32_t x)
271 {
272 return __builtin_ctz (x);
273 }
274 #else
275 int least_significant_bit (uint32_t x);
276 #endif
277
278 #define for_all_bits_sparse_32(mask, idxvar) \
279 for (uint32_t idxvar, mask_ = mask; \
280 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
281
282 extern ssize_t slice_alloc; // statistics
283
284 void *salloc_ (int n) throw (std::bad_alloc);
285 void *salloc_ (int n, void *src) throw (std::bad_alloc);
286
287 // strictly the same as g_slice_alloc, but never returns 0
288 template<typename T>
289 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
290
291 // also copies src into the new area, like "memdup"
292 // if src is 0, clears the memory
293 template<typename T>
294 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
295
296 // clears the memory
297 template<typename T>
298 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
299
300 // for symmetry
301 template<typename T>
302 inline void sfree (T *ptr, int n = 1) throw ()
303 {
304 if (expect_true (ptr))
305 {
306 slice_alloc -= n * sizeof (T);
307 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
308 g_slice_free1 (n * sizeof (T), (void *)ptr);
309 assert (slice_alloc >= 0);//D
310 }
311 }
312
313 // nulls the pointer
314 template<typename T>
315 inline void sfree0 (T *&ptr, int n = 1) throw ()
316 {
317 sfree<T> (ptr, n);
318 ptr = 0;
319 }
320
321 // makes dynamically allocated objects zero-initialised
322 struct zero_initialised
323 {
324 void *operator new (size_t s, void *p)
325 {
326 memset (p, 0, s);
327 return p;
328 }
329
330 void *operator new (size_t s)
331 {
332 return salloc0<char> (s);
333 }
334
335 void *operator new[] (size_t s)
336 {
337 return salloc0<char> (s);
338 }
339
340 void operator delete (void *p, size_t s)
341 {
342 sfree ((char *)p, s);
343 }
344
345 void operator delete[] (void *p, size_t s)
346 {
347 sfree ((char *)p, s);
348 }
349 };
350
351 // makes dynamically allocated objects zero-initialised
352 struct slice_allocated
353 {
354 void *operator new (size_t s, void *p)
355 {
356 return p;
357 }
358
359 void *operator new (size_t s)
360 {
361 return salloc<char> (s);
362 }
363
364 void *operator new[] (size_t s)
365 {
366 return salloc<char> (s);
367 }
368
369 void operator delete (void *p, size_t s)
370 {
371 sfree ((char *)p, s);
372 }
373
374 void operator delete[] (void *p, size_t s)
375 {
376 sfree ((char *)p, s);
377 }
378 };
379
380 // a STL-compatible allocator that uses g_slice
381 // boy, this is verbose
382 template<typename Tp>
383 struct slice_allocator
384 {
385 typedef size_t size_type;
386 typedef ptrdiff_t difference_type;
387 typedef Tp *pointer;
388 typedef const Tp *const_pointer;
389 typedef Tp &reference;
390 typedef const Tp &const_reference;
391 typedef Tp value_type;
392
393 template <class U>
394 struct rebind
395 {
396 typedef slice_allocator<U> other;
397 };
398
399 slice_allocator () throw () { }
400 slice_allocator (const slice_allocator &) throw () { }
401 template<typename Tp2>
402 slice_allocator (const slice_allocator<Tp2> &) throw () { }
403
404 ~slice_allocator () { }
405
406 pointer address (reference x) const { return &x; }
407 const_pointer address (const_reference x) const { return &x; }
408
409 pointer allocate (size_type n, const_pointer = 0)
410 {
411 return salloc<Tp> (n);
412 }
413
414 void deallocate (pointer p, size_type n)
415 {
416 sfree<Tp> (p, n);
417 }
418
419 size_type max_size () const throw ()
420 {
421 return size_t (-1) / sizeof (Tp);
422 }
423
424 void construct (pointer p, const Tp &val)
425 {
426 ::new (p) Tp (val);
427 }
428
429 void destroy (pointer p)
430 {
431 p->~Tp ();
432 }
433 };
434
435 INTERFACE_CLASS (attachable)
436 struct refcnt_base
437 {
438 typedef int refcnt_t;
439 mutable refcnt_t ACC (RW, refcnt);
440
441 MTH void refcnt_inc () const { ++refcnt; }
442 MTH void refcnt_dec () const { --refcnt; }
443
444 refcnt_base () : refcnt (0) { }
445 };
446
447 // to avoid branches with more advanced compilers
448 extern refcnt_base::refcnt_t refcnt_dummy;
449
450 template<class T>
451 struct refptr
452 {
453 // p if not null
454 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
455
456 void refcnt_dec ()
457 {
458 if (!is_constant (p))
459 --*refcnt_ref ();
460 else if (p)
461 --p->refcnt;
462 }
463
464 void refcnt_inc ()
465 {
466 if (!is_constant (p))
467 ++*refcnt_ref ();
468 else if (p)
469 ++p->refcnt;
470 }
471
472 T *p;
473
474 refptr () : p(0) { }
475 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
476 refptr (T *p) : p(p) { refcnt_inc (); }
477 ~refptr () { refcnt_dec (); }
478
479 const refptr<T> &operator =(T *o)
480 {
481 // if decrementing ever destroys we need to reverse the order here
482 refcnt_dec ();
483 p = o;
484 refcnt_inc ();
485 return *this;
486 }
487
488 const refptr<T> &operator =(const refptr<T> &o)
489 {
490 *this = o.p;
491 return *this;
492 }
493
494 T &operator * () const { return *p; }
495 T *operator ->() const { return p; }
496
497 operator T *() const { return p; }
498 };
499
500 typedef refptr<maptile> maptile_ptr;
501 typedef refptr<object> object_ptr;
502 typedef refptr<archetype> arch_ptr;
503 typedef refptr<client> client_ptr;
504 typedef refptr<player> player_ptr;
505 typedef refptr<region> region_ptr;
506
507 #define STRHSH_NULL 2166136261
508
509 static inline uint32_t
510 strhsh (const char *s)
511 {
512 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
513 // it is about twice as fast as the one-at-a-time one,
514 // with good distribution.
515 // FNV-1a is faster on many cpus because the multiplication
516 // runs concurrently with the looping logic.
517 // we modify the hash a bit to improve its distribution
518 uint32_t hash = STRHSH_NULL;
519
520 while (*s)
521 hash = (hash ^ *s++) * 16777619U;
522
523 return hash ^ (hash >> 16);
524 }
525
526 static inline uint32_t
527 memhsh (const char *s, size_t len)
528 {
529 uint32_t hash = STRHSH_NULL;
530
531 while (len--)
532 hash = (hash ^ *s++) * 16777619U;
533
534 return hash;
535 }
536
537 struct str_hash
538 {
539 std::size_t operator ()(const char *s) const
540 {
541 return strhsh (s);
542 }
543
544 std::size_t operator ()(const shstr &s) const
545 {
546 return strhsh (s);
547 }
548 };
549
550 struct str_equal
551 {
552 bool operator ()(const char *a, const char *b) const
553 {
554 return !strcmp (a, b);
555 }
556 };
557
558 // Mostly the same as std::vector, but insert/erase can reorder
559 // the elements, making append(=insert)/remove O(1) instead of O(n).
560 //
561 // NOTE: only some forms of erase are available
562 template<class T>
563 struct unordered_vector : std::vector<T, slice_allocator<T> >
564 {
565 typedef typename unordered_vector::iterator iterator;
566
567 void erase (unsigned int pos)
568 {
569 if (pos < this->size () - 1)
570 (*this)[pos] = (*this)[this->size () - 1];
571
572 this->pop_back ();
573 }
574
575 void erase (iterator i)
576 {
577 erase ((unsigned int )(i - this->begin ()));
578 }
579 };
580
581 // This container blends advantages of linked lists
582 // (efficiency) with vectors (random access) by
583 // by using an unordered vector and storing the vector
584 // index inside the object.
585 //
586 // + memory-efficient on most 64 bit archs
587 // + O(1) insert/remove
588 // + free unique (but varying) id for inserted objects
589 // + cache-friendly iteration
590 // - only works for pointers to structs
591 //
592 // NOTE: only some forms of erase/insert are available
593 typedef int object_vector_index;
594
595 template<class T, object_vector_index T::*indexmember>
596 struct object_vector : std::vector<T *, slice_allocator<T *> >
597 {
598 typedef typename object_vector::iterator iterator;
599
600 bool contains (const T *obj) const
601 {
602 return obj->*indexmember;
603 }
604
605 iterator find (const T *obj)
606 {
607 return obj->*indexmember
608 ? this->begin () + obj->*indexmember - 1
609 : this->end ();
610 }
611
612 void push_back (T *obj)
613 {
614 std::vector<T *, slice_allocator<T *> >::push_back (obj);
615 obj->*indexmember = this->size ();
616 }
617
618 void insert (T *obj)
619 {
620 push_back (obj);
621 }
622
623 void insert (T &obj)
624 {
625 insert (&obj);
626 }
627
628 void erase (T *obj)
629 {
630 unsigned int pos = obj->*indexmember;
631 obj->*indexmember = 0;
632
633 if (pos < this->size ())
634 {
635 (*this)[pos - 1] = (*this)[this->size () - 1];
636 (*this)[pos - 1]->*indexmember = pos;
637 }
638
639 this->pop_back ();
640 }
641
642 void erase (T &obj)
643 {
644 erase (&obj);
645 }
646 };
647
648 /////////////////////////////////////////////////////////////////////////////
649
650 // something like a vector or stack, but without
651 // out of bounds checking
652 template<typename T>
653 struct fixed_stack
654 {
655 T *data;
656 int size;
657 int max;
658
659 fixed_stack ()
660 : size (0), data (0)
661 {
662 }
663
664 fixed_stack (int max)
665 : size (0), max (max)
666 {
667 data = salloc<T> (max);
668 }
669
670 void reset (int new_max)
671 {
672 sfree (data, max);
673 size = 0;
674 max = new_max;
675 data = salloc<T> (max);
676 }
677
678 void free ()
679 {
680 sfree (data, max);
681 data = 0;
682 }
683
684 ~fixed_stack ()
685 {
686 sfree (data, max);
687 }
688
689 T &operator[](int idx)
690 {
691 return data [idx];
692 }
693
694 void push (T v)
695 {
696 data [size++] = v;
697 }
698
699 T &pop ()
700 {
701 return data [--size];
702 }
703
704 T remove (int idx)
705 {
706 T v = data [idx];
707
708 data [idx] = data [--size];
709
710 return v;
711 }
712 };
713
714 /////////////////////////////////////////////////////////////////////////////
715
716 // basically does what strncpy should do, but appends "..." to strings exceeding length
717 // returns the number of bytes actually used (including \0)
718 int assign (char *dst, const char *src, int maxsize);
719
720 // type-safe version of assign
721 template<int N>
722 inline int assign (char (&dst)[N], const char *src)
723 {
724 return assign ((char *)&dst, src, N);
725 }
726
727 typedef double tstamp;
728
729 // return current time as timestamp
730 tstamp now ();
731
732 int similar_direction (int a, int b);
733
734 // like v?sprintf, but returns a "static" buffer
735 char *vformat (const char *format, va_list ap);
736 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
737
738 // safety-check player input which will become object->msg
739 bool msg_is_safe (const char *msg);
740
741 /////////////////////////////////////////////////////////////////////////////
742 // threads, very very thin wrappers around pthreads
743
744 struct thread
745 {
746 pthread_t id;
747
748 void start (void *(*start_routine)(void *), void *arg = 0);
749
750 void cancel ()
751 {
752 pthread_cancel (id);
753 }
754
755 void *join ()
756 {
757 void *ret;
758
759 if (pthread_join (id, &ret))
760 cleanup ("pthread_join failed", 1);
761
762 return ret;
763 }
764 };
765
766 // note that mutexes are not classes
767 typedef pthread_mutex_t smutex;
768
769 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
770 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
771 #else
772 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
773 #endif
774
775 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
776 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
777 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
778
779 typedef pthread_cond_t scond;
780
781 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
782 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
783 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
784 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
785
786 #endif
787