ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.119
Committed: Thu Jan 26 19:01:22 2012 UTC (12 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.118: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 #if cplusplus_does_not_suck
61 // does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm)
62 template<typename T, int N>
63 static inline int array_length (const T (&arr)[N])
64 {
65 return N;
66 }
67 #else
68 #define array_length(name) (sizeof (name) / sizeof (name [0]))
69 #endif
70
71 // very ugly macro that basically declares and initialises a variable
72 // that is in scope for the next statement only
73 // works only for stuff that can be assigned 0 and converts to false
74 // (note: works great for pointers)
75 // most ugly macro I ever wrote
76 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
77
78 // in range including end
79 #define IN_RANGE_INC(val,beg,end) \
80 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
81
82 // in range excluding end
83 #define IN_RANGE_EXC(val,beg,end) \
84 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
85
86 void cleanup (const char *cause, bool make_core = false);
87 void fork_abort (const char *msg);
88
89 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
90 // as a is often a constant while b is the variable. it is still a bug, though.
91 template<typename T, typename U> static inline T min (T a, U b) { return a < (T)b ? a : (T)b; }
92 template<typename T, typename U> static inline T max (T a, U b) { return a > (T)b ? a : (T)b; }
93 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
94
95 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
96 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
97 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
98
99 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
100
101 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
102 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
103
104 // sign returns -1 or +1
105 template<typename T>
106 static inline T sign (T v) { return v < 0 ? -1 : +1; }
107 // relies on 2c representation
108 template<>
109 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
110 template<>
111 inline sint16 sign (sint16 v) { return 1 - (sint16 (uint16 (v) >> 15) * 2); }
112 template<>
113 inline sint32 sign (sint32 v) { return 1 - (sint32 (uint32 (v) >> 31) * 2); }
114
115 // sign0 returns -1, 0 or +1
116 template<typename T>
117 static inline T sign0 (T v) { return v ? sign (v) : 0; }
118
119 //clashes with C++0x
120 template<typename T, typename U>
121 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
122
123 // div* only work correctly for div > 0
124 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
125 template<typename T> static inline T div (T val, T div)
126 {
127 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
128 }
129
130 template<> inline float div (float val, float div) { return val / div; }
131 template<> inline double div (double val, double div) { return val / div; }
132
133 // div, round-up
134 template<typename T> static inline T div_ru (T val, T div)
135 {
136 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
137 }
138 // div, round-down
139 template<typename T> static inline T div_rd (T val, T div)
140 {
141 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
142 }
143
144 // lerp* only work correctly for min_in < max_in
145 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
146 template<typename T>
147 static inline T
148 lerp (T val, T min_in, T max_in, T min_out, T max_out)
149 {
150 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 }
152
153 // lerp, round-down
154 template<typename T>
155 static inline T
156 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
157 {
158 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
159 }
160
161 // lerp, round-up
162 template<typename T>
163 static inline T
164 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
165 {
166 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
167 }
168
169 // lots of stuff taken from FXT
170
171 /* Rotate right. This is used in various places for checksumming */
172 //TODO: that sucks, use a better checksum algo
173 static inline uint32_t
174 rotate_right (uint32_t c, uint32_t count = 1)
175 {
176 return (c << (32 - count)) | (c >> count);
177 }
178
179 static inline uint32_t
180 rotate_left (uint32_t c, uint32_t count = 1)
181 {
182 return (c >> (32 - count)) | (c << count);
183 }
184
185 // Return abs(a-b)
186 // Both a and b must not have the most significant bit set
187 static inline uint32_t
188 upos_abs_diff (uint32_t a, uint32_t b)
189 {
190 long d1 = b - a;
191 long d2 = (d1 & (d1 >> 31)) << 1;
192
193 return d1 - d2; // == (b - d) - (a + d);
194 }
195
196 // Both a and b must not have the most significant bit set
197 static inline uint32_t
198 upos_min (uint32_t a, uint32_t b)
199 {
200 int32_t d = b - a;
201 d &= d >> 31;
202 return a + d;
203 }
204
205 // Both a and b must not have the most significant bit set
206 static inline uint32_t
207 upos_max (uint32_t a, uint32_t b)
208 {
209 int32_t d = b - a;
210 d &= d >> 31;
211 return b - d;
212 }
213
214 // this is much faster than crossfire's original algorithm
215 // on modern cpus
216 inline int
217 isqrt (int n)
218 {
219 return (int)sqrtf ((float)n);
220 }
221
222 // this is kind of like the ^^ operator, if it would exist, without sequence point.
223 // more handy than it looks like, due to the implicit !! done on its arguments
224 inline bool
225 logical_xor (bool a, bool b)
226 {
227 return a != b;
228 }
229
230 inline bool
231 logical_implies (bool a, bool b)
232 {
233 return a <= b;
234 }
235
236 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
237 #if 0
238 // and has a max. error of 6 in the range -100..+100.
239 #else
240 // and has a max. error of 9 in the range -100..+100.
241 #endif
242 inline int
243 idistance (int dx, int dy)
244 {
245 unsigned int dx_ = abs (dx);
246 unsigned int dy_ = abs (dy);
247
248 #if 0
249 return dx_ > dy_
250 ? (dx_ * 61685 + dy_ * 26870) >> 16
251 : (dy_ * 61685 + dx_ * 26870) >> 16;
252 #else
253 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
254 #endif
255 }
256
257 // can be substantially faster than floor, if your value range allows for it
258 template<typename T>
259 inline T
260 fastfloor (T x)
261 {
262 return std::floor (x);
263 }
264
265 inline float
266 fastfloor (float x)
267 {
268 return sint32(x) - (x < 0);
269 }
270
271 inline double
272 fastfloor (double x)
273 {
274 return sint64(x) - (x < 0);
275 }
276
277 /*
278 * absdir(int): Returns a number between 1 and 8, which represent
279 * the "absolute" direction of a number (it actually takes care of
280 * "overflow" in previous calculations of a direction).
281 */
282 inline int
283 absdir (int d)
284 {
285 return ((d - 1) & 7) + 1;
286 }
287
288 // avoid ctz name because netbsd or freebsd spams it's namespace with it
289 #if GCC_VERSION(3,4)
290 static inline int least_significant_bit (uint32_t x)
291 {
292 return __builtin_ctz (x);
293 }
294 #else
295 int least_significant_bit (uint32_t x);
296 #endif
297
298 #define for_all_bits_sparse_32(mask, idxvar) \
299 for (uint32_t idxvar, mask_ = mask; \
300 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
301
302 extern ssize_t slice_alloc; // statistics
303
304 void *salloc_ (int n) throw (std::bad_alloc);
305 void *salloc_ (int n, void *src) throw (std::bad_alloc);
306
307 // strictly the same as g_slice_alloc, but never returns 0
308 template<typename T>
309 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
310
311 // also copies src into the new area, like "memdup"
312 // if src is 0, clears the memory
313 template<typename T>
314 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
315
316 // clears the memory
317 template<typename T>
318 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
319
320 // for symmetry
321 template<typename T>
322 inline void sfree (T *ptr, int n = 1) throw ()
323 {
324 if (expect_true (ptr))
325 {
326 slice_alloc -= n * sizeof (T);
327 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
328 g_slice_free1 (n * sizeof (T), (void *)ptr);
329 }
330 }
331
332 // nulls the pointer
333 template<typename T>
334 inline void sfree0 (T *&ptr, int n = 1) throw ()
335 {
336 sfree<T> (ptr, n);
337 ptr = 0;
338 }
339
340 // makes dynamically allocated objects zero-initialised
341 struct zero_initialised
342 {
343 void *operator new (size_t s, void *p)
344 {
345 memset (p, 0, s);
346 return p;
347 }
348
349 void *operator new (size_t s)
350 {
351 return salloc0<char> (s);
352 }
353
354 void *operator new[] (size_t s)
355 {
356 return salloc0<char> (s);
357 }
358
359 void operator delete (void *p, size_t s)
360 {
361 sfree ((char *)p, s);
362 }
363
364 void operator delete[] (void *p, size_t s)
365 {
366 sfree ((char *)p, s);
367 }
368 };
369
370 // makes dynamically allocated objects zero-initialised
371 struct slice_allocated
372 {
373 void *operator new (size_t s, void *p)
374 {
375 return p;
376 }
377
378 void *operator new (size_t s)
379 {
380 return salloc<char> (s);
381 }
382
383 void *operator new[] (size_t s)
384 {
385 return salloc<char> (s);
386 }
387
388 void operator delete (void *p, size_t s)
389 {
390 sfree ((char *)p, s);
391 }
392
393 void operator delete[] (void *p, size_t s)
394 {
395 sfree ((char *)p, s);
396 }
397 };
398
399 // a STL-compatible allocator that uses g_slice
400 // boy, this is verbose
401 template<typename Tp>
402 struct slice_allocator
403 {
404 typedef size_t size_type;
405 typedef ptrdiff_t difference_type;
406 typedef Tp *pointer;
407 typedef const Tp *const_pointer;
408 typedef Tp &reference;
409 typedef const Tp &const_reference;
410 typedef Tp value_type;
411
412 template <class U>
413 struct rebind
414 {
415 typedef slice_allocator<U> other;
416 };
417
418 slice_allocator () throw () { }
419 slice_allocator (const slice_allocator &) throw () { }
420 template<typename Tp2>
421 slice_allocator (const slice_allocator<Tp2> &) throw () { }
422
423 ~slice_allocator () { }
424
425 pointer address (reference x) const { return &x; }
426 const_pointer address (const_reference x) const { return &x; }
427
428 pointer allocate (size_type n, const_pointer = 0)
429 {
430 return salloc<Tp> (n);
431 }
432
433 void deallocate (pointer p, size_type n)
434 {
435 sfree<Tp> (p, n);
436 }
437
438 size_type max_size () const throw ()
439 {
440 return size_t (-1) / sizeof (Tp);
441 }
442
443 void construct (pointer p, const Tp &val)
444 {
445 ::new (p) Tp (val);
446 }
447
448 void destroy (pointer p)
449 {
450 p->~Tp ();
451 }
452 };
453
454 // basically a memory area, but refcounted
455 struct refcnt_buf
456 {
457 char *data;
458
459 refcnt_buf (size_t size = 0);
460 refcnt_buf (void *data, size_t size);
461
462 refcnt_buf (const refcnt_buf &src)
463 {
464 data = src.data;
465 ++_refcnt ();
466 }
467
468 ~refcnt_buf ();
469
470 refcnt_buf &operator =(const refcnt_buf &src);
471
472 operator char *()
473 {
474 return data;
475 }
476
477 size_t size () const
478 {
479 return _size ();
480 }
481
482 protected:
483 enum {
484 overhead = sizeof (unsigned int) * 2
485 };
486
487 unsigned int &_size () const
488 {
489 return ((unsigned int *)data)[-2];
490 }
491
492 unsigned int &_refcnt () const
493 {
494 return ((unsigned int *)data)[-1];
495 }
496
497 void _alloc (unsigned int size)
498 {
499 data = ((char *)salloc<char> (size + overhead)) + overhead;
500 _size () = size;
501 _refcnt () = 1;
502 }
503
504 void dec ()
505 {
506 if (!--_refcnt ())
507 sfree<char> (data - overhead, size () + overhead);
508 }
509 };
510
511 INTERFACE_CLASS (attachable)
512 struct refcnt_base
513 {
514 typedef int refcnt_t;
515 mutable refcnt_t ACC (RW, refcnt);
516
517 MTH void refcnt_inc () const { ++refcnt; }
518 MTH void refcnt_dec () const { --refcnt; }
519
520 refcnt_base () : refcnt (0) { }
521 };
522
523 // to avoid branches with more advanced compilers
524 extern refcnt_base::refcnt_t refcnt_dummy;
525
526 template<class T>
527 struct refptr
528 {
529 // p if not null
530 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
531
532 void refcnt_dec ()
533 {
534 if (!is_constant (p))
535 --*refcnt_ref ();
536 else if (p)
537 --p->refcnt;
538 }
539
540 void refcnt_inc ()
541 {
542 if (!is_constant (p))
543 ++*refcnt_ref ();
544 else if (p)
545 ++p->refcnt;
546 }
547
548 T *p;
549
550 refptr () : p(0) { }
551 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
552 refptr (T *p) : p(p) { refcnt_inc (); }
553 ~refptr () { refcnt_dec (); }
554
555 const refptr<T> &operator =(T *o)
556 {
557 // if decrementing ever destroys we need to reverse the order here
558 refcnt_dec ();
559 p = o;
560 refcnt_inc ();
561 return *this;
562 }
563
564 const refptr<T> &operator =(const refptr<T> &o)
565 {
566 *this = o.p;
567 return *this;
568 }
569
570 T &operator * () const { return *p; }
571 T *operator ->() const { return p; }
572
573 operator T *() const { return p; }
574 };
575
576 typedef refptr<maptile> maptile_ptr;
577 typedef refptr<object> object_ptr;
578 typedef refptr<archetype> arch_ptr;
579 typedef refptr<client> client_ptr;
580 typedef refptr<player> player_ptr;
581 typedef refptr<region> region_ptr;
582
583 #define STRHSH_NULL 2166136261
584
585 static inline uint32_t
586 strhsh (const char *s)
587 {
588 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
589 // it is about twice as fast as the one-at-a-time one,
590 // with good distribution.
591 // FNV-1a is faster on many cpus because the multiplication
592 // runs concurrently with the looping logic.
593 // we modify the hash a bit to improve its distribution
594 uint32_t hash = STRHSH_NULL;
595
596 while (*s)
597 hash = (hash ^ *s++) * 16777619U;
598
599 return hash ^ (hash >> 16);
600 }
601
602 static inline uint32_t
603 memhsh (const char *s, size_t len)
604 {
605 uint32_t hash = STRHSH_NULL;
606
607 while (len--)
608 hash = (hash ^ *s++) * 16777619U;
609
610 return hash;
611 }
612
613 struct str_hash
614 {
615 std::size_t operator ()(const char *s) const
616 {
617 return strhsh (s);
618 }
619
620 std::size_t operator ()(const shstr &s) const
621 {
622 return strhsh (s);
623 }
624 };
625
626 struct str_equal
627 {
628 bool operator ()(const char *a, const char *b) const
629 {
630 return !strcmp (a, b);
631 }
632 };
633
634 // Mostly the same as std::vector, but insert/erase can reorder
635 // the elements, making append(=insert)/remove O(1) instead of O(n).
636 //
637 // NOTE: only some forms of erase are available
638 template<class T>
639 struct unordered_vector : std::vector<T, slice_allocator<T> >
640 {
641 typedef typename unordered_vector::iterator iterator;
642
643 void erase (unsigned int pos)
644 {
645 if (pos < this->size () - 1)
646 (*this)[pos] = (*this)[this->size () - 1];
647
648 this->pop_back ();
649 }
650
651 void erase (iterator i)
652 {
653 erase ((unsigned int )(i - this->begin ()));
654 }
655 };
656
657 // This container blends advantages of linked lists
658 // (efficiency) with vectors (random access) by
659 // using an unordered vector and storing the vector
660 // index inside the object.
661 //
662 // + memory-efficient on most 64 bit archs
663 // + O(1) insert/remove
664 // + free unique (but varying) id for inserted objects
665 // + cache-friendly iteration
666 // - only works for pointers to structs
667 //
668 // NOTE: only some forms of erase/insert are available
669 typedef int object_vector_index;
670
671 template<class T, object_vector_index T::*indexmember>
672 struct object_vector : std::vector<T *, slice_allocator<T *> >
673 {
674 typedef typename object_vector::iterator iterator;
675
676 bool contains (const T *obj) const
677 {
678 return obj->*indexmember;
679 }
680
681 iterator find (const T *obj)
682 {
683 return obj->*indexmember
684 ? this->begin () + obj->*indexmember - 1
685 : this->end ();
686 }
687
688 void push_back (T *obj)
689 {
690 std::vector<T *, slice_allocator<T *> >::push_back (obj);
691 obj->*indexmember = this->size ();
692 }
693
694 void insert (T *obj)
695 {
696 push_back (obj);
697 }
698
699 void insert (T &obj)
700 {
701 insert (&obj);
702 }
703
704 void erase (T *obj)
705 {
706 object_vector_index pos = obj->*indexmember;
707 obj->*indexmember = 0;
708
709 if (pos < this->size ())
710 {
711 (*this)[pos - 1] = (*this)[this->size () - 1];
712 (*this)[pos - 1]->*indexmember = pos;
713 }
714
715 this->pop_back ();
716 }
717
718 void erase (T &obj)
719 {
720 erase (&obj);
721 }
722 };
723
724 /////////////////////////////////////////////////////////////////////////////
725
726 // something like a vector or stack, but without
727 // out of bounds checking
728 template<typename T>
729 struct fixed_stack
730 {
731 T *data;
732 int size;
733 int max;
734
735 fixed_stack ()
736 : size (0), data (0)
737 {
738 }
739
740 fixed_stack (int max)
741 : size (0), max (max)
742 {
743 data = salloc<T> (max);
744 }
745
746 void reset (int new_max)
747 {
748 sfree (data, max);
749 size = 0;
750 max = new_max;
751 data = salloc<T> (max);
752 }
753
754 void free ()
755 {
756 sfree (data, max);
757 data = 0;
758 }
759
760 ~fixed_stack ()
761 {
762 sfree (data, max);
763 }
764
765 T &operator[](int idx)
766 {
767 return data [idx];
768 }
769
770 void push (T v)
771 {
772 data [size++] = v;
773 }
774
775 T &pop ()
776 {
777 return data [--size];
778 }
779
780 T remove (int idx)
781 {
782 T v = data [idx];
783
784 data [idx] = data [--size];
785
786 return v;
787 }
788 };
789
790 /////////////////////////////////////////////////////////////////////////////
791
792 // basically does what strncpy should do, but appends "..." to strings exceeding length
793 // returns the number of bytes actually used (including \0)
794 int assign (char *dst, const char *src, int maxsize);
795
796 // type-safe version of assign
797 template<int N>
798 inline int assign (char (&dst)[N], const char *src)
799 {
800 return assign ((char *)&dst, src, N);
801 }
802
803 typedef double tstamp;
804
805 // return current time as timestamp
806 tstamp now ();
807
808 int similar_direction (int a, int b);
809
810 // like v?sprintf, but returns a "static" buffer
811 char *vformat (const char *format, va_list ap);
812 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
813
814 // safety-check player input which will become object->msg
815 bool msg_is_safe (const char *msg);
816
817 /////////////////////////////////////////////////////////////////////////////
818 // threads, very very thin wrappers around pthreads
819
820 struct thread
821 {
822 pthread_t id;
823
824 void start (void *(*start_routine)(void *), void *arg = 0);
825
826 void cancel ()
827 {
828 pthread_cancel (id);
829 }
830
831 void *join ()
832 {
833 void *ret;
834
835 if (pthread_join (id, &ret))
836 cleanup ("pthread_join failed", 1);
837
838 return ret;
839 }
840 };
841
842 // note that mutexes are not classes
843 typedef pthread_mutex_t smutex;
844
845 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
846 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
847 #else
848 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
849 #endif
850
851 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
852 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
853 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
854
855 typedef pthread_cond_t scond;
856
857 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
858 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
859 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
860 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
861
862 #endif
863