ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.37
Committed: Thu Feb 15 15:43:36 2007 UTC (17 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.36: +39 -0 lines
Log Message:
- useless µ-opts
- use maximum norm in get_rangevector (a bit, should use more)

File Contents

# Content
1 #ifndef UTIL_H__
2 #define UTIL_H__
3
4 //#define PREFER_MALLOC
5
6 #if __GNUC__ >= 3
7 # define is_constant(c) __builtin_constant_p (c)
8 #else
9 # define is_constant(c) 0
10 #endif
11
12 #include <cstddef>
13 #include <cmath>
14 #include <new>
15 #include <vector>
16
17 #include <glib.h>
18
19 #include <shstr.h>
20 #include <traits.h>
21
22 // use a gcc extension for auto declarations until ISO C++ sanctifies them
23 #define AUTODECL(var,expr) typeof(expr) var = (expr)
24
25 // very ugly macro that basicaly declares and initialises a variable
26 // that is in scope for the next statement only
27 // works only for stuff that can be assigned 0 and converts to false
28 // (note: works great for pointers)
29 // most ugly macro I ever wrote
30 #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31
32 // in range including end
33 #define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35
36 // in range excluding end
37 #define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39
40 void fork_abort (const char *msg);
41
42 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
43 // as a is often a constant while b is the variable. it is still a bug, though.
44 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47
48 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49
50 // lots of stuff taken from FXT
51
52 /* Rotate right. This is used in various places for checksumming */
53 //TODO: this sucks, use a better checksum algo
54 static inline uint32_t
55 rotate_right (uint32_t c)
56 {
57 return (c << 31) | (c >> 1);
58 }
59
60 // Return abs(a-b)
61 // Both a and b must not have the most significant bit set
62 static inline uint32_t
63 upos_abs_diff (uint32_t a, uint32_t b)
64 {
65 long d1 = b - a;
66 long d2 = (d1 & (d1 >> 31)) << 1;
67
68 return d1 - d2; // == (b - d) - (a + d);
69 }
70
71 // Both a and b must not have the most significant bit set
72 static inline uint32_t
73 upos_min (uint32_t a, uint32_t b)
74 {
75 int32_t d = b - a;
76 d &= d >> 31;
77 return a + d;
78 }
79
80 // Both a and b must not have the most significant bit set
81 static inline uint32_t
82 upos_max (uint32_t a, uint32_t b)
83 {
84 int32_t d = b - a;
85 d &= d >> 31;
86 return b - d;
87 }
88
89 // this is much faster than crossfires original algorithm
90 // on modern cpus
91 inline int
92 isqrt (int n)
93 {
94 return (int)sqrtf ((float)n);
95 }
96
97 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
98 #if 0
99 // and has a max. error of 6 in the range -100..+100.
100 #else
101 // and has a max. error of 9 in the range -100..+100.
102 #endif
103 inline int
104 idistance (int dx, int dy)
105 {
106 unsigned int dx_ = abs (dx);
107 unsigned int dy_ = abs (dy);
108
109 #if 0
110 return dx_ > dy_
111 ? (dx_ * 61685 + dy_ * 26870) >> 16
112 : (dy_ * 61685 + dx_ * 26870) >> 16;
113 #else
114 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
115 #endif
116 }
117
118 /*
119 * absdir(int): Returns a number between 1 and 8, which represent
120 * the "absolute" direction of a number (it actually takes care of
121 * "overflow" in previous calculations of a direction).
122 */
123 inline int
124 absdir (int d)
125 {
126 return ((d - 1) & 7) + 1;
127 }
128
129 // makes dynamically allocated objects zero-initialised
130 struct zero_initialised
131 {
132 void *operator new (size_t s, void *p)
133 {
134 memset (p, 0, s);
135 return p;
136 }
137
138 void *operator new (size_t s)
139 {
140 return g_slice_alloc0 (s);
141 }
142
143 void *operator new[] (size_t s)
144 {
145 return g_slice_alloc0 (s);
146 }
147
148 void operator delete (void *p, size_t s)
149 {
150 g_slice_free1 (s, p);
151 }
152
153 void operator delete[] (void *p, size_t s)
154 {
155 g_slice_free1 (s, p);
156 }
157 };
158
159 void *salloc_ (int n) throw (std::bad_alloc);
160 void *salloc_ (int n, void *src) throw (std::bad_alloc);
161
162 // strictly the same as g_slice_alloc, but never returns 0
163 template<typename T>
164 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
165
166 // also copies src into the new area, like "memdup"
167 // if src is 0, clears the memory
168 template<typename T>
169 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
170
171 // clears the memory
172 template<typename T>
173 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
174
175 // for symmetry
176 template<typename T>
177 inline void sfree (T *ptr, int n = 1) throw ()
178 {
179 #ifdef PREFER_MALLOC
180 free (ptr);
181 #else
182 g_slice_free1 (n * sizeof (T), (void *)ptr);
183 #endif
184 }
185
186 // a STL-compatible allocator that uses g_slice
187 // boy, this is verbose
188 template<typename Tp>
189 struct slice_allocator
190 {
191 typedef size_t size_type;
192 typedef ptrdiff_t difference_type;
193 typedef Tp *pointer;
194 typedef const Tp *const_pointer;
195 typedef Tp &reference;
196 typedef const Tp &const_reference;
197 typedef Tp value_type;
198
199 template <class U>
200 struct rebind
201 {
202 typedef slice_allocator<U> other;
203 };
204
205 slice_allocator () throw () { }
206 slice_allocator (const slice_allocator &o) throw () { }
207 template<typename Tp2>
208 slice_allocator (const slice_allocator<Tp2> &) throw () { }
209
210 ~slice_allocator () { }
211
212 pointer address (reference x) const { return &x; }
213 const_pointer address (const_reference x) const { return &x; }
214
215 pointer allocate (size_type n, const_pointer = 0)
216 {
217 return salloc<Tp> (n);
218 }
219
220 void deallocate (pointer p, size_type n)
221 {
222 sfree<Tp> (p, n);
223 }
224
225 size_type max_size ()const throw ()
226 {
227 return size_t (-1) / sizeof (Tp);
228 }
229
230 void construct (pointer p, const Tp &val)
231 {
232 ::new (p) Tp (val);
233 }
234
235 void destroy (pointer p)
236 {
237 p->~Tp ();
238 }
239 };
240
241 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
242 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
243 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
244 struct tausworthe_random_generator
245 {
246 // generator
247 uint32_t state [4];
248
249 void operator =(const tausworthe_random_generator &src)
250 {
251 state [0] = src.state [0];
252 state [1] = src.state [1];
253 state [2] = src.state [2];
254 state [3] = src.state [3];
255 }
256
257 void seed (uint32_t seed);
258 uint32_t next ();
259
260 // uniform distribution
261 uint32_t operator ()(uint32_t r_max)
262 {
263 return is_constant (r_max)
264 ? this->next () % r_max
265 : get_range (r_max);
266 }
267
268 // return a number within (min .. max)
269 int operator () (int r_min, int r_max)
270 {
271 return is_constant (r_min) && is_constant (r_max)
272 ? r_min + (*this) (max (r_max - r_min + 1, 1))
273 : get_range (r_min, r_max);
274 }
275
276 double operator ()()
277 {
278 return this->next () / (double)0xFFFFFFFFU;
279 }
280
281 protected:
282 uint32_t get_range (uint32_t r_max);
283 int get_range (int r_min, int r_max);
284 };
285
286 typedef tausworthe_random_generator rand_gen;
287
288 extern rand_gen rndm;
289
290 template<class T>
291 struct refptr
292 {
293 T *p;
294
295 refptr () : p(0) { }
296 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
297 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
298 ~refptr () { if (p) p->refcnt_dec (); }
299
300 const refptr<T> &operator =(T *o)
301 {
302 if (p) p->refcnt_dec ();
303 p = o;
304 if (p) p->refcnt_inc ();
305
306 return *this;
307 }
308
309 const refptr<T> &operator =(const refptr<T> o)
310 {
311 *this = o.p;
312 return *this;
313 }
314
315 T &operator * () const { return *p; }
316 T *operator ->() const { return p; }
317
318 operator T *() const { return p; }
319 };
320
321 typedef refptr<maptile> maptile_ptr;
322 typedef refptr<object> object_ptr;
323 typedef refptr<archetype> arch_ptr;
324 typedef refptr<client> client_ptr;
325 typedef refptr<player> player_ptr;
326
327 struct str_hash
328 {
329 std::size_t operator ()(const char *s) const
330 {
331 unsigned long hash = 0;
332
333 /* use the one-at-a-time hash function, which supposedly is
334 * better than the djb2-like one used by perl5.005, but
335 * certainly is better then the bug used here before.
336 * see http://burtleburtle.net/bob/hash/doobs.html
337 */
338 while (*s)
339 {
340 hash += *s++;
341 hash += hash << 10;
342 hash ^= hash >> 6;
343 }
344
345 hash += hash << 3;
346 hash ^= hash >> 11;
347 hash += hash << 15;
348
349 return hash;
350 }
351 };
352
353 struct str_equal
354 {
355 bool operator ()(const char *a, const char *b) const
356 {
357 return !strcmp (a, b);
358 }
359 };
360
361 template<class T>
362 struct unordered_vector : std::vector<T, slice_allocator<T> >
363 {
364 typedef typename unordered_vector::iterator iterator;
365
366 void erase (unsigned int pos)
367 {
368 if (pos < this->size () - 1)
369 (*this)[pos] = (*this)[this->size () - 1];
370
371 this->pop_back ();
372 }
373
374 void erase (iterator i)
375 {
376 erase ((unsigned int )(i - this->begin ()));
377 }
378 };
379
380 template<class T, int T::* index>
381 struct object_vector : std::vector<T *, slice_allocator<T *> >
382 {
383 void insert (T *obj)
384 {
385 assert (!(obj->*index));
386 push_back (obj);
387 obj->*index = this->size ();
388 }
389
390 void insert (T &obj)
391 {
392 insert (&obj);
393 }
394
395 void erase (T *obj)
396 {
397 assert (obj->*index);
398 int pos = obj->*index;
399 obj->*index = 0;
400
401 if (pos < this->size ())
402 {
403 (*this)[pos - 1] = (*this)[this->size () - 1];
404 (*this)[pos - 1]->*index = pos;
405 }
406
407 this->pop_back ();
408 }
409
410 void erase (T &obj)
411 {
412 errase (&obj);
413 }
414 };
415
416 // basically does what strncpy should do, but appends "..." to strings exceeding length
417 void assign (char *dst, const char *src, int maxlen);
418
419 // type-safe version of assign
420 template<int N>
421 inline void assign (char (&dst)[N], const char *src)
422 {
423 assign ((char *)&dst, src, N);
424 }
425
426 typedef double tstamp;
427
428 // return current time as timestampe
429 tstamp now ();
430
431 int similar_direction (int a, int b);
432
433 #endif
434