ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.42
Committed: Sat Apr 21 23:03:54 2007 UTC (17 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.41: +6 -6 lines
Log Message:
- rely on new stability for further cleanups and minor improvements

File Contents

# Content
1 #ifndef UTIL_H__
2 #define UTIL_H__
3
4 //#define PREFER_MALLOC
5
6 #if __GNUC__ >= 3
7 # define is_constant(c) __builtin_constant_p (c)
8 #else
9 # define is_constant(c) 0
10 #endif
11
12 #include <cstddef>
13 #include <cmath>
14 #include <new>
15 #include <vector>
16
17 #include <glib.h>
18
19 #include <shstr.h>
20 #include <traits.h>
21
22 // use a gcc extension for auto declarations until ISO C++ sanctifies them
23 #define auto(var,expr) typeof(expr) var = (expr)
24
25 // very ugly macro that basicaly declares and initialises a variable
26 // that is in scope for the next statement only
27 // works only for stuff that can be assigned 0 and converts to false
28 // (note: works great for pointers)
29 // most ugly macro I ever wrote
30 #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31
32 // in range including end
33 #define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35
36 // in range excluding end
37 #define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39
40 void fork_abort (const char *msg);
41
42 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
43 // as a is often a constant while b is the variable. it is still a bug, though.
44 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47
48 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49
50 // lots of stuff taken from FXT
51
52 /* Rotate right. This is used in various places for checksumming */
53 //TODO: that sucks, use a better checksum algo
54 static inline uint32_t
55 rotate_right (uint32_t c, uint32_t count = 1)
56 {
57 return (c << (32 - count)) | (c >> count);
58 }
59
60 static inline uint32_t
61 rotate_left (uint32_t c, uint32_t count = 1)
62 {
63 return (c >> (32 - count)) | (c << count);
64 }
65
66 // Return abs(a-b)
67 // Both a and b must not have the most significant bit set
68 static inline uint32_t
69 upos_abs_diff (uint32_t a, uint32_t b)
70 {
71 long d1 = b - a;
72 long d2 = (d1 & (d1 >> 31)) << 1;
73
74 return d1 - d2; // == (b - d) - (a + d);
75 }
76
77 // Both a and b must not have the most significant bit set
78 static inline uint32_t
79 upos_min (uint32_t a, uint32_t b)
80 {
81 int32_t d = b - a;
82 d &= d >> 31;
83 return a + d;
84 }
85
86 // Both a and b must not have the most significant bit set
87 static inline uint32_t
88 upos_max (uint32_t a, uint32_t b)
89 {
90 int32_t d = b - a;
91 d &= d >> 31;
92 return b - d;
93 }
94
95 // this is much faster than crossfires original algorithm
96 // on modern cpus
97 inline int
98 isqrt (int n)
99 {
100 return (int)sqrtf ((float)n);
101 }
102
103 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
104 #if 0
105 // and has a max. error of 6 in the range -100..+100.
106 #else
107 // and has a max. error of 9 in the range -100..+100.
108 #endif
109 inline int
110 idistance (int dx, int dy)
111 {
112 unsigned int dx_ = abs (dx);
113 unsigned int dy_ = abs (dy);
114
115 #if 0
116 return dx_ > dy_
117 ? (dx_ * 61685 + dy_ * 26870) >> 16
118 : (dy_ * 61685 + dx_ * 26870) >> 16;
119 #else
120 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
121 #endif
122 }
123
124 /*
125 * absdir(int): Returns a number between 1 and 8, which represent
126 * the "absolute" direction of a number (it actually takes care of
127 * "overflow" in previous calculations of a direction).
128 */
129 inline int
130 absdir (int d)
131 {
132 return ((d - 1) & 7) + 1;
133 }
134
135 // makes dynamically allocated objects zero-initialised
136 struct zero_initialised
137 {
138 void *operator new (size_t s, void *p)
139 {
140 memset (p, 0, s);
141 return p;
142 }
143
144 void *operator new (size_t s)
145 {
146 return g_slice_alloc0 (s);
147 }
148
149 void *operator new[] (size_t s)
150 {
151 return g_slice_alloc0 (s);
152 }
153
154 void operator delete (void *p, size_t s)
155 {
156 g_slice_free1 (s, p);
157 }
158
159 void operator delete[] (void *p, size_t s)
160 {
161 g_slice_free1 (s, p);
162 }
163 };
164
165 void *salloc_ (int n) throw (std::bad_alloc);
166 void *salloc_ (int n, void *src) throw (std::bad_alloc);
167
168 // strictly the same as g_slice_alloc, but never returns 0
169 template<typename T>
170 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
171
172 // also copies src into the new area, like "memdup"
173 // if src is 0, clears the memory
174 template<typename T>
175 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
176
177 // clears the memory
178 template<typename T>
179 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
180
181 // for symmetry
182 template<typename T>
183 inline void sfree (T *ptr, int n = 1) throw ()
184 {
185 #ifdef PREFER_MALLOC
186 free (ptr);
187 #else
188 g_slice_free1 (n * sizeof (T), (void *)ptr);
189 #endif
190 }
191
192 // a STL-compatible allocator that uses g_slice
193 // boy, this is verbose
194 template<typename Tp>
195 struct slice_allocator
196 {
197 typedef size_t size_type;
198 typedef ptrdiff_t difference_type;
199 typedef Tp *pointer;
200 typedef const Tp *const_pointer;
201 typedef Tp &reference;
202 typedef const Tp &const_reference;
203 typedef Tp value_type;
204
205 template <class U>
206 struct rebind
207 {
208 typedef slice_allocator<U> other;
209 };
210
211 slice_allocator () throw () { }
212 slice_allocator (const slice_allocator &o) throw () { }
213 template<typename Tp2>
214 slice_allocator (const slice_allocator<Tp2> &) throw () { }
215
216 ~slice_allocator () { }
217
218 pointer address (reference x) const { return &x; }
219 const_pointer address (const_reference x) const { return &x; }
220
221 pointer allocate (size_type n, const_pointer = 0)
222 {
223 return salloc<Tp> (n);
224 }
225
226 void deallocate (pointer p, size_type n)
227 {
228 sfree<Tp> (p, n);
229 }
230
231 size_type max_size ()const throw ()
232 {
233 return size_t (-1) / sizeof (Tp);
234 }
235
236 void construct (pointer p, const Tp &val)
237 {
238 ::new (p) Tp (val);
239 }
240
241 void destroy (pointer p)
242 {
243 p->~Tp ();
244 }
245 };
246
247 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
248 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
249 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
250 struct tausworthe_random_generator
251 {
252 // generator
253 uint32_t state [4];
254
255 void operator =(const tausworthe_random_generator &src)
256 {
257 state [0] = src.state [0];
258 state [1] = src.state [1];
259 state [2] = src.state [2];
260 state [3] = src.state [3];
261 }
262
263 void seed (uint32_t seed);
264 uint32_t next ();
265
266 // uniform distribution
267 uint32_t operator ()(uint32_t num)
268 {
269 return is_constant (num)
270 ? (next () * (uint64_t)num) >> 32U
271 : get_range (num);
272 }
273
274 // return a number within (min .. max)
275 int operator () (int r_min, int r_max)
276 {
277 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
278 ? r_min + operator ()(r_max - r_min + 1)
279 : get_range (r_min, r_max);
280 }
281
282 double operator ()()
283 {
284 return this->next () / (double)0xFFFFFFFFU;
285 }
286
287 protected:
288 uint32_t get_range (uint32_t r_max);
289 int get_range (int r_min, int r_max);
290 };
291
292 typedef tausworthe_random_generator rand_gen;
293
294 extern rand_gen rndm;
295
296 template<class T>
297 struct refptr
298 {
299 T *p;
300
301 refptr () : p(0) { }
302 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
303 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
304 ~refptr () { if (p) p->refcnt_dec (); }
305
306 const refptr<T> &operator =(T *o)
307 {
308 if (p) p->refcnt_dec ();
309 p = o;
310 if (p) p->refcnt_inc ();
311
312 return *this;
313 }
314
315 const refptr<T> &operator =(const refptr<T> o)
316 {
317 *this = o.p;
318 return *this;
319 }
320
321 T &operator * () const { return *p; }
322 T *operator ->() const { return p; }
323
324 operator T *() const { return p; }
325 };
326
327 typedef refptr<maptile> maptile_ptr;
328 typedef refptr<object> object_ptr;
329 typedef refptr<archetype> arch_ptr;
330 typedef refptr<client> client_ptr;
331 typedef refptr<player> player_ptr;
332
333 struct str_hash
334 {
335 std::size_t operator ()(const char *s) const
336 {
337 unsigned long hash = 0;
338
339 /* use the one-at-a-time hash function, which supposedly is
340 * better than the djb2-like one used by perl5.005, but
341 * certainly is better then the bug used here before.
342 * see http://burtleburtle.net/bob/hash/doobs.html
343 */
344 while (*s)
345 {
346 hash += *s++;
347 hash += hash << 10;
348 hash ^= hash >> 6;
349 }
350
351 hash += hash << 3;
352 hash ^= hash >> 11;
353 hash += hash << 15;
354
355 return hash;
356 }
357 };
358
359 struct str_equal
360 {
361 bool operator ()(const char *a, const char *b) const
362 {
363 return !strcmp (a, b);
364 }
365 };
366
367 template<class T>
368 struct unordered_vector : std::vector<T, slice_allocator<T> >
369 {
370 typedef typename unordered_vector::iterator iterator;
371
372 void erase (unsigned int pos)
373 {
374 if (pos < this->size () - 1)
375 (*this)[pos] = (*this)[this->size () - 1];
376
377 this->pop_back ();
378 }
379
380 void erase (iterator i)
381 {
382 erase ((unsigned int )(i - this->begin ()));
383 }
384 };
385
386 template<class T, int T::* index>
387 struct object_vector : std::vector<T *, slice_allocator<T *> >
388 {
389 void insert (T *obj)
390 {
391 assert (!(obj->*index));
392 push_back (obj);
393 obj->*index = this->size ();
394 }
395
396 void insert (T &obj)
397 {
398 insert (&obj);
399 }
400
401 void erase (T *obj)
402 {
403 assert (obj->*index);
404 unsigned int pos = obj->*index;
405 obj->*index = 0;
406
407 if (pos < this->size ())
408 {
409 (*this)[pos - 1] = (*this)[this->size () - 1];
410 (*this)[pos - 1]->*index = pos;
411 }
412
413 this->pop_back ();
414 }
415
416 void erase (T &obj)
417 {
418 errase (&obj);
419 }
420 };
421
422 // basically does what strncpy should do, but appends "..." to strings exceeding length
423 void assign (char *dst, const char *src, int maxlen);
424
425 // type-safe version of assign
426 template<int N>
427 inline void assign (char (&dst)[N], const char *src)
428 {
429 assign ((char *)&dst, src, N);
430 }
431
432 typedef double tstamp;
433
434 // return current time as timestampe
435 tstamp now ();
436
437 int similar_direction (int a, int b);
438
439 #endif
440