ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.44
Committed: Fri May 11 08:00:00 2007 UTC (17 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.43: +7 -0 lines
Log Message:
- introduce a notion of cpu load average within the server
- use it to more gracefully increase swap intervals in the map-scheduler
- add clip and lerp utility functions.

File Contents

# Content
1 #ifndef UTIL_H__
2 #define UTIL_H__
3
4 //#define PREFER_MALLOC
5
6 #if __GNUC__ >= 3
7 # define is_constant(c) __builtin_constant_p (c)
8 #else
9 # define is_constant(c) 0
10 #endif
11
12 #include <cstddef>
13 #include <cmath>
14 #include <new>
15 #include <vector>
16
17 #include <glib.h>
18
19 #include <shstr.h>
20 #include <traits.h>
21
22 // use a gcc extension for auto declarations until ISO C++ sanctifies them
23 #define auto(var,expr) typeof(expr) var = (expr)
24
25 // very ugly macro that basicaly declares and initialises a variable
26 // that is in scope for the next statement only
27 // works only for stuff that can be assigned 0 and converts to false
28 // (note: works great for pointers)
29 // most ugly macro I ever wrote
30 #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
31
32 // in range including end
33 #define IN_RANGE_INC(val,beg,end) \
34 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
35
36 // in range excluding end
37 #define IN_RANGE_EXC(val,beg,end) \
38 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
39
40 void fork_abort (const char *msg);
41
42 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
43 // as a is often a constant while b is the variable. it is still a bug, though.
44 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
45 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
46 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
47
48 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
49
50 template<typename T>
51 static inline T
52 lerp (T val, T min_in, T max_in, T min_out, T max_out)
53 {
54 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
55 }
56
57 // lots of stuff taken from FXT
58
59 /* Rotate right. This is used in various places for checksumming */
60 //TODO: that sucks, use a better checksum algo
61 static inline uint32_t
62 rotate_right (uint32_t c, uint32_t count = 1)
63 {
64 return (c << (32 - count)) | (c >> count);
65 }
66
67 static inline uint32_t
68 rotate_left (uint32_t c, uint32_t count = 1)
69 {
70 return (c >> (32 - count)) | (c << count);
71 }
72
73 // Return abs(a-b)
74 // Both a and b must not have the most significant bit set
75 static inline uint32_t
76 upos_abs_diff (uint32_t a, uint32_t b)
77 {
78 long d1 = b - a;
79 long d2 = (d1 & (d1 >> 31)) << 1;
80
81 return d1 - d2; // == (b - d) - (a + d);
82 }
83
84 // Both a and b must not have the most significant bit set
85 static inline uint32_t
86 upos_min (uint32_t a, uint32_t b)
87 {
88 int32_t d = b - a;
89 d &= d >> 31;
90 return a + d;
91 }
92
93 // Both a and b must not have the most significant bit set
94 static inline uint32_t
95 upos_max (uint32_t a, uint32_t b)
96 {
97 int32_t d = b - a;
98 d &= d >> 31;
99 return b - d;
100 }
101
102 // this is much faster than crossfires original algorithm
103 // on modern cpus
104 inline int
105 isqrt (int n)
106 {
107 return (int)sqrtf ((float)n);
108 }
109
110 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
111 #if 0
112 // and has a max. error of 6 in the range -100..+100.
113 #else
114 // and has a max. error of 9 in the range -100..+100.
115 #endif
116 inline int
117 idistance (int dx, int dy)
118 {
119 unsigned int dx_ = abs (dx);
120 unsigned int dy_ = abs (dy);
121
122 #if 0
123 return dx_ > dy_
124 ? (dx_ * 61685 + dy_ * 26870) >> 16
125 : (dy_ * 61685 + dx_ * 26870) >> 16;
126 #else
127 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
128 #endif
129 }
130
131 /*
132 * absdir(int): Returns a number between 1 and 8, which represent
133 * the "absolute" direction of a number (it actually takes care of
134 * "overflow" in previous calculations of a direction).
135 */
136 inline int
137 absdir (int d)
138 {
139 return ((d - 1) & 7) + 1;
140 }
141
142 // makes dynamically allocated objects zero-initialised
143 struct zero_initialised
144 {
145 void *operator new (size_t s, void *p)
146 {
147 memset (p, 0, s);
148 return p;
149 }
150
151 void *operator new (size_t s)
152 {
153 return g_slice_alloc0 (s);
154 }
155
156 void *operator new[] (size_t s)
157 {
158 return g_slice_alloc0 (s);
159 }
160
161 void operator delete (void *p, size_t s)
162 {
163 g_slice_free1 (s, p);
164 }
165
166 void operator delete[] (void *p, size_t s)
167 {
168 g_slice_free1 (s, p);
169 }
170 };
171
172 void *salloc_ (int n) throw (std::bad_alloc);
173 void *salloc_ (int n, void *src) throw (std::bad_alloc);
174
175 // strictly the same as g_slice_alloc, but never returns 0
176 template<typename T>
177 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
178
179 // also copies src into the new area, like "memdup"
180 // if src is 0, clears the memory
181 template<typename T>
182 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
183
184 // clears the memory
185 template<typename T>
186 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
187
188 // for symmetry
189 template<typename T>
190 inline void sfree (T *ptr, int n = 1) throw ()
191 {
192 #ifdef PREFER_MALLOC
193 free (ptr);
194 #else
195 g_slice_free1 (n * sizeof (T), (void *)ptr);
196 #endif
197 }
198
199 // a STL-compatible allocator that uses g_slice
200 // boy, this is verbose
201 template<typename Tp>
202 struct slice_allocator
203 {
204 typedef size_t size_type;
205 typedef ptrdiff_t difference_type;
206 typedef Tp *pointer;
207 typedef const Tp *const_pointer;
208 typedef Tp &reference;
209 typedef const Tp &const_reference;
210 typedef Tp value_type;
211
212 template <class U>
213 struct rebind
214 {
215 typedef slice_allocator<U> other;
216 };
217
218 slice_allocator () throw () { }
219 slice_allocator (const slice_allocator &o) throw () { }
220 template<typename Tp2>
221 slice_allocator (const slice_allocator<Tp2> &) throw () { }
222
223 ~slice_allocator () { }
224
225 pointer address (reference x) const { return &x; }
226 const_pointer address (const_reference x) const { return &x; }
227
228 pointer allocate (size_type n, const_pointer = 0)
229 {
230 return salloc<Tp> (n);
231 }
232
233 void deallocate (pointer p, size_type n)
234 {
235 sfree<Tp> (p, n);
236 }
237
238 size_type max_size ()const throw ()
239 {
240 return size_t (-1) / sizeof (Tp);
241 }
242
243 void construct (pointer p, const Tp &val)
244 {
245 ::new (p) Tp (val);
246 }
247
248 void destroy (pointer p)
249 {
250 p->~Tp ();
251 }
252 };
253
254 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
255 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
256 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
257 struct tausworthe_random_generator
258 {
259 // generator
260 uint32_t state [4];
261
262 void operator =(const tausworthe_random_generator &src)
263 {
264 state [0] = src.state [0];
265 state [1] = src.state [1];
266 state [2] = src.state [2];
267 state [3] = src.state [3];
268 }
269
270 void seed (uint32_t seed);
271 uint32_t next ();
272
273 // uniform distribution
274 uint32_t operator ()(uint32_t num)
275 {
276 return is_constant (num)
277 ? (next () * (uint64_t)num) >> 32U
278 : get_range (num);
279 }
280
281 // return a number within (min .. max)
282 int operator () (int r_min, int r_max)
283 {
284 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
285 ? r_min + operator ()(r_max - r_min + 1)
286 : get_range (r_min, r_max);
287 }
288
289 double operator ()()
290 {
291 return this->next () / (double)0xFFFFFFFFU;
292 }
293
294 protected:
295 uint32_t get_range (uint32_t r_max);
296 int get_range (int r_min, int r_max);
297 };
298
299 typedef tausworthe_random_generator rand_gen;
300
301 extern rand_gen rndm;
302
303 template<class T>
304 struct refptr
305 {
306 T *p;
307
308 refptr () : p(0) { }
309 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
310 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
311 ~refptr () { if (p) p->refcnt_dec (); }
312
313 const refptr<T> &operator =(T *o)
314 {
315 if (p) p->refcnt_dec ();
316 p = o;
317 if (p) p->refcnt_inc ();
318
319 return *this;
320 }
321
322 const refptr<T> &operator =(const refptr<T> o)
323 {
324 *this = o.p;
325 return *this;
326 }
327
328 T &operator * () const { return *p; }
329 T *operator ->() const { return p; }
330
331 operator T *() const { return p; }
332 };
333
334 typedef refptr<maptile> maptile_ptr;
335 typedef refptr<object> object_ptr;
336 typedef refptr<archetype> arch_ptr;
337 typedef refptr<client> client_ptr;
338 typedef refptr<player> player_ptr;
339
340 struct str_hash
341 {
342 std::size_t operator ()(const char *s) const
343 {
344 unsigned long hash = 0;
345
346 /* use the one-at-a-time hash function, which supposedly is
347 * better than the djb2-like one used by perl5.005, but
348 * certainly is better then the bug used here before.
349 * see http://burtleburtle.net/bob/hash/doobs.html
350 */
351 while (*s)
352 {
353 hash += *s++;
354 hash += hash << 10;
355 hash ^= hash >> 6;
356 }
357
358 hash += hash << 3;
359 hash ^= hash >> 11;
360 hash += hash << 15;
361
362 return hash;
363 }
364 };
365
366 struct str_equal
367 {
368 bool operator ()(const char *a, const char *b) const
369 {
370 return !strcmp (a, b);
371 }
372 };
373
374 template<class T>
375 struct unordered_vector : std::vector<T, slice_allocator<T> >
376 {
377 typedef typename unordered_vector::iterator iterator;
378
379 void erase (unsigned int pos)
380 {
381 if (pos < this->size () - 1)
382 (*this)[pos] = (*this)[this->size () - 1];
383
384 this->pop_back ();
385 }
386
387 void erase (iterator i)
388 {
389 erase ((unsigned int )(i - this->begin ()));
390 }
391 };
392
393 template<class T, int T::* index>
394 struct object_vector : std::vector<T *, slice_allocator<T *> >
395 {
396 void insert (T *obj)
397 {
398 assert (!(obj->*index));
399 push_back (obj);
400 obj->*index = this->size ();
401 }
402
403 void insert (T &obj)
404 {
405 insert (&obj);
406 }
407
408 void erase (T *obj)
409 {
410 assert (obj->*index);
411 unsigned int pos = obj->*index;
412 obj->*index = 0;
413
414 if (pos < this->size ())
415 {
416 (*this)[pos - 1] = (*this)[this->size () - 1];
417 (*this)[pos - 1]->*index = pos;
418 }
419
420 this->pop_back ();
421 }
422
423 void erase (T &obj)
424 {
425 errase (&obj);
426 }
427 };
428
429 // basically does what strncpy should do, but appends "..." to strings exceeding length
430 void assign (char *dst, const char *src, int maxlen);
431
432 // type-safe version of assign
433 template<int N>
434 inline void assign (char (&dst)[N], const char *src)
435 {
436 assign ((char *)&dst, src, N);
437 }
438
439 typedef double tstamp;
440
441 // return current time as timestampe
442 tstamp now ();
443
444 int similar_direction (int a, int b);
445
446 // like printf, but returns a std::string
447 const std::string format (const char *format, ...);
448
449 #endif
450