ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.47
Committed: Sat Jun 2 03:48:29 2007 UTC (16 years, 11 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.46: +5 -1 lines
Log Message:
g++ finally got decltype

File Contents

# Content
1 /*
2 * This file is part of Crossfire TRT, the Multiplayer Online Role Playing Game.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team
5 *
6 * Crossfire TRT is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * for more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with Crossfire TRT; if not, write to the Free Software Foundation, Inc. 51
18 * Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * The authors can be reached via e-mail to <crossfire@schmorp.de>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 //#define PREFER_MALLOC
27
28 #if __GNUC__ >= 3
29 # define is_constant(c) __builtin_constant_p (c)
30 # define expect(expr,value) __builtin_expect ((expr),(value))
31 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32 #else
33 # define is_constant(c) 0
34 # define expect(expr,value) (expr)
35 # define prefetch(addr,rw,locality)
36 #endif
37
38 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39 # define decltype(x) typeof(x)
40 #endif
41
42 // put into ifs if you are very sure that the expression
43 // is mostly true or mosty false. note that these return
44 // booleans, not the expression.
45 #define expect_false(expr) expect ((expr) != 0, 0)
46 #define expect_true(expr) expect ((expr) != 0, 1)
47
48 #include <cstddef>
49 #include <cmath>
50 #include <new>
51 #include <vector>
52
53 #include <glib.h>
54
55 #include <shstr.h>
56 #include <traits.h>
57
58 // use a gcc extension for auto declarations until ISO C++ sanctifies them
59 #define auto(var,expr) decltype(expr) var = (expr)
60
61 // very ugly macro that basicaly declares and initialises a variable
62 // that is in scope for the next statement only
63 // works only for stuff that can be assigned 0 and converts to false
64 // (note: works great for pointers)
65 // most ugly macro I ever wrote
66 #define declvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
67
68 // in range including end
69 #define IN_RANGE_INC(val,beg,end) \
70 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
71
72 // in range excluding end
73 #define IN_RANGE_EXC(val,beg,end) \
74 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
75
76 void fork_abort (const char *msg);
77
78 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79 // as a is often a constant while b is the variable. it is still a bug, though.
80 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
85
86 template<typename T>
87 static inline T
88 lerp (T val, T min_in, T max_in, T min_out, T max_out)
89 {
90 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
91 }
92
93 // lots of stuff taken from FXT
94
95 /* Rotate right. This is used in various places for checksumming */
96 //TODO: that sucks, use a better checksum algo
97 static inline uint32_t
98 rotate_right (uint32_t c, uint32_t count = 1)
99 {
100 return (c << (32 - count)) | (c >> count);
101 }
102
103 static inline uint32_t
104 rotate_left (uint32_t c, uint32_t count = 1)
105 {
106 return (c >> (32 - count)) | (c << count);
107 }
108
109 // Return abs(a-b)
110 // Both a and b must not have the most significant bit set
111 static inline uint32_t
112 upos_abs_diff (uint32_t a, uint32_t b)
113 {
114 long d1 = b - a;
115 long d2 = (d1 & (d1 >> 31)) << 1;
116
117 return d1 - d2; // == (b - d) - (a + d);
118 }
119
120 // Both a and b must not have the most significant bit set
121 static inline uint32_t
122 upos_min (uint32_t a, uint32_t b)
123 {
124 int32_t d = b - a;
125 d &= d >> 31;
126 return a + d;
127 }
128
129 // Both a and b must not have the most significant bit set
130 static inline uint32_t
131 upos_max (uint32_t a, uint32_t b)
132 {
133 int32_t d = b - a;
134 d &= d >> 31;
135 return b - d;
136 }
137
138 // this is much faster than crossfires original algorithm
139 // on modern cpus
140 inline int
141 isqrt (int n)
142 {
143 return (int)sqrtf ((float)n);
144 }
145
146 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
147 #if 0
148 // and has a max. error of 6 in the range -100..+100.
149 #else
150 // and has a max. error of 9 in the range -100..+100.
151 #endif
152 inline int
153 idistance (int dx, int dy)
154 {
155 unsigned int dx_ = abs (dx);
156 unsigned int dy_ = abs (dy);
157
158 #if 0
159 return dx_ > dy_
160 ? (dx_ * 61685 + dy_ * 26870) >> 16
161 : (dy_ * 61685 + dx_ * 26870) >> 16;
162 #else
163 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
164 #endif
165 }
166
167 /*
168 * absdir(int): Returns a number between 1 and 8, which represent
169 * the "absolute" direction of a number (it actually takes care of
170 * "overflow" in previous calculations of a direction).
171 */
172 inline int
173 absdir (int d)
174 {
175 return ((d - 1) & 7) + 1;
176 }
177
178 // makes dynamically allocated objects zero-initialised
179 struct zero_initialised
180 {
181 void *operator new (size_t s, void *p)
182 {
183 memset (p, 0, s);
184 return p;
185 }
186
187 void *operator new (size_t s)
188 {
189 return g_slice_alloc0 (s);
190 }
191
192 void *operator new[] (size_t s)
193 {
194 return g_slice_alloc0 (s);
195 }
196
197 void operator delete (void *p, size_t s)
198 {
199 g_slice_free1 (s, p);
200 }
201
202 void operator delete[] (void *p, size_t s)
203 {
204 g_slice_free1 (s, p);
205 }
206 };
207
208 void *salloc_ (int n) throw (std::bad_alloc);
209 void *salloc_ (int n, void *src) throw (std::bad_alloc);
210
211 // strictly the same as g_slice_alloc, but never returns 0
212 template<typename T>
213 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
214
215 // also copies src into the new area, like "memdup"
216 // if src is 0, clears the memory
217 template<typename T>
218 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
219
220 // clears the memory
221 template<typename T>
222 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
223
224 // for symmetry
225 template<typename T>
226 inline void sfree (T *ptr, int n = 1) throw ()
227 {
228 #ifdef PREFER_MALLOC
229 free (ptr);
230 #else
231 g_slice_free1 (n * sizeof (T), (void *)ptr);
232 #endif
233 }
234
235 // a STL-compatible allocator that uses g_slice
236 // boy, this is verbose
237 template<typename Tp>
238 struct slice_allocator
239 {
240 typedef size_t size_type;
241 typedef ptrdiff_t difference_type;
242 typedef Tp *pointer;
243 typedef const Tp *const_pointer;
244 typedef Tp &reference;
245 typedef const Tp &const_reference;
246 typedef Tp value_type;
247
248 template <class U>
249 struct rebind
250 {
251 typedef slice_allocator<U> other;
252 };
253
254 slice_allocator () throw () { }
255 slice_allocator (const slice_allocator &o) throw () { }
256 template<typename Tp2>
257 slice_allocator (const slice_allocator<Tp2> &) throw () { }
258
259 ~slice_allocator () { }
260
261 pointer address (reference x) const { return &x; }
262 const_pointer address (const_reference x) const { return &x; }
263
264 pointer allocate (size_type n, const_pointer = 0)
265 {
266 return salloc<Tp> (n);
267 }
268
269 void deallocate (pointer p, size_type n)
270 {
271 sfree<Tp> (p, n);
272 }
273
274 size_type max_size ()const throw ()
275 {
276 return size_t (-1) / sizeof (Tp);
277 }
278
279 void construct (pointer p, const Tp &val)
280 {
281 ::new (p) Tp (val);
282 }
283
284 void destroy (pointer p)
285 {
286 p->~Tp ();
287 }
288 };
289
290 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
291 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
292 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
293 struct tausworthe_random_generator
294 {
295 // generator
296 uint32_t state [4];
297
298 void operator =(const tausworthe_random_generator &src)
299 {
300 state [0] = src.state [0];
301 state [1] = src.state [1];
302 state [2] = src.state [2];
303 state [3] = src.state [3];
304 }
305
306 void seed (uint32_t seed);
307 uint32_t next ();
308
309 // uniform distribution
310 uint32_t operator ()(uint32_t num)
311 {
312 return is_constant (num)
313 ? (next () * (uint64_t)num) >> 32U
314 : get_range (num);
315 }
316
317 // return a number within (min .. max)
318 int operator () (int r_min, int r_max)
319 {
320 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
321 ? r_min + operator ()(r_max - r_min + 1)
322 : get_range (r_min, r_max);
323 }
324
325 double operator ()()
326 {
327 return this->next () / (double)0xFFFFFFFFU;
328 }
329
330 protected:
331 uint32_t get_range (uint32_t r_max);
332 int get_range (int r_min, int r_max);
333 };
334
335 typedef tausworthe_random_generator rand_gen;
336
337 extern rand_gen rndm;
338
339 template<class T>
340 struct refptr
341 {
342 T *p;
343
344 refptr () : p(0) { }
345 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
346 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
347 ~refptr () { if (p) p->refcnt_dec (); }
348
349 const refptr<T> &operator =(T *o)
350 {
351 if (p) p->refcnt_dec ();
352 p = o;
353 if (p) p->refcnt_inc ();
354
355 return *this;
356 }
357
358 const refptr<T> &operator =(const refptr<T> o)
359 {
360 *this = o.p;
361 return *this;
362 }
363
364 T &operator * () const { return *p; }
365 T *operator ->() const { return p; }
366
367 operator T *() const { return p; }
368 };
369
370 typedef refptr<maptile> maptile_ptr;
371 typedef refptr<object> object_ptr;
372 typedef refptr<archetype> arch_ptr;
373 typedef refptr<client> client_ptr;
374 typedef refptr<player> player_ptr;
375
376 struct str_hash
377 {
378 std::size_t operator ()(const char *s) const
379 {
380 unsigned long hash = 0;
381
382 /* use the one-at-a-time hash function, which supposedly is
383 * better than the djb2-like one used by perl5.005, but
384 * certainly is better then the bug used here before.
385 * see http://burtleburtle.net/bob/hash/doobs.html
386 */
387 while (*s)
388 {
389 hash += *s++;
390 hash += hash << 10;
391 hash ^= hash >> 6;
392 }
393
394 hash += hash << 3;
395 hash ^= hash >> 11;
396 hash += hash << 15;
397
398 return hash;
399 }
400 };
401
402 struct str_equal
403 {
404 bool operator ()(const char *a, const char *b) const
405 {
406 return !strcmp (a, b);
407 }
408 };
409
410 template<class T>
411 struct unordered_vector : std::vector<T, slice_allocator<T> >
412 {
413 typedef typename unordered_vector::iterator iterator;
414
415 void erase (unsigned int pos)
416 {
417 if (pos < this->size () - 1)
418 (*this)[pos] = (*this)[this->size () - 1];
419
420 this->pop_back ();
421 }
422
423 void erase (iterator i)
424 {
425 erase ((unsigned int )(i - this->begin ()));
426 }
427 };
428
429 template<class T, int T::* index>
430 struct object_vector : std::vector<T *, slice_allocator<T *> >
431 {
432 void insert (T *obj)
433 {
434 assert (!(obj->*index));
435 push_back (obj);
436 obj->*index = this->size ();
437 }
438
439 void insert (T &obj)
440 {
441 insert (&obj);
442 }
443
444 void erase (T *obj)
445 {
446 assert (obj->*index);
447 unsigned int pos = obj->*index;
448 obj->*index = 0;
449
450 if (pos < this->size ())
451 {
452 (*this)[pos - 1] = (*this)[this->size () - 1];
453 (*this)[pos - 1]->*index = pos;
454 }
455
456 this->pop_back ();
457 }
458
459 void erase (T &obj)
460 {
461 errase (&obj);
462 }
463 };
464
465 // basically does what strncpy should do, but appends "..." to strings exceeding length
466 void assign (char *dst, const char *src, int maxlen);
467
468 // type-safe version of assign
469 template<int N>
470 inline void assign (char (&dst)[N], const char *src)
471 {
472 assign ((char *)&dst, src, N);
473 }
474
475 typedef double tstamp;
476
477 // return current time as timestampe
478 tstamp now ();
479
480 int similar_direction (int a, int b);
481
482 // like printf, but returns a std::string
483 const std::string format (const char *format, ...);
484
485 #endif
486