ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.53
Committed: Fri Jul 13 15:54:40 2007 UTC (16 years, 10 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.52: +6 -1 lines
Log Message:
- make attachable destructors protected (maybe they should be private...)
- provide push_back for object vectors.
- regions are now attachables, so manage their refcounts properly.

File Contents

# Content
1 /*
2 * This file is part of Crossfire TRT, the Roguelike Realtime MORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Crossfire TRT team
5 *
6 * Crossfire TRT is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <crossfire@schmorp.de>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 //#define PREFER_MALLOC
26
27 #if __GNUC__ >= 3
28 # define is_constant(c) __builtin_constant_p (c)
29 # define expect(expr,value) __builtin_expect ((expr),(value))
30 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
31 #else
32 # define is_constant(c) 0
33 # define expect(expr,value) (expr)
34 # define prefetch(addr,rw,locality)
35 #endif
36
37 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
38 # define decltype(x) typeof(x)
39 #endif
40
41 // put into ifs if you are very sure that the expression
42 // is mostly true or mosty false. note that these return
43 // booleans, not the expression.
44 #define expect_false(expr) expect ((expr) != 0, 0)
45 #define expect_true(expr) expect ((expr) != 0, 1)
46
47 #include <cstddef>
48 #include <cmath>
49 #include <new>
50 #include <vector>
51
52 #include <glib.h>
53
54 #include <shstr.h>
55 #include <traits.h>
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 // very ugly macro that basicaly declares and initialises a variable
61 // that is in scope for the next statement only
62 // works only for stuff that can be assigned 0 and converts to false
63 // (note: works great for pointers)
64 // most ugly macro I ever wrote
65 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67 // in range including end
68 #define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71 // in range excluding end
72 #define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75 void fork_abort (const char *msg);
76
77 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
78 // as a is often a constant while b is the variable. it is still a bug, though.
79 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
80 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
81 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
82
83 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
84
85 template<typename T>
86 static inline T
87 lerp (T val, T min_in, T max_in, T min_out, T max_out)
88 {
89 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
90 }
91
92 // lots of stuff taken from FXT
93
94 /* Rotate right. This is used in various places for checksumming */
95 //TODO: that sucks, use a better checksum algo
96 static inline uint32_t
97 rotate_right (uint32_t c, uint32_t count = 1)
98 {
99 return (c << (32 - count)) | (c >> count);
100 }
101
102 static inline uint32_t
103 rotate_left (uint32_t c, uint32_t count = 1)
104 {
105 return (c >> (32 - count)) | (c << count);
106 }
107
108 // Return abs(a-b)
109 // Both a and b must not have the most significant bit set
110 static inline uint32_t
111 upos_abs_diff (uint32_t a, uint32_t b)
112 {
113 long d1 = b - a;
114 long d2 = (d1 & (d1 >> 31)) << 1;
115
116 return d1 - d2; // == (b - d) - (a + d);
117 }
118
119 // Both a and b must not have the most significant bit set
120 static inline uint32_t
121 upos_min (uint32_t a, uint32_t b)
122 {
123 int32_t d = b - a;
124 d &= d >> 31;
125 return a + d;
126 }
127
128 // Both a and b must not have the most significant bit set
129 static inline uint32_t
130 upos_max (uint32_t a, uint32_t b)
131 {
132 int32_t d = b - a;
133 d &= d >> 31;
134 return b - d;
135 }
136
137 // this is much faster than crossfires original algorithm
138 // on modern cpus
139 inline int
140 isqrt (int n)
141 {
142 return (int)sqrtf ((float)n);
143 }
144
145 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
146 #if 0
147 // and has a max. error of 6 in the range -100..+100.
148 #else
149 // and has a max. error of 9 in the range -100..+100.
150 #endif
151 inline int
152 idistance (int dx, int dy)
153 {
154 unsigned int dx_ = abs (dx);
155 unsigned int dy_ = abs (dy);
156
157 #if 0
158 return dx_ > dy_
159 ? (dx_ * 61685 + dy_ * 26870) >> 16
160 : (dy_ * 61685 + dx_ * 26870) >> 16;
161 #else
162 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
163 #endif
164 }
165
166 /*
167 * absdir(int): Returns a number between 1 and 8, which represent
168 * the "absolute" direction of a number (it actually takes care of
169 * "overflow" in previous calculations of a direction).
170 */
171 inline int
172 absdir (int d)
173 {
174 return ((d - 1) & 7) + 1;
175 }
176
177 // makes dynamically allocated objects zero-initialised
178 struct zero_initialised
179 {
180 void *operator new (size_t s, void *p)
181 {
182 memset (p, 0, s);
183 return p;
184 }
185
186 void *operator new (size_t s)
187 {
188 return g_slice_alloc0 (s);
189 }
190
191 void *operator new[] (size_t s)
192 {
193 return g_slice_alloc0 (s);
194 }
195
196 void operator delete (void *p, size_t s)
197 {
198 g_slice_free1 (s, p);
199 }
200
201 void operator delete[] (void *p, size_t s)
202 {
203 g_slice_free1 (s, p);
204 }
205 };
206
207 void *salloc_ (int n) throw (std::bad_alloc);
208 void *salloc_ (int n, void *src) throw (std::bad_alloc);
209
210 // strictly the same as g_slice_alloc, but never returns 0
211 template<typename T>
212 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
213
214 // also copies src into the new area, like "memdup"
215 // if src is 0, clears the memory
216 template<typename T>
217 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
218
219 // clears the memory
220 template<typename T>
221 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
222
223 // for symmetry
224 template<typename T>
225 inline void sfree (T *ptr, int n = 1) throw ()
226 {
227 #ifdef PREFER_MALLOC
228 free (ptr);
229 #else
230 g_slice_free1 (n * sizeof (T), (void *)ptr);
231 #endif
232 }
233
234 // a STL-compatible allocator that uses g_slice
235 // boy, this is verbose
236 template<typename Tp>
237 struct slice_allocator
238 {
239 typedef size_t size_type;
240 typedef ptrdiff_t difference_type;
241 typedef Tp *pointer;
242 typedef const Tp *const_pointer;
243 typedef Tp &reference;
244 typedef const Tp &const_reference;
245 typedef Tp value_type;
246
247 template <class U>
248 struct rebind
249 {
250 typedef slice_allocator<U> other;
251 };
252
253 slice_allocator () throw () { }
254 slice_allocator (const slice_allocator &o) throw () { }
255 template<typename Tp2>
256 slice_allocator (const slice_allocator<Tp2> &) throw () { }
257
258 ~slice_allocator () { }
259
260 pointer address (reference x) const { return &x; }
261 const_pointer address (const_reference x) const { return &x; }
262
263 pointer allocate (size_type n, const_pointer = 0)
264 {
265 return salloc<Tp> (n);
266 }
267
268 void deallocate (pointer p, size_type n)
269 {
270 sfree<Tp> (p, n);
271 }
272
273 size_type max_size ()const throw ()
274 {
275 return size_t (-1) / sizeof (Tp);
276 }
277
278 void construct (pointer p, const Tp &val)
279 {
280 ::new (p) Tp (val);
281 }
282
283 void destroy (pointer p)
284 {
285 p->~Tp ();
286 }
287 };
288
289 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
290 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
291 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
292 struct tausworthe_random_generator
293 {
294 // generator
295 uint32_t state [4];
296
297 void operator =(const tausworthe_random_generator &src)
298 {
299 state [0] = src.state [0];
300 state [1] = src.state [1];
301 state [2] = src.state [2];
302 state [3] = src.state [3];
303 }
304
305 void seed (uint32_t seed);
306 uint32_t next ();
307
308 // uniform distribution
309 uint32_t operator ()(uint32_t num)
310 {
311 return is_constant (num)
312 ? (next () * (uint64_t)num) >> 32U
313 : get_range (num);
314 }
315
316 // return a number within (min .. max)
317 int operator () (int r_min, int r_max)
318 {
319 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
320 ? r_min + operator ()(r_max - r_min + 1)
321 : get_range (r_min, r_max);
322 }
323
324 double operator ()()
325 {
326 return this->next () / (double)0xFFFFFFFFU;
327 }
328
329 protected:
330 uint32_t get_range (uint32_t r_max);
331 int get_range (int r_min, int r_max);
332 };
333
334 typedef tausworthe_random_generator rand_gen;
335
336 extern rand_gen rndm;
337
338 template<class T>
339 struct refptr
340 {
341 T *p;
342
343 refptr () : p(0) { }
344 refptr (const refptr<T> &p) : p(p.p) { if (p) p->refcnt_inc (); }
345 refptr (T *p) : p(p) { if (p) p->refcnt_inc (); }
346 ~refptr () { if (p) p->refcnt_dec (); }
347
348 const refptr<T> &operator =(T *o)
349 {
350 if (p) p->refcnt_dec ();
351 p = o;
352 if (p) p->refcnt_inc ();
353
354 return *this;
355 }
356
357 const refptr<T> &operator =(const refptr<T> o)
358 {
359 *this = o.p;
360 return *this;
361 }
362
363 T &operator * () const { return *p; }
364 T *operator ->() const { return p; }
365
366 operator T *() const { return p; }
367 };
368
369 typedef refptr<maptile> maptile_ptr;
370 typedef refptr<object> object_ptr;
371 typedef refptr<archetype> arch_ptr;
372 typedef refptr<client> client_ptr;
373 typedef refptr<player> player_ptr;
374
375 struct str_hash
376 {
377 std::size_t operator ()(const char *s) const
378 {
379 unsigned long hash = 0;
380
381 /* use the one-at-a-time hash function, which supposedly is
382 * better than the djb2-like one used by perl5.005, but
383 * certainly is better then the bug used here before.
384 * see http://burtleburtle.net/bob/hash/doobs.html
385 */
386 while (*s)
387 {
388 hash += *s++;
389 hash += hash << 10;
390 hash ^= hash >> 6;
391 }
392
393 hash += hash << 3;
394 hash ^= hash >> 11;
395 hash += hash << 15;
396
397 return hash;
398 }
399 };
400
401 struct str_equal
402 {
403 bool operator ()(const char *a, const char *b) const
404 {
405 return !strcmp (a, b);
406 }
407 };
408
409 // Mostly the same as std::vector, but insert/erase can reorder
410 // the elements, making append(=insert)/remove O(1) instead of O(n).
411 //
412 // NOTE: only some forms of erase are available
413 template<class T>
414 struct unordered_vector : std::vector<T, slice_allocator<T> >
415 {
416 typedef typename unordered_vector::iterator iterator;
417
418 void erase (unsigned int pos)
419 {
420 if (pos < this->size () - 1)
421 (*this)[pos] = (*this)[this->size () - 1];
422
423 this->pop_back ();
424 }
425
426 void erase (iterator i)
427 {
428 erase ((unsigned int )(i - this->begin ()));
429 }
430 };
431
432 // This container blends advantages of linked lists
433 // (efficiency) with vectors (random access) by
434 // by using an unordered vector and storing the vector
435 // index inside the object.
436 //
437 // + memory-efficient on most 64 bit archs
438 // + O(1) insert/remove
439 // + free unique (but varying) id for inserted objects
440 // + cache-friendly iteration
441 // - only works for pointers to structs
442 //
443 // NOTE: only some forms of erase/insert are available
444 typedef int object_vector_index;
445
446 template<class T, object_vector_index T::*indexmember>
447 struct object_vector : std::vector<T *, slice_allocator<T *> >
448 {
449 typedef typename object_vector::iterator iterator;
450
451 bool contains (const T *obj) const
452 {
453 return obj->*indexmember;
454 }
455
456 iterator find (const T *obj)
457 {
458 return obj->*indexmember
459 ? this->begin () + obj->*indexmember - 1
460 : this->end ();
461 }
462
463 void push_back (T *obj)
464 {
465 std::vector<T *, slice_allocator<T *> >::push_back (obj);
466 obj->*indexmember = this->size ();
467 }
468
469 void insert (T *obj)
470 {
471 push_back (obj);
472 }
473
474 void insert (T &obj)
475 {
476 insert (&obj);
477 }
478
479 void erase (T *obj)
480 {
481 unsigned int pos = obj->*indexmember;
482 obj->*indexmember = 0;
483
484 if (pos < this->size ())
485 {
486 (*this)[pos - 1] = (*this)[this->size () - 1];
487 (*this)[pos - 1]->*indexmember = pos;
488 }
489
490 this->pop_back ();
491 }
492
493 void erase (T &obj)
494 {
495 erase (&obj);
496 }
497 };
498
499 // basically does what strncpy should do, but appends "..." to strings exceeding length
500 void assign (char *dst, const char *src, int maxlen);
501
502 // type-safe version of assign
503 template<int N>
504 inline void assign (char (&dst)[N], const char *src)
505 {
506 assign ((char *)&dst, src, N);
507 }
508
509 typedef double tstamp;
510
511 // return current time as timestampe
512 tstamp now ();
513
514 int similar_direction (int a, int b);
515
516 // like printf, but returns a std::string
517 const std::string format (const char *format, ...);
518
519 #endif
520