ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.60
Committed: Tue Jan 22 15:53:01 2008 UTC (16 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.59: +10 -0 lines
Log Message:
add some primitive memory debugging

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 //#define PREFER_MALLOC
26 #define DEBUG_SALLOC
27
28 #if __GNUC__ >= 3
29 # define is_constant(c) __builtin_constant_p (c)
30 # define expect(expr,value) __builtin_expect ((expr),(value))
31 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
32 #else
33 # define is_constant(c) 0
34 # define expect(expr,value) (expr)
35 # define prefetch(addr,rw,locality)
36 #endif
37
38 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
39 # define decltype(x) typeof(x)
40 #endif
41
42 // put into ifs if you are very sure that the expression
43 // is mostly true or mosty false. note that these return
44 // booleans, not the expression.
45 #define expect_false(expr) expect ((expr) != 0, 0)
46 #define expect_true(expr) expect ((expr) != 0, 1)
47
48 #include <cstddef>
49 #include <cmath>
50 #include <new>
51 #include <vector>
52
53 #include <glib.h>
54
55 #include <shstr.h>
56 #include <traits.h>
57
58 #ifdef DEBUG_SALLOC
59 # define g_slice_alloc0(s) debug_slice_alloc0(s)
60 # define g_slice_alloc(s) debug_slice_alloc(s)
61 # define g_slice_free1(s,p) debug_slice_free1(s,p)
62 void *g_slice_alloc (unsigned long size);
63 void *g_slice_alloc0 (unsigned long size);
64 void g_slice_free1 (unsigned long size, void *ptr);
65 #endif
66
67 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
68 #define auto(var,expr) decltype(expr) var = (expr)
69
70 // very ugly macro that basicaly declares and initialises a variable
71 // that is in scope for the next statement only
72 // works only for stuff that can be assigned 0 and converts to false
73 // (note: works great for pointers)
74 // most ugly macro I ever wrote
75 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
76
77 // in range including end
78 #define IN_RANGE_INC(val,beg,end) \
79 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
80
81 // in range excluding end
82 #define IN_RANGE_EXC(val,beg,end) \
83 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
84
85 void fork_abort (const char *msg);
86
87 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
88 // as a is often a constant while b is the variable. it is still a bug, though.
89 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
90 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
91 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
92
93 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
94
95 template<typename T>
96 static inline T
97 lerp (T val, T min_in, T max_in, T min_out, T max_out)
98 {
99 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
100 }
101
102 // lots of stuff taken from FXT
103
104 /* Rotate right. This is used in various places for checksumming */
105 //TODO: that sucks, use a better checksum algo
106 static inline uint32_t
107 rotate_right (uint32_t c, uint32_t count = 1)
108 {
109 return (c << (32 - count)) | (c >> count);
110 }
111
112 static inline uint32_t
113 rotate_left (uint32_t c, uint32_t count = 1)
114 {
115 return (c >> (32 - count)) | (c << count);
116 }
117
118 // Return abs(a-b)
119 // Both a and b must not have the most significant bit set
120 static inline uint32_t
121 upos_abs_diff (uint32_t a, uint32_t b)
122 {
123 long d1 = b - a;
124 long d2 = (d1 & (d1 >> 31)) << 1;
125
126 return d1 - d2; // == (b - d) - (a + d);
127 }
128
129 // Both a and b must not have the most significant bit set
130 static inline uint32_t
131 upos_min (uint32_t a, uint32_t b)
132 {
133 int32_t d = b - a;
134 d &= d >> 31;
135 return a + d;
136 }
137
138 // Both a and b must not have the most significant bit set
139 static inline uint32_t
140 upos_max (uint32_t a, uint32_t b)
141 {
142 int32_t d = b - a;
143 d &= d >> 31;
144 return b - d;
145 }
146
147 // this is much faster than crossfires original algorithm
148 // on modern cpus
149 inline int
150 isqrt (int n)
151 {
152 return (int)sqrtf ((float)n);
153 }
154
155 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
156 #if 0
157 // and has a max. error of 6 in the range -100..+100.
158 #else
159 // and has a max. error of 9 in the range -100..+100.
160 #endif
161 inline int
162 idistance (int dx, int dy)
163 {
164 unsigned int dx_ = abs (dx);
165 unsigned int dy_ = abs (dy);
166
167 #if 0
168 return dx_ > dy_
169 ? (dx_ * 61685 + dy_ * 26870) >> 16
170 : (dy_ * 61685 + dx_ * 26870) >> 16;
171 #else
172 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
173 #endif
174 }
175
176 /*
177 * absdir(int): Returns a number between 1 and 8, which represent
178 * the "absolute" direction of a number (it actually takes care of
179 * "overflow" in previous calculations of a direction).
180 */
181 inline int
182 absdir (int d)
183 {
184 return ((d - 1) & 7) + 1;
185 }
186
187 extern size_t slice_alloc; // statistics
188
189 // makes dynamically allocated objects zero-initialised
190 struct zero_initialised
191 {
192 void *operator new (size_t s, void *p)
193 {
194 memset (p, 0, s);
195 return p;
196 }
197
198 void *operator new (size_t s)
199 {
200 slice_alloc += s;
201 return g_slice_alloc0 (s);
202 }
203
204 void *operator new[] (size_t s)
205 {
206 slice_alloc += s;
207 return g_slice_alloc0 (s);
208 }
209
210 void operator delete (void *p, size_t s)
211 {
212 slice_alloc -= s;
213 g_slice_free1 (s, p);
214 }
215
216 void operator delete[] (void *p, size_t s)
217 {
218 slice_alloc -= s;
219 g_slice_free1 (s, p);
220 }
221 };
222
223 void *salloc_ (int n) throw (std::bad_alloc);
224 void *salloc_ (int n, void *src) throw (std::bad_alloc);
225
226 // strictly the same as g_slice_alloc, but never returns 0
227 template<typename T>
228 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
229
230 // also copies src into the new area, like "memdup"
231 // if src is 0, clears the memory
232 template<typename T>
233 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
234
235 // clears the memory
236 template<typename T>
237 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
238
239 // for symmetry
240 template<typename T>
241 inline void sfree (T *ptr, int n = 1) throw ()
242 {
243 #ifdef PREFER_MALLOC
244 free (ptr);
245 #else
246 slice_alloc -= n * sizeof (T);
247 g_slice_free1 (n * sizeof (T), (void *)ptr);
248 #endif
249 }
250
251 // a STL-compatible allocator that uses g_slice
252 // boy, this is verbose
253 template<typename Tp>
254 struct slice_allocator
255 {
256 typedef size_t size_type;
257 typedef ptrdiff_t difference_type;
258 typedef Tp *pointer;
259 typedef const Tp *const_pointer;
260 typedef Tp &reference;
261 typedef const Tp &const_reference;
262 typedef Tp value_type;
263
264 template <class U>
265 struct rebind
266 {
267 typedef slice_allocator<U> other;
268 };
269
270 slice_allocator () throw () { }
271 slice_allocator (const slice_allocator &o) throw () { }
272 template<typename Tp2>
273 slice_allocator (const slice_allocator<Tp2> &) throw () { }
274
275 ~slice_allocator () { }
276
277 pointer address (reference x) const { return &x; }
278 const_pointer address (const_reference x) const { return &x; }
279
280 pointer allocate (size_type n, const_pointer = 0)
281 {
282 return salloc<Tp> (n);
283 }
284
285 void deallocate (pointer p, size_type n)
286 {
287 sfree<Tp> (p, n);
288 }
289
290 size_type max_size ()const throw ()
291 {
292 return size_t (-1) / sizeof (Tp);
293 }
294
295 void construct (pointer p, const Tp &val)
296 {
297 ::new (p) Tp (val);
298 }
299
300 void destroy (pointer p)
301 {
302 p->~Tp ();
303 }
304 };
305
306 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
307 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
308 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
309 struct tausworthe_random_generator
310 {
311 // generator
312 uint32_t state [4];
313
314 void operator =(const tausworthe_random_generator &src)
315 {
316 state [0] = src.state [0];
317 state [1] = src.state [1];
318 state [2] = src.state [2];
319 state [3] = src.state [3];
320 }
321
322 void seed (uint32_t seed);
323 uint32_t next ();
324
325 // uniform distribution
326 uint32_t operator ()(uint32_t num)
327 {
328 return is_constant (num)
329 ? (next () * (uint64_t)num) >> 32U
330 : get_range (num);
331 }
332
333 // return a number within (min .. max)
334 int operator () (int r_min, int r_max)
335 {
336 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
337 ? r_min + operator ()(r_max - r_min + 1)
338 : get_range (r_min, r_max);
339 }
340
341 double operator ()()
342 {
343 return this->next () / (double)0xFFFFFFFFU;
344 }
345
346 protected:
347 uint32_t get_range (uint32_t r_max);
348 int get_range (int r_min, int r_max);
349 };
350
351 typedef tausworthe_random_generator rand_gen;
352
353 extern rand_gen rndm;
354
355 INTERFACE_CLASS (attachable)
356 struct refcnt_base
357 {
358 typedef int refcnt_t;
359 mutable refcnt_t ACC (RW, refcnt);
360
361 MTH void refcnt_inc () const { ++refcnt; }
362 MTH void refcnt_dec () const { --refcnt; }
363
364 refcnt_base () : refcnt (0) { }
365 };
366
367 // to avoid branches with more advanced compilers
368 extern refcnt_base::refcnt_t refcnt_dummy;
369
370 template<class T>
371 struct refptr
372 {
373 // p if not null
374 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
375
376 void refcnt_dec ()
377 {
378 if (!is_constant (p))
379 --*refcnt_ref ();
380 else if (p)
381 --p->refcnt;
382 }
383
384 void refcnt_inc ()
385 {
386 if (!is_constant (p))
387 ++*refcnt_ref ();
388 else if (p)
389 ++p->refcnt;
390 }
391
392 T *p;
393
394 refptr () : p(0) { }
395 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
396 refptr (T *p) : p(p) { refcnt_inc (); }
397 ~refptr () { refcnt_dec (); }
398
399 const refptr<T> &operator =(T *o)
400 {
401 // if decrementing ever destroys we need to reverse the order here
402 refcnt_dec ();
403 p = o;
404 refcnt_inc ();
405 return *this;
406 }
407
408 const refptr<T> &operator =(const refptr<T> &o)
409 {
410 *this = o.p;
411 return *this;
412 }
413
414 T &operator * () const { return *p; }
415 T *operator ->() const { return p; }
416
417 operator T *() const { return p; }
418 };
419
420 typedef refptr<maptile> maptile_ptr;
421 typedef refptr<object> object_ptr;
422 typedef refptr<archetype> arch_ptr;
423 typedef refptr<client> client_ptr;
424 typedef refptr<player> player_ptr;
425
426 struct str_hash
427 {
428 std::size_t operator ()(const char *s) const
429 {
430 unsigned long hash = 0;
431
432 /* use the one-at-a-time hash function, which supposedly is
433 * better than the djb2-like one used by perl5.005, but
434 * certainly is better then the bug used here before.
435 * see http://burtleburtle.net/bob/hash/doobs.html
436 */
437 while (*s)
438 {
439 hash += *s++;
440 hash += hash << 10;
441 hash ^= hash >> 6;
442 }
443
444 hash += hash << 3;
445 hash ^= hash >> 11;
446 hash += hash << 15;
447
448 return hash;
449 }
450 };
451
452 struct str_equal
453 {
454 bool operator ()(const char *a, const char *b) const
455 {
456 return !strcmp (a, b);
457 }
458 };
459
460 // Mostly the same as std::vector, but insert/erase can reorder
461 // the elements, making append(=insert)/remove O(1) instead of O(n).
462 //
463 // NOTE: only some forms of erase are available
464 template<class T>
465 struct unordered_vector : std::vector<T, slice_allocator<T> >
466 {
467 typedef typename unordered_vector::iterator iterator;
468
469 void erase (unsigned int pos)
470 {
471 if (pos < this->size () - 1)
472 (*this)[pos] = (*this)[this->size () - 1];
473
474 this->pop_back ();
475 }
476
477 void erase (iterator i)
478 {
479 erase ((unsigned int )(i - this->begin ()));
480 }
481 };
482
483 // This container blends advantages of linked lists
484 // (efficiency) with vectors (random access) by
485 // by using an unordered vector and storing the vector
486 // index inside the object.
487 //
488 // + memory-efficient on most 64 bit archs
489 // + O(1) insert/remove
490 // + free unique (but varying) id for inserted objects
491 // + cache-friendly iteration
492 // - only works for pointers to structs
493 //
494 // NOTE: only some forms of erase/insert are available
495 typedef int object_vector_index;
496
497 template<class T, object_vector_index T::*indexmember>
498 struct object_vector : std::vector<T *, slice_allocator<T *> >
499 {
500 typedef typename object_vector::iterator iterator;
501
502 bool contains (const T *obj) const
503 {
504 return obj->*indexmember;
505 }
506
507 iterator find (const T *obj)
508 {
509 return obj->*indexmember
510 ? this->begin () + obj->*indexmember - 1
511 : this->end ();
512 }
513
514 void push_back (T *obj)
515 {
516 std::vector<T *, slice_allocator<T *> >::push_back (obj);
517 obj->*indexmember = this->size ();
518 }
519
520 void insert (T *obj)
521 {
522 push_back (obj);
523 }
524
525 void insert (T &obj)
526 {
527 insert (&obj);
528 }
529
530 void erase (T *obj)
531 {
532 unsigned int pos = obj->*indexmember;
533 obj->*indexmember = 0;
534
535 if (pos < this->size ())
536 {
537 (*this)[pos - 1] = (*this)[this->size () - 1];
538 (*this)[pos - 1]->*indexmember = pos;
539 }
540
541 this->pop_back ();
542 }
543
544 void erase (T &obj)
545 {
546 erase (&obj);
547 }
548 };
549
550 // basically does what strncpy should do, but appends "..." to strings exceeding length
551 void assign (char *dst, const char *src, int maxlen);
552
553 // type-safe version of assign
554 template<int N>
555 inline void assign (char (&dst)[N], const char *src)
556 {
557 assign ((char *)&dst, src, N);
558 }
559
560 typedef double tstamp;
561
562 // return current time as timestamp
563 tstamp now ();
564
565 int similar_direction (int a, int b);
566
567 // like sprintf, but returns a "static" buffer
568 const char *format (const char *format, ...);
569
570 #endif
571