ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.72
Committed: Wed Apr 30 16:26:28 2008 UTC (16 years ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.71: +8 -0 lines
Log Message:
goof

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 #else
34 # define is_constant(c) 0
35 # define expect(expr,value) (expr)
36 # define prefetch(addr,rw,locality)
37 #endif
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40 # define decltype(x) typeof(x)
41 #endif
42
43 // put into ifs if you are very sure that the expression
44 // is mostly true or mosty false. note that these return
45 // booleans, not the expression.
46 #define expect_false(expr) expect ((expr) != 0, 0)
47 #define expect_true(expr) expect ((expr) != 0, 1)
48
49 #include <pthread.h>
50
51 #include <cstddef>
52 #include <cmath>
53 #include <new>
54 #include <vector>
55
56 #include <glib.h>
57
58 #include <shstr.h>
59 #include <traits.h>
60
61 #if DEBUG_SALLOC
62 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63 # define g_slice_alloc(s) debug_slice_alloc(s)
64 # define g_slice_free1(s,p) debug_slice_free1(s,p)
65 void *g_slice_alloc (unsigned long size);
66 void *g_slice_alloc0 (unsigned long size);
67 void g_slice_free1 (unsigned long size, void *ptr);
68 #elif PREFER_MALLOC
69 # define g_slice_alloc0(s) calloc (1, (s))
70 # define g_slice_alloc(s) malloc ((s))
71 # define g_slice_free1(s,p) free ((p))
72 #endif
73
74 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 #define auto(var,expr) decltype(expr) var = (expr)
76
77 // very ugly macro that basicaly declares and initialises a variable
78 // that is in scope for the next statement only
79 // works only for stuff that can be assigned 0 and converts to false
80 // (note: works great for pointers)
81 // most ugly macro I ever wrote
82 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84 // in range including end
85 #define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88 // in range excluding end
89 #define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92 void cleanup (const char *cause, bool make_core = false);
93 void fork_abort (const char *msg);
94
95 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96 // as a is often a constant while b is the variable. it is still a bug, though.
97 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
102
103 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
104 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
105
106 template<typename T>
107 static inline T
108 lerp (T val, T min_in, T max_in, T min_out, T max_out)
109 {
110 return (val - min_in) * (max_out - min_out) / (max_in - min_in) + min_out;
111 }
112
113 // lots of stuff taken from FXT
114
115 /* Rotate right. This is used in various places for checksumming */
116 //TODO: that sucks, use a better checksum algo
117 static inline uint32_t
118 rotate_right (uint32_t c, uint32_t count = 1)
119 {
120 return (c << (32 - count)) | (c >> count);
121 }
122
123 static inline uint32_t
124 rotate_left (uint32_t c, uint32_t count = 1)
125 {
126 return (c >> (32 - count)) | (c << count);
127 }
128
129 // Return abs(a-b)
130 // Both a and b must not have the most significant bit set
131 static inline uint32_t
132 upos_abs_diff (uint32_t a, uint32_t b)
133 {
134 long d1 = b - a;
135 long d2 = (d1 & (d1 >> 31)) << 1;
136
137 return d1 - d2; // == (b - d) - (a + d);
138 }
139
140 // Both a and b must not have the most significant bit set
141 static inline uint32_t
142 upos_min (uint32_t a, uint32_t b)
143 {
144 int32_t d = b - a;
145 d &= d >> 31;
146 return a + d;
147 }
148
149 // Both a and b must not have the most significant bit set
150 static inline uint32_t
151 upos_max (uint32_t a, uint32_t b)
152 {
153 int32_t d = b - a;
154 d &= d >> 31;
155 return b - d;
156 }
157
158 // this is much faster than crossfires original algorithm
159 // on modern cpus
160 inline int
161 isqrt (int n)
162 {
163 return (int)sqrtf ((float)n);
164 }
165
166 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
167 #if 0
168 // and has a max. error of 6 in the range -100..+100.
169 #else
170 // and has a max. error of 9 in the range -100..+100.
171 #endif
172 inline int
173 idistance (int dx, int dy)
174 {
175 unsigned int dx_ = abs (dx);
176 unsigned int dy_ = abs (dy);
177
178 #if 0
179 return dx_ > dy_
180 ? (dx_ * 61685 + dy_ * 26870) >> 16
181 : (dy_ * 61685 + dx_ * 26870) >> 16;
182 #else
183 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
184 #endif
185 }
186
187 /*
188 * absdir(int): Returns a number between 1 and 8, which represent
189 * the "absolute" direction of a number (it actually takes care of
190 * "overflow" in previous calculations of a direction).
191 */
192 inline int
193 absdir (int d)
194 {
195 return ((d - 1) & 7) + 1;
196 }
197
198 extern ssize_t slice_alloc; // statistics
199
200 void *salloc_ (int n) throw (std::bad_alloc);
201 void *salloc_ (int n, void *src) throw (std::bad_alloc);
202
203 // strictly the same as g_slice_alloc, but never returns 0
204 template<typename T>
205 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
206
207 // also copies src into the new area, like "memdup"
208 // if src is 0, clears the memory
209 template<typename T>
210 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
211
212 // clears the memory
213 template<typename T>
214 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
215
216 // for symmetry
217 template<typename T>
218 inline void sfree (T *ptr, int n = 1) throw ()
219 {
220 if (expect_true (ptr))
221 {
222 slice_alloc -= n * sizeof (T);
223 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
224 g_slice_free1 (n * sizeof (T), (void *)ptr);
225 assert (slice_alloc >= 0);//D
226 }
227 }
228
229 // nulls the pointer
230 template<typename T>
231 inline void sfree0 (T *&ptr, int n = 1) throw ()
232 {
233 sfree<T> (ptr, n);
234 ptr = 0;
235 }
236
237 // makes dynamically allocated objects zero-initialised
238 struct zero_initialised
239 {
240 void *operator new (size_t s, void *p)
241 {
242 memset (p, 0, s);
243 return p;
244 }
245
246 void *operator new (size_t s)
247 {
248 return salloc0<char> (s);
249 }
250
251 void *operator new[] (size_t s)
252 {
253 return salloc0<char> (s);
254 }
255
256 void operator delete (void *p, size_t s)
257 {
258 sfree ((char *)p, s);
259 }
260
261 void operator delete[] (void *p, size_t s)
262 {
263 sfree ((char *)p, s);
264 }
265 };
266
267 // a STL-compatible allocator that uses g_slice
268 // boy, this is verbose
269 template<typename Tp>
270 struct slice_allocator
271 {
272 typedef size_t size_type;
273 typedef ptrdiff_t difference_type;
274 typedef Tp *pointer;
275 typedef const Tp *const_pointer;
276 typedef Tp &reference;
277 typedef const Tp &const_reference;
278 typedef Tp value_type;
279
280 template <class U>
281 struct rebind
282 {
283 typedef slice_allocator<U> other;
284 };
285
286 slice_allocator () throw () { }
287 slice_allocator (const slice_allocator &) throw () { }
288 template<typename Tp2>
289 slice_allocator (const slice_allocator<Tp2> &) throw () { }
290
291 ~slice_allocator () { }
292
293 pointer address (reference x) const { return &x; }
294 const_pointer address (const_reference x) const { return &x; }
295
296 pointer allocate (size_type n, const_pointer = 0)
297 {
298 return salloc<Tp> (n);
299 }
300
301 void deallocate (pointer p, size_type n)
302 {
303 sfree<Tp> (p, n);
304 }
305
306 size_type max_size () const throw ()
307 {
308 return size_t (-1) / sizeof (Tp);
309 }
310
311 void construct (pointer p, const Tp &val)
312 {
313 ::new (p) Tp (val);
314 }
315
316 void destroy (pointer p)
317 {
318 p->~Tp ();
319 }
320 };
321
322 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
323 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
324 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
325 struct tausworthe_random_generator
326 {
327 // generator
328 uint32_t state [4];
329
330 void operator =(const tausworthe_random_generator &src)
331 {
332 state [0] = src.state [0];
333 state [1] = src.state [1];
334 state [2] = src.state [2];
335 state [3] = src.state [3];
336 }
337
338 void seed (uint32_t seed);
339 uint32_t next ();
340
341 // uniform distribution
342 uint32_t operator ()(uint32_t num)
343 {
344 return is_constant (num)
345 ? (next () * (uint64_t)num) >> 32U
346 : get_range (num);
347 }
348
349 // return a number within (min .. max)
350 int operator () (int r_min, int r_max)
351 {
352 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
353 ? r_min + operator ()(r_max - r_min + 1)
354 : get_range (r_min, r_max);
355 }
356
357 double operator ()()
358 {
359 return this->next () / (double)0xFFFFFFFFU;
360 }
361
362 protected:
363 uint32_t get_range (uint32_t r_max);
364 int get_range (int r_min, int r_max);
365 };
366
367 typedef tausworthe_random_generator rand_gen;
368
369 extern rand_gen rndm;
370
371 INTERFACE_CLASS (attachable)
372 struct refcnt_base
373 {
374 typedef int refcnt_t;
375 mutable refcnt_t ACC (RW, refcnt);
376
377 MTH void refcnt_inc () const { ++refcnt; }
378 MTH void refcnt_dec () const { --refcnt; }
379
380 refcnt_base () : refcnt (0) { }
381 };
382
383 // to avoid branches with more advanced compilers
384 extern refcnt_base::refcnt_t refcnt_dummy;
385
386 template<class T>
387 struct refptr
388 {
389 // p if not null
390 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
391
392 void refcnt_dec ()
393 {
394 if (!is_constant (p))
395 --*refcnt_ref ();
396 else if (p)
397 --p->refcnt;
398 }
399
400 void refcnt_inc ()
401 {
402 if (!is_constant (p))
403 ++*refcnt_ref ();
404 else if (p)
405 ++p->refcnt;
406 }
407
408 T *p;
409
410 refptr () : p(0) { }
411 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
412 refptr (T *p) : p(p) { refcnt_inc (); }
413 ~refptr () { refcnt_dec (); }
414
415 const refptr<T> &operator =(T *o)
416 {
417 // if decrementing ever destroys we need to reverse the order here
418 refcnt_dec ();
419 p = o;
420 refcnt_inc ();
421 return *this;
422 }
423
424 const refptr<T> &operator =(const refptr<T> &o)
425 {
426 *this = o.p;
427 return *this;
428 }
429
430 T &operator * () const { return *p; }
431 T *operator ->() const { return p; }
432
433 operator T *() const { return p; }
434 };
435
436 typedef refptr<maptile> maptile_ptr;
437 typedef refptr<object> object_ptr;
438 typedef refptr<archetype> arch_ptr;
439 typedef refptr<client> client_ptr;
440 typedef refptr<player> player_ptr;
441
442 struct str_hash
443 {
444 std::size_t operator ()(const char *s) const
445 {
446 unsigned long hash = 0;
447
448 /* use the one-at-a-time hash function, which supposedly is
449 * better than the djb2-like one used by perl5.005, but
450 * certainly is better then the bug used here before.
451 * see http://burtleburtle.net/bob/hash/doobs.html
452 */
453 while (*s)
454 {
455 hash += *s++;
456 hash += hash << 10;
457 hash ^= hash >> 6;
458 }
459
460 hash += hash << 3;
461 hash ^= hash >> 11;
462 hash += hash << 15;
463
464 return hash;
465 }
466 };
467
468 struct str_equal
469 {
470 bool operator ()(const char *a, const char *b) const
471 {
472 return !strcmp (a, b);
473 }
474 };
475
476 // Mostly the same as std::vector, but insert/erase can reorder
477 // the elements, making append(=insert)/remove O(1) instead of O(n).
478 //
479 // NOTE: only some forms of erase are available
480 template<class T>
481 struct unordered_vector : std::vector<T, slice_allocator<T> >
482 {
483 typedef typename unordered_vector::iterator iterator;
484
485 void erase (unsigned int pos)
486 {
487 if (pos < this->size () - 1)
488 (*this)[pos] = (*this)[this->size () - 1];
489
490 this->pop_back ();
491 }
492
493 void erase (iterator i)
494 {
495 erase ((unsigned int )(i - this->begin ()));
496 }
497 };
498
499 // This container blends advantages of linked lists
500 // (efficiency) with vectors (random access) by
501 // by using an unordered vector and storing the vector
502 // index inside the object.
503 //
504 // + memory-efficient on most 64 bit archs
505 // + O(1) insert/remove
506 // + free unique (but varying) id for inserted objects
507 // + cache-friendly iteration
508 // - only works for pointers to structs
509 //
510 // NOTE: only some forms of erase/insert are available
511 typedef int object_vector_index;
512
513 template<class T, object_vector_index T::*indexmember>
514 struct object_vector : std::vector<T *, slice_allocator<T *> >
515 {
516 typedef typename object_vector::iterator iterator;
517
518 bool contains (const T *obj) const
519 {
520 return obj->*indexmember;
521 }
522
523 iterator find (const T *obj)
524 {
525 return obj->*indexmember
526 ? this->begin () + obj->*indexmember - 1
527 : this->end ();
528 }
529
530 void push_back (T *obj)
531 {
532 std::vector<T *, slice_allocator<T *> >::push_back (obj);
533 obj->*indexmember = this->size ();
534 }
535
536 void insert (T *obj)
537 {
538 push_back (obj);
539 }
540
541 void insert (T &obj)
542 {
543 insert (&obj);
544 }
545
546 void erase (T *obj)
547 {
548 unsigned int pos = obj->*indexmember;
549 obj->*indexmember = 0;
550
551 if (pos < this->size ())
552 {
553 (*this)[pos - 1] = (*this)[this->size () - 1];
554 (*this)[pos - 1]->*indexmember = pos;
555 }
556
557 this->pop_back ();
558 }
559
560 void erase (T &obj)
561 {
562 erase (&obj);
563 }
564 };
565
566 // basically does what strncpy should do, but appends "..." to strings exceeding length
567 void assign (char *dst, const char *src, int maxlen);
568
569 // type-safe version of assign
570 template<int N>
571 inline void assign (char (&dst)[N], const char *src)
572 {
573 assign ((char *)&dst, src, N);
574 }
575
576 typedef double tstamp;
577
578 // return current time as timestamp
579 tstamp now ();
580
581 int similar_direction (int a, int b);
582
583 // like sprintf, but returns a "static" buffer
584 const char *format (const char *format, ...);
585
586 /////////////////////////////////////////////////////////////////////////////
587 // threads, very very thin wrappers around pthreads
588
589 struct thread
590 {
591 pthread_t id;
592
593 void start (void *(*start_routine)(void *), void *arg = 0);
594
595 void cancel ()
596 {
597 pthread_cancel (id);
598 }
599
600 void *join ()
601 {
602 void *ret;
603
604 if (pthread_join (id, &ret))
605 cleanup ("pthread_join failed", 1);
606
607 return ret;
608 }
609 };
610
611 // note that mutexes are not classes
612 typedef pthread_mutex_t smutex;
613
614 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
615 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
616 #else
617 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
618 #endif
619
620 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
621 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
622 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
623
624 typedef pthread_cond_t scond;
625
626 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
627 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
628 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
629 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
630
631 #endif
632