ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.82
Committed: Sat Dec 27 02:33:32 2008 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_74
Changes since 1.81: +3 -3 lines
Log Message:
optimise rng for powers of two

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 #else
34 # define is_constant(c) 0
35 # define expect(expr,value) (expr)
36 # define prefetch(addr,rw,locality)
37 #endif
38
39 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
40 # define decltype(x) typeof(x)
41 #endif
42
43 // put into ifs if you are very sure that the expression
44 // is mostly true or mosty false. note that these return
45 // booleans, not the expression.
46 #define expect_false(expr) expect ((expr) != 0, 0)
47 #define expect_true(expr) expect ((expr) != 0, 1)
48
49 #include <pthread.h>
50
51 #include <cstddef>
52 #include <cmath>
53 #include <new>
54 #include <vector>
55
56 #include <glib.h>
57
58 #include <shstr.h>
59 #include <traits.h>
60
61 #if DEBUG_SALLOC
62 # define g_slice_alloc0(s) debug_slice_alloc0(s)
63 # define g_slice_alloc(s) debug_slice_alloc(s)
64 # define g_slice_free1(s,p) debug_slice_free1(s,p)
65 void *g_slice_alloc (unsigned long size);
66 void *g_slice_alloc0 (unsigned long size);
67 void g_slice_free1 (unsigned long size, void *ptr);
68 #elif PREFER_MALLOC
69 # define g_slice_alloc0(s) calloc (1, (s))
70 # define g_slice_alloc(s) malloc ((s))
71 # define g_slice_free1(s,p) free ((p))
72 #endif
73
74 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
75 #define auto(var,expr) decltype(expr) var = (expr)
76
77 // very ugly macro that basically declares and initialises a variable
78 // that is in scope for the next statement only
79 // works only for stuff that can be assigned 0 and converts to false
80 // (note: works great for pointers)
81 // most ugly macro I ever wrote
82 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
83
84 // in range including end
85 #define IN_RANGE_INC(val,beg,end) \
86 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
87
88 // in range excluding end
89 #define IN_RANGE_EXC(val,beg,end) \
90 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
91
92 void cleanup (const char *cause, bool make_core = false);
93 void fork_abort (const char *msg);
94
95 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
96 // as a is often a constant while b is the variable. it is still a bug, though.
97 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
98 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
99 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
100
101 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
102 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
103 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
104
105 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
106
107 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
108 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
109
110 // sign returns -1 or +1
111 template<typename T>
112 static inline T sign (T v) { return v < 0 ? -1 : +1; }
113 // relies on 2c representation
114 template<>
115 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
116
117 // sign0 returns -1, 0 or +1
118 template<typename T>
119 static inline T sign0 (T v) { return v ? sign (v) : 0; }
120
121 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
122 template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
123 // div, round-up
124 template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
125 // div, round-down
126 template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
127
128 template<typename T>
129 static inline T
130 lerp (T val, T min_in, T max_in, T min_out, T max_out)
131 {
132 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
133 }
134
135 // lerp, round-down
136 template<typename T>
137 static inline T
138 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
139 {
140 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
141 }
142
143 // lerp, round-up
144 template<typename T>
145 static inline T
146 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
147 {
148 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
149 }
150
151 // lots of stuff taken from FXT
152
153 /* Rotate right. This is used in various places for checksumming */
154 //TODO: that sucks, use a better checksum algo
155 static inline uint32_t
156 rotate_right (uint32_t c, uint32_t count = 1)
157 {
158 return (c << (32 - count)) | (c >> count);
159 }
160
161 static inline uint32_t
162 rotate_left (uint32_t c, uint32_t count = 1)
163 {
164 return (c >> (32 - count)) | (c << count);
165 }
166
167 // Return abs(a-b)
168 // Both a and b must not have the most significant bit set
169 static inline uint32_t
170 upos_abs_diff (uint32_t a, uint32_t b)
171 {
172 long d1 = b - a;
173 long d2 = (d1 & (d1 >> 31)) << 1;
174
175 return d1 - d2; // == (b - d) - (a + d);
176 }
177
178 // Both a and b must not have the most significant bit set
179 static inline uint32_t
180 upos_min (uint32_t a, uint32_t b)
181 {
182 int32_t d = b - a;
183 d &= d >> 31;
184 return a + d;
185 }
186
187 // Both a and b must not have the most significant bit set
188 static inline uint32_t
189 upos_max (uint32_t a, uint32_t b)
190 {
191 int32_t d = b - a;
192 d &= d >> 31;
193 return b - d;
194 }
195
196 // this is much faster than crossfires original algorithm
197 // on modern cpus
198 inline int
199 isqrt (int n)
200 {
201 return (int)sqrtf ((float)n);
202 }
203
204 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
205 #if 0
206 // and has a max. error of 6 in the range -100..+100.
207 #else
208 // and has a max. error of 9 in the range -100..+100.
209 #endif
210 inline int
211 idistance (int dx, int dy)
212 {
213 unsigned int dx_ = abs (dx);
214 unsigned int dy_ = abs (dy);
215
216 #if 0
217 return dx_ > dy_
218 ? (dx_ * 61685 + dy_ * 26870) >> 16
219 : (dy_ * 61685 + dx_ * 26870) >> 16;
220 #else
221 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
222 #endif
223 }
224
225 /*
226 * absdir(int): Returns a number between 1 and 8, which represent
227 * the "absolute" direction of a number (it actually takes care of
228 * "overflow" in previous calculations of a direction).
229 */
230 inline int
231 absdir (int d)
232 {
233 return ((d - 1) & 7) + 1;
234 }
235
236 extern ssize_t slice_alloc; // statistics
237
238 void *salloc_ (int n) throw (std::bad_alloc);
239 void *salloc_ (int n, void *src) throw (std::bad_alloc);
240
241 // strictly the same as g_slice_alloc, but never returns 0
242 template<typename T>
243 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
244
245 // also copies src into the new area, like "memdup"
246 // if src is 0, clears the memory
247 template<typename T>
248 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
249
250 // clears the memory
251 template<typename T>
252 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
253
254 // for symmetry
255 template<typename T>
256 inline void sfree (T *ptr, int n = 1) throw ()
257 {
258 if (expect_true (ptr))
259 {
260 slice_alloc -= n * sizeof (T);
261 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
262 g_slice_free1 (n * sizeof (T), (void *)ptr);
263 assert (slice_alloc >= 0);//D
264 }
265 }
266
267 // nulls the pointer
268 template<typename T>
269 inline void sfree0 (T *&ptr, int n = 1) throw ()
270 {
271 sfree<T> (ptr, n);
272 ptr = 0;
273 }
274
275 // makes dynamically allocated objects zero-initialised
276 struct zero_initialised
277 {
278 void *operator new (size_t s, void *p)
279 {
280 memset (p, 0, s);
281 return p;
282 }
283
284 void *operator new (size_t s)
285 {
286 return salloc0<char> (s);
287 }
288
289 void *operator new[] (size_t s)
290 {
291 return salloc0<char> (s);
292 }
293
294 void operator delete (void *p, size_t s)
295 {
296 sfree ((char *)p, s);
297 }
298
299 void operator delete[] (void *p, size_t s)
300 {
301 sfree ((char *)p, s);
302 }
303 };
304
305 // makes dynamically allocated objects zero-initialised
306 struct slice_allocated
307 {
308 void *operator new (size_t s, void *p)
309 {
310 return p;
311 }
312
313 void *operator new (size_t s)
314 {
315 return salloc<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332 };
333
334 // a STL-compatible allocator that uses g_slice
335 // boy, this is verbose
336 template<typename Tp>
337 struct slice_allocator
338 {
339 typedef size_t size_type;
340 typedef ptrdiff_t difference_type;
341 typedef Tp *pointer;
342 typedef const Tp *const_pointer;
343 typedef Tp &reference;
344 typedef const Tp &const_reference;
345 typedef Tp value_type;
346
347 template <class U>
348 struct rebind
349 {
350 typedef slice_allocator<U> other;
351 };
352
353 slice_allocator () throw () { }
354 slice_allocator (const slice_allocator &) throw () { }
355 template<typename Tp2>
356 slice_allocator (const slice_allocator<Tp2> &) throw () { }
357
358 ~slice_allocator () { }
359
360 pointer address (reference x) const { return &x; }
361 const_pointer address (const_reference x) const { return &x; }
362
363 pointer allocate (size_type n, const_pointer = 0)
364 {
365 return salloc<Tp> (n);
366 }
367
368 void deallocate (pointer p, size_type n)
369 {
370 sfree<Tp> (p, n);
371 }
372
373 size_type max_size () const throw ()
374 {
375 return size_t (-1) / sizeof (Tp);
376 }
377
378 void construct (pointer p, const Tp &val)
379 {
380 ::new (p) Tp (val);
381 }
382
383 void destroy (pointer p)
384 {
385 p->~Tp ();
386 }
387 };
388
389 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
390 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
391 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
392 struct tausworthe_random_generator
393 {
394 // generator
395 uint32_t state [4];
396
397 void operator =(const tausworthe_random_generator &src)
398 {
399 state [0] = src.state [0];
400 state [1] = src.state [1];
401 state [2] = src.state [2];
402 state [3] = src.state [3];
403 }
404
405 void seed (uint32_t seed);
406 uint32_t next ();
407
408 // uniform distribution, 0 .. max (0, num - 1)
409 uint32_t operator ()(uint32_t num)
410 {
411 return !is_constant (num) ? get_range (num) // non-constant
412 : num & (num - 1) ? (next () * (uint64_t)num) >> 32U // constant, non-power-of-two
413 : next () & (num - 1); // constant, power-of-two
414 }
415
416 // return a number within (min .. max)
417 int operator () (int r_min, int r_max)
418 {
419 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
420 ? r_min + operator ()(r_max - r_min + 1)
421 : get_range (r_min, r_max);
422 }
423
424 double operator ()()
425 {
426 return this->next () / (double)0xFFFFFFFFU;
427 }
428
429 protected:
430 uint32_t get_range (uint32_t r_max);
431 int get_range (int r_min, int r_max);
432 };
433
434 typedef tausworthe_random_generator rand_gen;
435
436 extern rand_gen rndm, rmg_rndm;
437
438 INTERFACE_CLASS (attachable)
439 struct refcnt_base
440 {
441 typedef int refcnt_t;
442 mutable refcnt_t ACC (RW, refcnt);
443
444 MTH void refcnt_inc () const { ++refcnt; }
445 MTH void refcnt_dec () const { --refcnt; }
446
447 refcnt_base () : refcnt (0) { }
448 };
449
450 // to avoid branches with more advanced compilers
451 extern refcnt_base::refcnt_t refcnt_dummy;
452
453 template<class T>
454 struct refptr
455 {
456 // p if not null
457 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
458
459 void refcnt_dec ()
460 {
461 if (!is_constant (p))
462 --*refcnt_ref ();
463 else if (p)
464 --p->refcnt;
465 }
466
467 void refcnt_inc ()
468 {
469 if (!is_constant (p))
470 ++*refcnt_ref ();
471 else if (p)
472 ++p->refcnt;
473 }
474
475 T *p;
476
477 refptr () : p(0) { }
478 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
479 refptr (T *p) : p(p) { refcnt_inc (); }
480 ~refptr () { refcnt_dec (); }
481
482 const refptr<T> &operator =(T *o)
483 {
484 // if decrementing ever destroys we need to reverse the order here
485 refcnt_dec ();
486 p = o;
487 refcnt_inc ();
488 return *this;
489 }
490
491 const refptr<T> &operator =(const refptr<T> &o)
492 {
493 *this = o.p;
494 return *this;
495 }
496
497 T &operator * () const { return *p; }
498 T *operator ->() const { return p; }
499
500 operator T *() const { return p; }
501 };
502
503 typedef refptr<maptile> maptile_ptr;
504 typedef refptr<object> object_ptr;
505 typedef refptr<archetype> arch_ptr;
506 typedef refptr<client> client_ptr;
507 typedef refptr<player> player_ptr;
508
509 struct str_hash
510 {
511 std::size_t operator ()(const char *s) const
512 {
513 unsigned long hash = 0;
514
515 /* use the one-at-a-time hash function, which supposedly is
516 * better than the djb2-like one used by perl5.005, but
517 * certainly is better then the bug used here before.
518 * see http://burtleburtle.net/bob/hash/doobs.html
519 */
520 while (*s)
521 {
522 hash += *s++;
523 hash += hash << 10;
524 hash ^= hash >> 6;
525 }
526
527 hash += hash << 3;
528 hash ^= hash >> 11;
529 hash += hash << 15;
530
531 return hash;
532 }
533 };
534
535 struct str_equal
536 {
537 bool operator ()(const char *a, const char *b) const
538 {
539 return !strcmp (a, b);
540 }
541 };
542
543 // Mostly the same as std::vector, but insert/erase can reorder
544 // the elements, making append(=insert)/remove O(1) instead of O(n).
545 //
546 // NOTE: only some forms of erase are available
547 template<class T>
548 struct unordered_vector : std::vector<T, slice_allocator<T> >
549 {
550 typedef typename unordered_vector::iterator iterator;
551
552 void erase (unsigned int pos)
553 {
554 if (pos < this->size () - 1)
555 (*this)[pos] = (*this)[this->size () - 1];
556
557 this->pop_back ();
558 }
559
560 void erase (iterator i)
561 {
562 erase ((unsigned int )(i - this->begin ()));
563 }
564 };
565
566 // This container blends advantages of linked lists
567 // (efficiency) with vectors (random access) by
568 // by using an unordered vector and storing the vector
569 // index inside the object.
570 //
571 // + memory-efficient on most 64 bit archs
572 // + O(1) insert/remove
573 // + free unique (but varying) id for inserted objects
574 // + cache-friendly iteration
575 // - only works for pointers to structs
576 //
577 // NOTE: only some forms of erase/insert are available
578 typedef int object_vector_index;
579
580 template<class T, object_vector_index T::*indexmember>
581 struct object_vector : std::vector<T *, slice_allocator<T *> >
582 {
583 typedef typename object_vector::iterator iterator;
584
585 bool contains (const T *obj) const
586 {
587 return obj->*indexmember;
588 }
589
590 iterator find (const T *obj)
591 {
592 return obj->*indexmember
593 ? this->begin () + obj->*indexmember - 1
594 : this->end ();
595 }
596
597 void push_back (T *obj)
598 {
599 std::vector<T *, slice_allocator<T *> >::push_back (obj);
600 obj->*indexmember = this->size ();
601 }
602
603 void insert (T *obj)
604 {
605 push_back (obj);
606 }
607
608 void insert (T &obj)
609 {
610 insert (&obj);
611 }
612
613 void erase (T *obj)
614 {
615 unsigned int pos = obj->*indexmember;
616 obj->*indexmember = 0;
617
618 if (pos < this->size ())
619 {
620 (*this)[pos - 1] = (*this)[this->size () - 1];
621 (*this)[pos - 1]->*indexmember = pos;
622 }
623
624 this->pop_back ();
625 }
626
627 void erase (T &obj)
628 {
629 erase (&obj);
630 }
631 };
632
633 // basically does what strncpy should do, but appends "..." to strings exceeding length
634 void assign (char *dst, const char *src, int maxlen);
635
636 // type-safe version of assign
637 template<int N>
638 inline void assign (char (&dst)[N], const char *src)
639 {
640 assign ((char *)&dst, src, N);
641 }
642
643 typedef double tstamp;
644
645 // return current time as timestamp
646 tstamp now ();
647
648 int similar_direction (int a, int b);
649
650 // like sprintf, but returns a "static" buffer
651 const char *format (const char *format, ...);
652
653 /////////////////////////////////////////////////////////////////////////////
654 // threads, very very thin wrappers around pthreads
655
656 struct thread
657 {
658 pthread_t id;
659
660 void start (void *(*start_routine)(void *), void *arg = 0);
661
662 void cancel ()
663 {
664 pthread_cancel (id);
665 }
666
667 void *join ()
668 {
669 void *ret;
670
671 if (pthread_join (id, &ret))
672 cleanup ("pthread_join failed", 1);
673
674 return ret;
675 }
676 };
677
678 // note that mutexes are not classes
679 typedef pthread_mutex_t smutex;
680
681 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
682 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
683 #else
684 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
685 #endif
686
687 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
688 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
689 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
690
691 typedef pthread_cond_t scond;
692
693 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
694 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
695 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
696 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
697
698 #endif
699