ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.85
Committed: Thu Jan 1 20:49:48 2009 UTC (15 years, 4 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.84: +2 -0 lines
Log Message:
slim down perl interface

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The authors can be reached via e-mail to <support@deliantra.net>
20 */
21
22 #ifndef UTIL_H__
23 #define UTIL_H__
24
25 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
26 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
27 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
28
29 #if __GNUC__ >= 3
30 # define is_constant(c) __builtin_constant_p (c)
31 # define expect(expr,value) __builtin_expect ((expr),(value))
32 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
33 # define noinline __attribute__((__noinline__))
34 #else
35 # define is_constant(c) 0
36 # define expect(expr,value) (expr)
37 # define prefetch(addr,rw,locality)
38 # define noinline
39 #endif
40
41 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
42 # define decltype(x) typeof(x)
43 #endif
44
45 // put into ifs if you are very sure that the expression
46 // is mostly true or mosty false. note that these return
47 // booleans, not the expression.
48 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
49 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
50
51 #include <pthread.h>
52
53 #include <cstddef>
54 #include <cmath>
55 #include <new>
56 #include <vector>
57
58 #include <glib.h>
59
60 #include <shstr.h>
61 #include <traits.h>
62
63 #if DEBUG_SALLOC
64 # define g_slice_alloc0(s) debug_slice_alloc0(s)
65 # define g_slice_alloc(s) debug_slice_alloc(s)
66 # define g_slice_free1(s,p) debug_slice_free1(s,p)
67 void *g_slice_alloc (unsigned long size);
68 void *g_slice_alloc0 (unsigned long size);
69 void g_slice_free1 (unsigned long size, void *ptr);
70 #elif PREFER_MALLOC
71 # define g_slice_alloc0(s) calloc (1, (s))
72 # define g_slice_alloc(s) malloc ((s))
73 # define g_slice_free1(s,p) free ((p))
74 #endif
75
76 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
77 #define auto(var,expr) decltype(expr) var = (expr)
78
79 // very ugly macro that basically declares and initialises a variable
80 // that is in scope for the next statement only
81 // works only for stuff that can be assigned 0 and converts to false
82 // (note: works great for pointers)
83 // most ugly macro I ever wrote
84 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
85
86 // in range including end
87 #define IN_RANGE_INC(val,beg,end) \
88 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
89
90 // in range excluding end
91 #define IN_RANGE_EXC(val,beg,end) \
92 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
93
94 void cleanup (const char *cause, bool make_core = false);
95 void fork_abort (const char *msg);
96
97 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
98 // as a is often a constant while b is the variable. it is still a bug, though.
99 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
100 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
101 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
102
103 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
104 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
105 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
106
107 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
108
109 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
110 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
111
112 // sign returns -1 or +1
113 template<typename T>
114 static inline T sign (T v) { return v < 0 ? -1 : +1; }
115 // relies on 2c representation
116 template<>
117 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
118
119 // sign0 returns -1, 0 or +1
120 template<typename T>
121 static inline T sign0 (T v) { return v ? sign (v) : 0; }
122
123 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
124 template<typename T> static inline T div (T val, T div) { return (val + div / 2) / div; }
125 // div, round-up
126 template<typename T> static inline T div_ru (T val, T div) { return (val + div - 1) / div; }
127 // div, round-down
128 template<typename T> static inline T div_rd (T val, T div) { return (val ) / div; }
129
130 template<typename T>
131 static inline T
132 lerp (T val, T min_in, T max_in, T min_out, T max_out)
133 {
134 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
135 }
136
137 // lerp, round-down
138 template<typename T>
139 static inline T
140 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
141 {
142 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
143 }
144
145 // lerp, round-up
146 template<typename T>
147 static inline T
148 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
149 {
150 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
151 }
152
153 // lots of stuff taken from FXT
154
155 /* Rotate right. This is used in various places for checksumming */
156 //TODO: that sucks, use a better checksum algo
157 static inline uint32_t
158 rotate_right (uint32_t c, uint32_t count = 1)
159 {
160 return (c << (32 - count)) | (c >> count);
161 }
162
163 static inline uint32_t
164 rotate_left (uint32_t c, uint32_t count = 1)
165 {
166 return (c >> (32 - count)) | (c << count);
167 }
168
169 // Return abs(a-b)
170 // Both a and b must not have the most significant bit set
171 static inline uint32_t
172 upos_abs_diff (uint32_t a, uint32_t b)
173 {
174 long d1 = b - a;
175 long d2 = (d1 & (d1 >> 31)) << 1;
176
177 return d1 - d2; // == (b - d) - (a + d);
178 }
179
180 // Both a and b must not have the most significant bit set
181 static inline uint32_t
182 upos_min (uint32_t a, uint32_t b)
183 {
184 int32_t d = b - a;
185 d &= d >> 31;
186 return a + d;
187 }
188
189 // Both a and b must not have the most significant bit set
190 static inline uint32_t
191 upos_max (uint32_t a, uint32_t b)
192 {
193 int32_t d = b - a;
194 d &= d >> 31;
195 return b - d;
196 }
197
198 // this is much faster than crossfires original algorithm
199 // on modern cpus
200 inline int
201 isqrt (int n)
202 {
203 return (int)sqrtf ((float)n);
204 }
205
206 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
207 #if 0
208 // and has a max. error of 6 in the range -100..+100.
209 #else
210 // and has a max. error of 9 in the range -100..+100.
211 #endif
212 inline int
213 idistance (int dx, int dy)
214 {
215 unsigned int dx_ = abs (dx);
216 unsigned int dy_ = abs (dy);
217
218 #if 0
219 return dx_ > dy_
220 ? (dx_ * 61685 + dy_ * 26870) >> 16
221 : (dy_ * 61685 + dx_ * 26870) >> 16;
222 #else
223 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
224 #endif
225 }
226
227 /*
228 * absdir(int): Returns a number between 1 and 8, which represent
229 * the "absolute" direction of a number (it actually takes care of
230 * "overflow" in previous calculations of a direction).
231 */
232 inline int
233 absdir (int d)
234 {
235 return ((d - 1) & 7) + 1;
236 }
237
238 extern ssize_t slice_alloc; // statistics
239
240 void *salloc_ (int n) throw (std::bad_alloc);
241 void *salloc_ (int n, void *src) throw (std::bad_alloc);
242
243 // strictly the same as g_slice_alloc, but never returns 0
244 template<typename T>
245 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
246
247 // also copies src into the new area, like "memdup"
248 // if src is 0, clears the memory
249 template<typename T>
250 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
251
252 // clears the memory
253 template<typename T>
254 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
255
256 // for symmetry
257 template<typename T>
258 inline void sfree (T *ptr, int n = 1) throw ()
259 {
260 if (expect_true (ptr))
261 {
262 slice_alloc -= n * sizeof (T);
263 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
264 g_slice_free1 (n * sizeof (T), (void *)ptr);
265 assert (slice_alloc >= 0);//D
266 }
267 }
268
269 // nulls the pointer
270 template<typename T>
271 inline void sfree0 (T *&ptr, int n = 1) throw ()
272 {
273 sfree<T> (ptr, n);
274 ptr = 0;
275 }
276
277 // makes dynamically allocated objects zero-initialised
278 struct zero_initialised
279 {
280 void *operator new (size_t s, void *p)
281 {
282 memset (p, 0, s);
283 return p;
284 }
285
286 void *operator new (size_t s)
287 {
288 return salloc0<char> (s);
289 }
290
291 void *operator new[] (size_t s)
292 {
293 return salloc0<char> (s);
294 }
295
296 void operator delete (void *p, size_t s)
297 {
298 sfree ((char *)p, s);
299 }
300
301 void operator delete[] (void *p, size_t s)
302 {
303 sfree ((char *)p, s);
304 }
305 };
306
307 // makes dynamically allocated objects zero-initialised
308 struct slice_allocated
309 {
310 void *operator new (size_t s, void *p)
311 {
312 return p;
313 }
314
315 void *operator new (size_t s)
316 {
317 return salloc<char> (s);
318 }
319
320 void *operator new[] (size_t s)
321 {
322 return salloc<char> (s);
323 }
324
325 void operator delete (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329
330 void operator delete[] (void *p, size_t s)
331 {
332 sfree ((char *)p, s);
333 }
334 };
335
336 // a STL-compatible allocator that uses g_slice
337 // boy, this is verbose
338 template<typename Tp>
339 struct slice_allocator
340 {
341 typedef size_t size_type;
342 typedef ptrdiff_t difference_type;
343 typedef Tp *pointer;
344 typedef const Tp *const_pointer;
345 typedef Tp &reference;
346 typedef const Tp &const_reference;
347 typedef Tp value_type;
348
349 template <class U>
350 struct rebind
351 {
352 typedef slice_allocator<U> other;
353 };
354
355 slice_allocator () throw () { }
356 slice_allocator (const slice_allocator &) throw () { }
357 template<typename Tp2>
358 slice_allocator (const slice_allocator<Tp2> &) throw () { }
359
360 ~slice_allocator () { }
361
362 pointer address (reference x) const { return &x; }
363 const_pointer address (const_reference x) const { return &x; }
364
365 pointer allocate (size_type n, const_pointer = 0)
366 {
367 return salloc<Tp> (n);
368 }
369
370 void deallocate (pointer p, size_type n)
371 {
372 sfree<Tp> (p, n);
373 }
374
375 size_type max_size () const throw ()
376 {
377 return size_t (-1) / sizeof (Tp);
378 }
379
380 void construct (pointer p, const Tp &val)
381 {
382 ::new (p) Tp (val);
383 }
384
385 void destroy (pointer p)
386 {
387 p->~Tp ();
388 }
389 };
390
391 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
392 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
393 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
394 struct tausworthe_random_generator
395 {
396 uint32_t state [4];
397
398 void operator =(const tausworthe_random_generator &src)
399 {
400 state [0] = src.state [0];
401 state [1] = src.state [1];
402 state [2] = src.state [2];
403 state [3] = src.state [3];
404 }
405
406 void seed (uint32_t seed);
407 uint32_t next ();
408 };
409
410 // Xorshift RNGs, George Marsaglia
411 // http://www.jstatsoft.org/v08/i14/paper
412 // this one is about 40% faster than the tausworthe one above (i.e. not much),
413 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
414 struct xorshift_random_generator
415 {
416 uint32_t x, y;
417
418 void operator =(const xorshift_random_generator &src)
419 {
420 x = src.x;
421 y = src.y;
422 }
423
424 void seed (uint32_t seed)
425 {
426 x = seed;
427 y = seed * 69069U;
428 }
429
430 uint32_t next ()
431 {
432 uint32_t t = x ^ (x << 10);
433 x = y;
434 y = y ^ (y >> 13) ^ t ^ (t >> 10);
435 return y;
436 }
437 };
438
439 template<class generator>
440 struct random_number_generator : generator
441 {
442 // uniform distribution, 0 .. max (0, num - 1)
443 uint32_t operator ()(uint32_t num)
444 {
445 return !is_constant (num) ? get_range (num) // non-constant
446 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
447 : this->next () & (num - 1); // constant, power-of-two
448 }
449
450 // return a number within (min .. max)
451 int operator () (int r_min, int r_max)
452 {
453 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
454 ? r_min + operator ()(r_max - r_min + 1)
455 : get_range (r_min, r_max);
456 }
457
458 double operator ()()
459 {
460 return this->next () / (double)0xFFFFFFFFU;
461 }
462
463 protected:
464 uint32_t get_range (uint32_t r_max);
465 int get_range (int r_min, int r_max);
466 };
467
468 typedef random_number_generator<tausworthe_random_generator> rand_gen;
469
470 extern rand_gen rndm, rmg_rndm;
471
472 INTERFACE_CLASS (attachable)
473 struct refcnt_base
474 {
475 typedef int refcnt_t;
476 mutable refcnt_t ACC (RW, refcnt);
477
478 MTH void refcnt_inc () const { ++refcnt; }
479 MTH void refcnt_dec () const { --refcnt; }
480
481 refcnt_base () : refcnt (0) { }
482 };
483
484 // to avoid branches with more advanced compilers
485 extern refcnt_base::refcnt_t refcnt_dummy;
486
487 template<class T>
488 struct refptr
489 {
490 // p if not null
491 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
492
493 void refcnt_dec ()
494 {
495 if (!is_constant (p))
496 --*refcnt_ref ();
497 else if (p)
498 --p->refcnt;
499 }
500
501 void refcnt_inc ()
502 {
503 if (!is_constant (p))
504 ++*refcnt_ref ();
505 else if (p)
506 ++p->refcnt;
507 }
508
509 T *p;
510
511 refptr () : p(0) { }
512 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
513 refptr (T *p) : p(p) { refcnt_inc (); }
514 ~refptr () { refcnt_dec (); }
515
516 const refptr<T> &operator =(T *o)
517 {
518 // if decrementing ever destroys we need to reverse the order here
519 refcnt_dec ();
520 p = o;
521 refcnt_inc ();
522 return *this;
523 }
524
525 const refptr<T> &operator =(const refptr<T> &o)
526 {
527 *this = o.p;
528 return *this;
529 }
530
531 T &operator * () const { return *p; }
532 T *operator ->() const { return p; }
533
534 operator T *() const { return p; }
535 };
536
537 typedef refptr<maptile> maptile_ptr;
538 typedef refptr<object> object_ptr;
539 typedef refptr<archetype> arch_ptr;
540 typedef refptr<client> client_ptr;
541 typedef refptr<player> player_ptr;
542
543 struct str_hash
544 {
545 std::size_t operator ()(const char *s) const
546 {
547 #if 0
548 uint32_t hash = 0;
549
550 /* use the one-at-a-time hash function, which supposedly is
551 * better than the djb2-like one used by perl5.005, but
552 * certainly is better then the bug used here before.
553 * see http://burtleburtle.net/bob/hash/doobs.html
554 */
555 while (*s)
556 {
557 hash += *s++;
558 hash += hash << 10;
559 hash ^= hash >> 6;
560 }
561
562 hash += hash << 3;
563 hash ^= hash >> 11;
564 hash += hash << 15;
565 #else
566 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
567 // it is about twice as fast as the one-at-a-time one,
568 // with good distribution.
569 // FNV-1a is faster on many cpus because the multiplication
570 // runs concurrent with the looping logic.
571 uint32_t hash = 2166136261;
572
573 while (*s)
574 hash = (hash ^ *s++) * 16777619;
575 #endif
576
577 return hash;
578 }
579 };
580
581 struct str_equal
582 {
583 bool operator ()(const char *a, const char *b) const
584 {
585 return !strcmp (a, b);
586 }
587 };
588
589 // Mostly the same as std::vector, but insert/erase can reorder
590 // the elements, making append(=insert)/remove O(1) instead of O(n).
591 //
592 // NOTE: only some forms of erase are available
593 template<class T>
594 struct unordered_vector : std::vector<T, slice_allocator<T> >
595 {
596 typedef typename unordered_vector::iterator iterator;
597
598 void erase (unsigned int pos)
599 {
600 if (pos < this->size () - 1)
601 (*this)[pos] = (*this)[this->size () - 1];
602
603 this->pop_back ();
604 }
605
606 void erase (iterator i)
607 {
608 erase ((unsigned int )(i - this->begin ()));
609 }
610 };
611
612 // This container blends advantages of linked lists
613 // (efficiency) with vectors (random access) by
614 // by using an unordered vector and storing the vector
615 // index inside the object.
616 //
617 // + memory-efficient on most 64 bit archs
618 // + O(1) insert/remove
619 // + free unique (but varying) id for inserted objects
620 // + cache-friendly iteration
621 // - only works for pointers to structs
622 //
623 // NOTE: only some forms of erase/insert are available
624 typedef int object_vector_index;
625
626 template<class T, object_vector_index T::*indexmember>
627 struct object_vector : std::vector<T *, slice_allocator<T *> >
628 {
629 typedef typename object_vector::iterator iterator;
630
631 bool contains (const T *obj) const
632 {
633 return obj->*indexmember;
634 }
635
636 iterator find (const T *obj)
637 {
638 return obj->*indexmember
639 ? this->begin () + obj->*indexmember - 1
640 : this->end ();
641 }
642
643 void push_back (T *obj)
644 {
645 std::vector<T *, slice_allocator<T *> >::push_back (obj);
646 obj->*indexmember = this->size ();
647 }
648
649 void insert (T *obj)
650 {
651 push_back (obj);
652 }
653
654 void insert (T &obj)
655 {
656 insert (&obj);
657 }
658
659 void erase (T *obj)
660 {
661 unsigned int pos = obj->*indexmember;
662 obj->*indexmember = 0;
663
664 if (pos < this->size ())
665 {
666 (*this)[pos - 1] = (*this)[this->size () - 1];
667 (*this)[pos - 1]->*indexmember = pos;
668 }
669
670 this->pop_back ();
671 }
672
673 void erase (T &obj)
674 {
675 erase (&obj);
676 }
677 };
678
679 // basically does what strncpy should do, but appends "..." to strings exceeding length
680 void assign (char *dst, const char *src, int maxlen);
681
682 // type-safe version of assign
683 template<int N>
684 inline void assign (char (&dst)[N], const char *src)
685 {
686 assign ((char *)&dst, src, N);
687 }
688
689 typedef double tstamp;
690
691 // return current time as timestamp
692 tstamp now ();
693
694 int similar_direction (int a, int b);
695
696 // like sprintf, but returns a "static" buffer
697 const char *format (const char *format, ...);
698
699 /////////////////////////////////////////////////////////////////////////////
700 // threads, very very thin wrappers around pthreads
701
702 struct thread
703 {
704 pthread_t id;
705
706 void start (void *(*start_routine)(void *), void *arg = 0);
707
708 void cancel ()
709 {
710 pthread_cancel (id);
711 }
712
713 void *join ()
714 {
715 void *ret;
716
717 if (pthread_join (id, &ret))
718 cleanup ("pthread_join failed", 1);
719
720 return ret;
721 }
722 };
723
724 // note that mutexes are not classes
725 typedef pthread_mutex_t smutex;
726
727 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
728 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
729 #else
730 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
731 #endif
732
733 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
734 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
735 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
736
737 typedef pthread_cond_t scond;
738
739 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
740 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
741 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
742 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
743
744 #endif
745