ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.90
Committed: Mon Oct 12 14:00:58 2009 UTC (14 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_81
Changes since 1.89: +7 -6 lines
Log Message:
clarify license

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
29
30 #if __GNUC__ >= 3
31 # define is_constant(c) __builtin_constant_p (c)
32 # define expect(expr,value) __builtin_expect ((expr),(value))
33 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34 # define noinline __attribute__((__noinline__))
35 #else
36 # define is_constant(c) 0
37 # define expect(expr,value) (expr)
38 # define prefetch(addr,rw,locality)
39 # define noinline
40 #endif
41
42 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43 # define decltype(x) typeof(x)
44 #endif
45
46 // put into ifs if you are very sure that the expression
47 // is mostly true or mosty false. note that these return
48 // booleans, not the expression.
49 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52 #include <pthread.h>
53
54 #include <cstddef>
55 #include <cmath>
56 #include <new>
57 #include <vector>
58
59 #include <glib.h>
60
61 #include <shstr.h>
62 #include <traits.h>
63
64 #if DEBUG_SALLOC
65 # define g_slice_alloc0(s) debug_slice_alloc0(s)
66 # define g_slice_alloc(s) debug_slice_alloc(s)
67 # define g_slice_free1(s,p) debug_slice_free1(s,p)
68 void *g_slice_alloc (unsigned long size);
69 void *g_slice_alloc0 (unsigned long size);
70 void g_slice_free1 (unsigned long size, void *ptr);
71 #elif PREFER_MALLOC
72 # define g_slice_alloc0(s) calloc (1, (s))
73 # define g_slice_alloc(s) malloc ((s))
74 # define g_slice_free1(s,p) free ((p))
75 #endif
76
77 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
78 #define auto(var,expr) decltype(expr) var = (expr)
79
80 // very ugly macro that basically declares and initialises a variable
81 // that is in scope for the next statement only
82 // works only for stuff that can be assigned 0 and converts to false
83 // (note: works great for pointers)
84 // most ugly macro I ever wrote
85 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
86
87 // in range including end
88 #define IN_RANGE_INC(val,beg,end) \
89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
90
91 // in range excluding end
92 #define IN_RANGE_EXC(val,beg,end) \
93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94
95 void cleanup (const char *cause, bool make_core = false);
96 void fork_abort (const char *msg);
97
98 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
99 // as a is often a constant while b is the variable. it is still a bug, though.
100 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103
104 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
108 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109
110 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113 // sign returns -1 or +1
114 template<typename T>
115 static inline T sign (T v) { return v < 0 ? -1 : +1; }
116 // relies on 2c representation
117 template<>
118 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120 // sign0 returns -1, 0 or +1
121 template<typename T>
122 static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124 // div* only work correctly for div > 0
125 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126 template<typename T> static inline T div (T val, T div)
127 {
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129 }
130 // div, round-up
131 template<typename T> static inline T div_ru (T val, T div)
132 {
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134 }
135 // div, round-down
136 template<typename T> static inline T div_rd (T val, T div)
137 {
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139 }
140
141 // lerp* only work correctly for min_in < max_in
142 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143 template<typename T>
144 static inline T
145 lerp (T val, T min_in, T max_in, T min_out, T max_out)
146 {
147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148 }
149
150 // lerp, round-down
151 template<typename T>
152 static inline T
153 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154 {
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 }
157
158 // lerp, round-up
159 template<typename T>
160 static inline T
161 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162 {
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164 }
165
166 // lots of stuff taken from FXT
167
168 /* Rotate right. This is used in various places for checksumming */
169 //TODO: that sucks, use a better checksum algo
170 static inline uint32_t
171 rotate_right (uint32_t c, uint32_t count = 1)
172 {
173 return (c << (32 - count)) | (c >> count);
174 }
175
176 static inline uint32_t
177 rotate_left (uint32_t c, uint32_t count = 1)
178 {
179 return (c >> (32 - count)) | (c << count);
180 }
181
182 // Return abs(a-b)
183 // Both a and b must not have the most significant bit set
184 static inline uint32_t
185 upos_abs_diff (uint32_t a, uint32_t b)
186 {
187 long d1 = b - a;
188 long d2 = (d1 & (d1 >> 31)) << 1;
189
190 return d1 - d2; // == (b - d) - (a + d);
191 }
192
193 // Both a and b must not have the most significant bit set
194 static inline uint32_t
195 upos_min (uint32_t a, uint32_t b)
196 {
197 int32_t d = b - a;
198 d &= d >> 31;
199 return a + d;
200 }
201
202 // Both a and b must not have the most significant bit set
203 static inline uint32_t
204 upos_max (uint32_t a, uint32_t b)
205 {
206 int32_t d = b - a;
207 d &= d >> 31;
208 return b - d;
209 }
210
211 // this is much faster than crossfires original algorithm
212 // on modern cpus
213 inline int
214 isqrt (int n)
215 {
216 return (int)sqrtf ((float)n);
217 }
218
219 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
220 #if 0
221 // and has a max. error of 6 in the range -100..+100.
222 #else
223 // and has a max. error of 9 in the range -100..+100.
224 #endif
225 inline int
226 idistance (int dx, int dy)
227 {
228 unsigned int dx_ = abs (dx);
229 unsigned int dy_ = abs (dy);
230
231 #if 0
232 return dx_ > dy_
233 ? (dx_ * 61685 + dy_ * 26870) >> 16
234 : (dy_ * 61685 + dx_ * 26870) >> 16;
235 #else
236 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
237 #endif
238 }
239
240 /*
241 * absdir(int): Returns a number between 1 and 8, which represent
242 * the "absolute" direction of a number (it actually takes care of
243 * "overflow" in previous calculations of a direction).
244 */
245 inline int
246 absdir (int d)
247 {
248 return ((d - 1) & 7) + 1;
249 }
250
251 extern ssize_t slice_alloc; // statistics
252
253 void *salloc_ (int n) throw (std::bad_alloc);
254 void *salloc_ (int n, void *src) throw (std::bad_alloc);
255
256 // strictly the same as g_slice_alloc, but never returns 0
257 template<typename T>
258 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
259
260 // also copies src into the new area, like "memdup"
261 // if src is 0, clears the memory
262 template<typename T>
263 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
264
265 // clears the memory
266 template<typename T>
267 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
268
269 // for symmetry
270 template<typename T>
271 inline void sfree (T *ptr, int n = 1) throw ()
272 {
273 if (expect_true (ptr))
274 {
275 slice_alloc -= n * sizeof (T);
276 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
277 g_slice_free1 (n * sizeof (T), (void *)ptr);
278 assert (slice_alloc >= 0);//D
279 }
280 }
281
282 // nulls the pointer
283 template<typename T>
284 inline void sfree0 (T *&ptr, int n = 1) throw ()
285 {
286 sfree<T> (ptr, n);
287 ptr = 0;
288 }
289
290 // makes dynamically allocated objects zero-initialised
291 struct zero_initialised
292 {
293 void *operator new (size_t s, void *p)
294 {
295 memset (p, 0, s);
296 return p;
297 }
298
299 void *operator new (size_t s)
300 {
301 return salloc0<char> (s);
302 }
303
304 void *operator new[] (size_t s)
305 {
306 return salloc0<char> (s);
307 }
308
309 void operator delete (void *p, size_t s)
310 {
311 sfree ((char *)p, s);
312 }
313
314 void operator delete[] (void *p, size_t s)
315 {
316 sfree ((char *)p, s);
317 }
318 };
319
320 // makes dynamically allocated objects zero-initialised
321 struct slice_allocated
322 {
323 void *operator new (size_t s, void *p)
324 {
325 return p;
326 }
327
328 void *operator new (size_t s)
329 {
330 return salloc<char> (s);
331 }
332
333 void *operator new[] (size_t s)
334 {
335 return salloc<char> (s);
336 }
337
338 void operator delete (void *p, size_t s)
339 {
340 sfree ((char *)p, s);
341 }
342
343 void operator delete[] (void *p, size_t s)
344 {
345 sfree ((char *)p, s);
346 }
347 };
348
349 // a STL-compatible allocator that uses g_slice
350 // boy, this is verbose
351 template<typename Tp>
352 struct slice_allocator
353 {
354 typedef size_t size_type;
355 typedef ptrdiff_t difference_type;
356 typedef Tp *pointer;
357 typedef const Tp *const_pointer;
358 typedef Tp &reference;
359 typedef const Tp &const_reference;
360 typedef Tp value_type;
361
362 template <class U>
363 struct rebind
364 {
365 typedef slice_allocator<U> other;
366 };
367
368 slice_allocator () throw () { }
369 slice_allocator (const slice_allocator &) throw () { }
370 template<typename Tp2>
371 slice_allocator (const slice_allocator<Tp2> &) throw () { }
372
373 ~slice_allocator () { }
374
375 pointer address (reference x) const { return &x; }
376 const_pointer address (const_reference x) const { return &x; }
377
378 pointer allocate (size_type n, const_pointer = 0)
379 {
380 return salloc<Tp> (n);
381 }
382
383 void deallocate (pointer p, size_type n)
384 {
385 sfree<Tp> (p, n);
386 }
387
388 size_type max_size () const throw ()
389 {
390 return size_t (-1) / sizeof (Tp);
391 }
392
393 void construct (pointer p, const Tp &val)
394 {
395 ::new (p) Tp (val);
396 }
397
398 void destroy (pointer p)
399 {
400 p->~Tp ();
401 }
402 };
403
404 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
405 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
406 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
407 struct tausworthe_random_generator
408 {
409 uint32_t state [4];
410
411 void operator =(const tausworthe_random_generator &src)
412 {
413 state [0] = src.state [0];
414 state [1] = src.state [1];
415 state [2] = src.state [2];
416 state [3] = src.state [3];
417 }
418
419 void seed (uint32_t seed);
420 uint32_t next ();
421 };
422
423 // Xorshift RNGs, George Marsaglia
424 // http://www.jstatsoft.org/v08/i14/paper
425 // this one is about 40% faster than the tausworthe one above (i.e. not much),
426 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
427 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
428 struct xorshift_random_generator
429 {
430 uint32_t x, y;
431
432 void operator =(const xorshift_random_generator &src)
433 {
434 x = src.x;
435 y = src.y;
436 }
437
438 void seed (uint32_t seed)
439 {
440 x = seed;
441 y = seed * 69069U;
442 }
443
444 uint32_t next ()
445 {
446 uint32_t t = x ^ (x << 10);
447 x = y;
448 y = y ^ (y >> 13) ^ t ^ (t >> 10);
449 return y;
450 }
451 };
452
453 template<class generator>
454 struct random_number_generator : generator
455 {
456 // uniform distribution, 0 .. max (0, num - 1)
457 uint32_t operator ()(uint32_t num)
458 {
459 return !is_constant (num) ? get_range (num) // non-constant
460 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
461 : this->next () & (num - 1); // constant, power-of-two
462 }
463
464 // return a number within (min .. max)
465 int operator () (int r_min, int r_max)
466 {
467 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
468 ? r_min + operator ()(r_max - r_min + 1)
469 : get_range (r_min, r_max);
470 }
471
472 double operator ()()
473 {
474 return this->next () / (double)0xFFFFFFFFU;
475 }
476
477 protected:
478 uint32_t get_range (uint32_t r_max);
479 int get_range (int r_min, int r_max);
480 };
481
482 typedef random_number_generator<tausworthe_random_generator> rand_gen;
483
484 extern rand_gen rndm, rmg_rndm;
485
486 INTERFACE_CLASS (attachable)
487 struct refcnt_base
488 {
489 typedef int refcnt_t;
490 mutable refcnt_t ACC (RW, refcnt);
491
492 MTH void refcnt_inc () const { ++refcnt; }
493 MTH void refcnt_dec () const { --refcnt; }
494
495 refcnt_base () : refcnt (0) { }
496 };
497
498 // to avoid branches with more advanced compilers
499 extern refcnt_base::refcnt_t refcnt_dummy;
500
501 template<class T>
502 struct refptr
503 {
504 // p if not null
505 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
506
507 void refcnt_dec ()
508 {
509 if (!is_constant (p))
510 --*refcnt_ref ();
511 else if (p)
512 --p->refcnt;
513 }
514
515 void refcnt_inc ()
516 {
517 if (!is_constant (p))
518 ++*refcnt_ref ();
519 else if (p)
520 ++p->refcnt;
521 }
522
523 T *p;
524
525 refptr () : p(0) { }
526 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
527 refptr (T *p) : p(p) { refcnt_inc (); }
528 ~refptr () { refcnt_dec (); }
529
530 const refptr<T> &operator =(T *o)
531 {
532 // if decrementing ever destroys we need to reverse the order here
533 refcnt_dec ();
534 p = o;
535 refcnt_inc ();
536 return *this;
537 }
538
539 const refptr<T> &operator =(const refptr<T> &o)
540 {
541 *this = o.p;
542 return *this;
543 }
544
545 T &operator * () const { return *p; }
546 T *operator ->() const { return p; }
547
548 operator T *() const { return p; }
549 };
550
551 typedef refptr<maptile> maptile_ptr;
552 typedef refptr<object> object_ptr;
553 typedef refptr<archetype> arch_ptr;
554 typedef refptr<client> client_ptr;
555 typedef refptr<player> player_ptr;
556
557 struct str_hash
558 {
559 std::size_t operator ()(const char *s) const
560 {
561 #if 0
562 uint32_t hash = 0;
563
564 /* use the one-at-a-time hash function, which supposedly is
565 * better than the djb2-like one used by perl5.005, but
566 * certainly is better then the bug used here before.
567 * see http://burtleburtle.net/bob/hash/doobs.html
568 */
569 while (*s)
570 {
571 hash += *s++;
572 hash += hash << 10;
573 hash ^= hash >> 6;
574 }
575
576 hash += hash << 3;
577 hash ^= hash >> 11;
578 hash += hash << 15;
579 #else
580 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
581 // it is about twice as fast as the one-at-a-time one,
582 // with good distribution.
583 // FNV-1a is faster on many cpus because the multiplication
584 // runs concurrent with the looping logic.
585 uint32_t hash = 2166136261;
586
587 while (*s)
588 hash = (hash ^ *s++) * 16777619;
589 #endif
590
591 return hash;
592 }
593 };
594
595 struct str_equal
596 {
597 bool operator ()(const char *a, const char *b) const
598 {
599 return !strcmp (a, b);
600 }
601 };
602
603 // Mostly the same as std::vector, but insert/erase can reorder
604 // the elements, making append(=insert)/remove O(1) instead of O(n).
605 //
606 // NOTE: only some forms of erase are available
607 template<class T>
608 struct unordered_vector : std::vector<T, slice_allocator<T> >
609 {
610 typedef typename unordered_vector::iterator iterator;
611
612 void erase (unsigned int pos)
613 {
614 if (pos < this->size () - 1)
615 (*this)[pos] = (*this)[this->size () - 1];
616
617 this->pop_back ();
618 }
619
620 void erase (iterator i)
621 {
622 erase ((unsigned int )(i - this->begin ()));
623 }
624 };
625
626 // This container blends advantages of linked lists
627 // (efficiency) with vectors (random access) by
628 // by using an unordered vector and storing the vector
629 // index inside the object.
630 //
631 // + memory-efficient on most 64 bit archs
632 // + O(1) insert/remove
633 // + free unique (but varying) id for inserted objects
634 // + cache-friendly iteration
635 // - only works for pointers to structs
636 //
637 // NOTE: only some forms of erase/insert are available
638 typedef int object_vector_index;
639
640 template<class T, object_vector_index T::*indexmember>
641 struct object_vector : std::vector<T *, slice_allocator<T *> >
642 {
643 typedef typename object_vector::iterator iterator;
644
645 bool contains (const T *obj) const
646 {
647 return obj->*indexmember;
648 }
649
650 iterator find (const T *obj)
651 {
652 return obj->*indexmember
653 ? this->begin () + obj->*indexmember - 1
654 : this->end ();
655 }
656
657 void push_back (T *obj)
658 {
659 std::vector<T *, slice_allocator<T *> >::push_back (obj);
660 obj->*indexmember = this->size ();
661 }
662
663 void insert (T *obj)
664 {
665 push_back (obj);
666 }
667
668 void insert (T &obj)
669 {
670 insert (&obj);
671 }
672
673 void erase (T *obj)
674 {
675 unsigned int pos = obj->*indexmember;
676 obj->*indexmember = 0;
677
678 if (pos < this->size ())
679 {
680 (*this)[pos - 1] = (*this)[this->size () - 1];
681 (*this)[pos - 1]->*indexmember = pos;
682 }
683
684 this->pop_back ();
685 }
686
687 void erase (T &obj)
688 {
689 erase (&obj);
690 }
691 };
692
693 // basically does what strncpy should do, but appends "..." to strings exceeding length
694 // returns the number of bytes actually used (including \0)
695 int assign (char *dst, const char *src, int maxsize);
696
697 // type-safe version of assign
698 template<int N>
699 inline int assign (char (&dst)[N], const char *src)
700 {
701 return assign ((char *)&dst, src, N);
702 }
703
704 typedef double tstamp;
705
706 // return current time as timestamp
707 tstamp now ();
708
709 int similar_direction (int a, int b);
710
711 // like sprintf, but returns a "static" buffer
712 const char *format (const char *format, ...);
713
714 // safety-check player input which will become object->msg
715 bool msg_is_safe (const char *msg);
716
717 /////////////////////////////////////////////////////////////////////////////
718 // threads, very very thin wrappers around pthreads
719
720 struct thread
721 {
722 pthread_t id;
723
724 void start (void *(*start_routine)(void *), void *arg = 0);
725
726 void cancel ()
727 {
728 pthread_cancel (id);
729 }
730
731 void *join ()
732 {
733 void *ret;
734
735 if (pthread_join (id, &ret))
736 cleanup ("pthread_join failed", 1);
737
738 return ret;
739 }
740 };
741
742 // note that mutexes are not classes
743 typedef pthread_mutex_t smutex;
744
745 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
746 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
747 #else
748 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
749 #endif
750
751 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
752 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
753 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
754
755 typedef pthread_cond_t scond;
756
757 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
758 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
759 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
760 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
761
762 #endif
763