ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.92
Committed: Tue Oct 20 05:57:08 2009 UTC (14 years, 7 months ago) by root
Content type: text/plain
Branch: MAIN
CVS Tags: rel-2_82, rel-2_90
Changes since 1.91: +14 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
27 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
28 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
29
30 #if __GNUC__ >= 3
31 # define is_constant(c) __builtin_constant_p (c)
32 # define expect(expr,value) __builtin_expect ((expr),(value))
33 # define prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
34 # define noinline __attribute__((__noinline__))
35 #else
36 # define is_constant(c) 0
37 # define expect(expr,value) (expr)
38 # define prefetch(addr,rw,locality)
39 # define noinline
40 #endif
41
42 #if __GNUC__ < 4 || (__GNUC__ == 4 || __GNUC_MINOR__ < 4)
43 # define decltype(x) typeof(x)
44 #endif
45
46 // put into ifs if you are very sure that the expression
47 // is mostly true or mosty false. note that these return
48 // booleans, not the expression.
49 #define expect_false(expr) expect ((expr) ? 1 : 0, 0)
50 #define expect_true(expr) expect ((expr) ? 1 : 0, 1)
51
52 #include <pthread.h>
53
54 #include <cstddef>
55 #include <cmath>
56 #include <new>
57 #include <vector>
58
59 #include <glib.h>
60
61 #include <shstr.h>
62 #include <traits.h>
63
64 #if DEBUG_SALLOC
65 # define g_slice_alloc0(s) debug_slice_alloc0(s)
66 # define g_slice_alloc(s) debug_slice_alloc(s)
67 # define g_slice_free1(s,p) debug_slice_free1(s,p)
68 void *g_slice_alloc (unsigned long size);
69 void *g_slice_alloc0 (unsigned long size);
70 void g_slice_free1 (unsigned long size, void *ptr);
71 #elif PREFER_MALLOC
72 # define g_slice_alloc0(s) calloc (1, (s))
73 # define g_slice_alloc(s) malloc ((s))
74 # define g_slice_free1(s,p) free ((p))
75 #endif
76
77 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
78 #define auto(var,expr) decltype(expr) var = (expr)
79
80 // very ugly macro that basically declares and initialises a variable
81 // that is in scope for the next statement only
82 // works only for stuff that can be assigned 0 and converts to false
83 // (note: works great for pointers)
84 // most ugly macro I ever wrote
85 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
86
87 // in range including end
88 #define IN_RANGE_INC(val,beg,end) \
89 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
90
91 // in range excluding end
92 #define IN_RANGE_EXC(val,beg,end) \
93 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
94
95 void cleanup (const char *cause, bool make_core = false);
96 void fork_abort (const char *msg);
97
98 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
99 // as a is often a constant while b is the variable. it is still a bug, though.
100 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
101 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
102 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
103
104 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
105 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
106 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
107
108 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
109
110 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
111 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
112
113 // sign returns -1 or +1
114 template<typename T>
115 static inline T sign (T v) { return v < 0 ? -1 : +1; }
116 // relies on 2c representation
117 template<>
118 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
119
120 // sign0 returns -1, 0 or +1
121 template<typename T>
122 static inline T sign0 (T v) { return v ? sign (v) : 0; }
123
124 // div* only work correctly for div > 0
125 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
126 template<typename T> static inline T div (T val, T div)
127 {
128 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
129 }
130 // div, round-up
131 template<typename T> static inline T div_ru (T val, T div)
132 {
133 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
134 }
135 // div, round-down
136 template<typename T> static inline T div_rd (T val, T div)
137 {
138 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
139 }
140
141 // lerp* only work correctly for min_in < max_in
142 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
143 template<typename T>
144 static inline T
145 lerp (T val, T min_in, T max_in, T min_out, T max_out)
146 {
147 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
148 }
149
150 // lerp, round-down
151 template<typename T>
152 static inline T
153 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
154 {
155 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
156 }
157
158 // lerp, round-up
159 template<typename T>
160 static inline T
161 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
162 {
163 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
164 }
165
166 // lots of stuff taken from FXT
167
168 /* Rotate right. This is used in various places for checksumming */
169 //TODO: that sucks, use a better checksum algo
170 static inline uint32_t
171 rotate_right (uint32_t c, uint32_t count = 1)
172 {
173 return (c << (32 - count)) | (c >> count);
174 }
175
176 static inline uint32_t
177 rotate_left (uint32_t c, uint32_t count = 1)
178 {
179 return (c >> (32 - count)) | (c << count);
180 }
181
182 // Return abs(a-b)
183 // Both a and b must not have the most significant bit set
184 static inline uint32_t
185 upos_abs_diff (uint32_t a, uint32_t b)
186 {
187 long d1 = b - a;
188 long d2 = (d1 & (d1 >> 31)) << 1;
189
190 return d1 - d2; // == (b - d) - (a + d);
191 }
192
193 // Both a and b must not have the most significant bit set
194 static inline uint32_t
195 upos_min (uint32_t a, uint32_t b)
196 {
197 int32_t d = b - a;
198 d &= d >> 31;
199 return a + d;
200 }
201
202 // Both a and b must not have the most significant bit set
203 static inline uint32_t
204 upos_max (uint32_t a, uint32_t b)
205 {
206 int32_t d = b - a;
207 d &= d >> 31;
208 return b - d;
209 }
210
211 // this is much faster than crossfires original algorithm
212 // on modern cpus
213 inline int
214 isqrt (int n)
215 {
216 return (int)sqrtf ((float)n);
217 }
218
219 // this is kind of like the ^^ operator, if it would exist, without sequence point.
220 // more handy than it looks like, due to the implicit !! done on its arguments
221 inline bool
222 logical_xor (bool a, bool b)
223 {
224 return a != b;
225 }
226
227 inline bool
228 logical_implies (bool a, bool b)
229 {
230 return a <= b;
231 }
232
233 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
234 #if 0
235 // and has a max. error of 6 in the range -100..+100.
236 #else
237 // and has a max. error of 9 in the range -100..+100.
238 #endif
239 inline int
240 idistance (int dx, int dy)
241 {
242 unsigned int dx_ = abs (dx);
243 unsigned int dy_ = abs (dy);
244
245 #if 0
246 return dx_ > dy_
247 ? (dx_ * 61685 + dy_ * 26870) >> 16
248 : (dy_ * 61685 + dx_ * 26870) >> 16;
249 #else
250 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
251 #endif
252 }
253
254 /*
255 * absdir(int): Returns a number between 1 and 8, which represent
256 * the "absolute" direction of a number (it actually takes care of
257 * "overflow" in previous calculations of a direction).
258 */
259 inline int
260 absdir (int d)
261 {
262 return ((d - 1) & 7) + 1;
263 }
264
265 extern ssize_t slice_alloc; // statistics
266
267 void *salloc_ (int n) throw (std::bad_alloc);
268 void *salloc_ (int n, void *src) throw (std::bad_alloc);
269
270 // strictly the same as g_slice_alloc, but never returns 0
271 template<typename T>
272 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
273
274 // also copies src into the new area, like "memdup"
275 // if src is 0, clears the memory
276 template<typename T>
277 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
278
279 // clears the memory
280 template<typename T>
281 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
282
283 // for symmetry
284 template<typename T>
285 inline void sfree (T *ptr, int n = 1) throw ()
286 {
287 if (expect_true (ptr))
288 {
289 slice_alloc -= n * sizeof (T);
290 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
291 g_slice_free1 (n * sizeof (T), (void *)ptr);
292 assert (slice_alloc >= 0);//D
293 }
294 }
295
296 // nulls the pointer
297 template<typename T>
298 inline void sfree0 (T *&ptr, int n = 1) throw ()
299 {
300 sfree<T> (ptr, n);
301 ptr = 0;
302 }
303
304 // makes dynamically allocated objects zero-initialised
305 struct zero_initialised
306 {
307 void *operator new (size_t s, void *p)
308 {
309 memset (p, 0, s);
310 return p;
311 }
312
313 void *operator new (size_t s)
314 {
315 return salloc0<char> (s);
316 }
317
318 void *operator new[] (size_t s)
319 {
320 return salloc0<char> (s);
321 }
322
323 void operator delete (void *p, size_t s)
324 {
325 sfree ((char *)p, s);
326 }
327
328 void operator delete[] (void *p, size_t s)
329 {
330 sfree ((char *)p, s);
331 }
332 };
333
334 // makes dynamically allocated objects zero-initialised
335 struct slice_allocated
336 {
337 void *operator new (size_t s, void *p)
338 {
339 return p;
340 }
341
342 void *operator new (size_t s)
343 {
344 return salloc<char> (s);
345 }
346
347 void *operator new[] (size_t s)
348 {
349 return salloc<char> (s);
350 }
351
352 void operator delete (void *p, size_t s)
353 {
354 sfree ((char *)p, s);
355 }
356
357 void operator delete[] (void *p, size_t s)
358 {
359 sfree ((char *)p, s);
360 }
361 };
362
363 // a STL-compatible allocator that uses g_slice
364 // boy, this is verbose
365 template<typename Tp>
366 struct slice_allocator
367 {
368 typedef size_t size_type;
369 typedef ptrdiff_t difference_type;
370 typedef Tp *pointer;
371 typedef const Tp *const_pointer;
372 typedef Tp &reference;
373 typedef const Tp &const_reference;
374 typedef Tp value_type;
375
376 template <class U>
377 struct rebind
378 {
379 typedef slice_allocator<U> other;
380 };
381
382 slice_allocator () throw () { }
383 slice_allocator (const slice_allocator &) throw () { }
384 template<typename Tp2>
385 slice_allocator (const slice_allocator<Tp2> &) throw () { }
386
387 ~slice_allocator () { }
388
389 pointer address (reference x) const { return &x; }
390 const_pointer address (const_reference x) const { return &x; }
391
392 pointer allocate (size_type n, const_pointer = 0)
393 {
394 return salloc<Tp> (n);
395 }
396
397 void deallocate (pointer p, size_type n)
398 {
399 sfree<Tp> (p, n);
400 }
401
402 size_type max_size () const throw ()
403 {
404 return size_t (-1) / sizeof (Tp);
405 }
406
407 void construct (pointer p, const Tp &val)
408 {
409 ::new (p) Tp (val);
410 }
411
412 void destroy (pointer p)
413 {
414 p->~Tp ();
415 }
416 };
417
418 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
419 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
420 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
421 struct tausworthe_random_generator
422 {
423 uint32_t state [4];
424
425 void operator =(const tausworthe_random_generator &src)
426 {
427 state [0] = src.state [0];
428 state [1] = src.state [1];
429 state [2] = src.state [2];
430 state [3] = src.state [3];
431 }
432
433 void seed (uint32_t seed);
434 uint32_t next ();
435 };
436
437 // Xorshift RNGs, George Marsaglia
438 // http://www.jstatsoft.org/v08/i14/paper
439 // this one is about 40% faster than the tausworthe one above (i.e. not much),
440 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
441 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
442 struct xorshift_random_generator
443 {
444 uint32_t x, y;
445
446 void operator =(const xorshift_random_generator &src)
447 {
448 x = src.x;
449 y = src.y;
450 }
451
452 void seed (uint32_t seed)
453 {
454 x = seed;
455 y = seed * 69069U;
456 }
457
458 uint32_t next ()
459 {
460 uint32_t t = x ^ (x << 10);
461 x = y;
462 y = y ^ (y >> 13) ^ t ^ (t >> 10);
463 return y;
464 }
465 };
466
467 template<class generator>
468 struct random_number_generator : generator
469 {
470 // uniform distribution, 0 .. max (0, num - 1)
471 uint32_t operator ()(uint32_t num)
472 {
473 return !is_constant (num) ? get_range (num) // non-constant
474 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
475 : this->next () & (num - 1); // constant, power-of-two
476 }
477
478 // return a number within (min .. max)
479 int operator () (int r_min, int r_max)
480 {
481 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
482 ? r_min + operator ()(r_max - r_min + 1)
483 : get_range (r_min, r_max);
484 }
485
486 double operator ()()
487 {
488 return this->next () / (double)0xFFFFFFFFU;
489 }
490
491 protected:
492 uint32_t get_range (uint32_t r_max);
493 int get_range (int r_min, int r_max);
494 };
495
496 typedef random_number_generator<tausworthe_random_generator> rand_gen;
497
498 extern rand_gen rndm, rmg_rndm;
499
500 INTERFACE_CLASS (attachable)
501 struct refcnt_base
502 {
503 typedef int refcnt_t;
504 mutable refcnt_t ACC (RW, refcnt);
505
506 MTH void refcnt_inc () const { ++refcnt; }
507 MTH void refcnt_dec () const { --refcnt; }
508
509 refcnt_base () : refcnt (0) { }
510 };
511
512 // to avoid branches with more advanced compilers
513 extern refcnt_base::refcnt_t refcnt_dummy;
514
515 template<class T>
516 struct refptr
517 {
518 // p if not null
519 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
520
521 void refcnt_dec ()
522 {
523 if (!is_constant (p))
524 --*refcnt_ref ();
525 else if (p)
526 --p->refcnt;
527 }
528
529 void refcnt_inc ()
530 {
531 if (!is_constant (p))
532 ++*refcnt_ref ();
533 else if (p)
534 ++p->refcnt;
535 }
536
537 T *p;
538
539 refptr () : p(0) { }
540 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
541 refptr (T *p) : p(p) { refcnt_inc (); }
542 ~refptr () { refcnt_dec (); }
543
544 const refptr<T> &operator =(T *o)
545 {
546 // if decrementing ever destroys we need to reverse the order here
547 refcnt_dec ();
548 p = o;
549 refcnt_inc ();
550 return *this;
551 }
552
553 const refptr<T> &operator =(const refptr<T> &o)
554 {
555 *this = o.p;
556 return *this;
557 }
558
559 T &operator * () const { return *p; }
560 T *operator ->() const { return p; }
561
562 operator T *() const { return p; }
563 };
564
565 typedef refptr<maptile> maptile_ptr;
566 typedef refptr<object> object_ptr;
567 typedef refptr<archetype> arch_ptr;
568 typedef refptr<client> client_ptr;
569 typedef refptr<player> player_ptr;
570
571 struct str_hash
572 {
573 std::size_t operator ()(const char *s) const
574 {
575 #if 0
576 uint32_t hash = 0;
577
578 /* use the one-at-a-time hash function, which supposedly is
579 * better than the djb2-like one used by perl5.005, but
580 * certainly is better then the bug used here before.
581 * see http://burtleburtle.net/bob/hash/doobs.html
582 */
583 while (*s)
584 {
585 hash += *s++;
586 hash += hash << 10;
587 hash ^= hash >> 6;
588 }
589
590 hash += hash << 3;
591 hash ^= hash >> 11;
592 hash += hash << 15;
593 #else
594 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
595 // it is about twice as fast as the one-at-a-time one,
596 // with good distribution.
597 // FNV-1a is faster on many cpus because the multiplication
598 // runs concurrent with the looping logic.
599 uint32_t hash = 2166136261;
600
601 while (*s)
602 hash = (hash ^ *s++) * 16777619;
603 #endif
604
605 return hash;
606 }
607 };
608
609 struct str_equal
610 {
611 bool operator ()(const char *a, const char *b) const
612 {
613 return !strcmp (a, b);
614 }
615 };
616
617 // Mostly the same as std::vector, but insert/erase can reorder
618 // the elements, making append(=insert)/remove O(1) instead of O(n).
619 //
620 // NOTE: only some forms of erase are available
621 template<class T>
622 struct unordered_vector : std::vector<T, slice_allocator<T> >
623 {
624 typedef typename unordered_vector::iterator iterator;
625
626 void erase (unsigned int pos)
627 {
628 if (pos < this->size () - 1)
629 (*this)[pos] = (*this)[this->size () - 1];
630
631 this->pop_back ();
632 }
633
634 void erase (iterator i)
635 {
636 erase ((unsigned int )(i - this->begin ()));
637 }
638 };
639
640 // This container blends advantages of linked lists
641 // (efficiency) with vectors (random access) by
642 // by using an unordered vector and storing the vector
643 // index inside the object.
644 //
645 // + memory-efficient on most 64 bit archs
646 // + O(1) insert/remove
647 // + free unique (but varying) id for inserted objects
648 // + cache-friendly iteration
649 // - only works for pointers to structs
650 //
651 // NOTE: only some forms of erase/insert are available
652 typedef int object_vector_index;
653
654 template<class T, object_vector_index T::*indexmember>
655 struct object_vector : std::vector<T *, slice_allocator<T *> >
656 {
657 typedef typename object_vector::iterator iterator;
658
659 bool contains (const T *obj) const
660 {
661 return obj->*indexmember;
662 }
663
664 iterator find (const T *obj)
665 {
666 return obj->*indexmember
667 ? this->begin () + obj->*indexmember - 1
668 : this->end ();
669 }
670
671 void push_back (T *obj)
672 {
673 std::vector<T *, slice_allocator<T *> >::push_back (obj);
674 obj->*indexmember = this->size ();
675 }
676
677 void insert (T *obj)
678 {
679 push_back (obj);
680 }
681
682 void insert (T &obj)
683 {
684 insert (&obj);
685 }
686
687 void erase (T *obj)
688 {
689 unsigned int pos = obj->*indexmember;
690 obj->*indexmember = 0;
691
692 if (pos < this->size ())
693 {
694 (*this)[pos - 1] = (*this)[this->size () - 1];
695 (*this)[pos - 1]->*indexmember = pos;
696 }
697
698 this->pop_back ();
699 }
700
701 void erase (T &obj)
702 {
703 erase (&obj);
704 }
705 };
706
707 // basically does what strncpy should do, but appends "..." to strings exceeding length
708 // returns the number of bytes actually used (including \0)
709 int assign (char *dst, const char *src, int maxsize);
710
711 // type-safe version of assign
712 template<int N>
713 inline int assign (char (&dst)[N], const char *src)
714 {
715 return assign ((char *)&dst, src, N);
716 }
717
718 typedef double tstamp;
719
720 // return current time as timestamp
721 tstamp now ();
722
723 int similar_direction (int a, int b);
724
725 // like v?sprintf, but returns a "static" buffer
726 char *vformat (const char *format, va_list ap);
727 char *format (const char *format, ...);
728
729 // safety-check player input which will become object->msg
730 bool msg_is_safe (const char *msg);
731
732 /////////////////////////////////////////////////////////////////////////////
733 // threads, very very thin wrappers around pthreads
734
735 struct thread
736 {
737 pthread_t id;
738
739 void start (void *(*start_routine)(void *), void *arg = 0);
740
741 void cancel ()
742 {
743 pthread_cancel (id);
744 }
745
746 void *join ()
747 {
748 void *ret;
749
750 if (pthread_join (id, &ret))
751 cleanup ("pthread_join failed", 1);
752
753 return ret;
754 }
755 };
756
757 // note that mutexes are not classes
758 typedef pthread_mutex_t smutex;
759
760 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
761 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
762 #else
763 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
764 #endif
765
766 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
767 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
768 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
769
770 typedef pthread_cond_t scond;
771
772 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
773 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
774 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
775 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
776
777 #endif
778