ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/include/util.h
Revision: 1.99
Committed: Fri Apr 9 02:45:16 2010 UTC (14 years, 1 month ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.98: +3 -0 lines
Log Message:
indent

File Contents

# Content
1 /*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009,2010 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 *
6 * Deliantra is free software: you can redistribute it and/or modify it under
7 * the terms of the Affero GNU General Public License as published by the
8 * Free Software Foundation, either version 3 of the License, or (at your
9 * option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the Affero GNU General Public License
17 * and the GNU General Public License along with this program. If not, see
18 * <http://www.gnu.org/licenses/>.
19 *
20 * The authors can be reached via e-mail to <support@deliantra.net>
21 */
22
23 #ifndef UTIL_H__
24 #define UTIL_H__
25
26 #include <compiler.h>
27
28 #define DEBUG_POISON 0x00 // poison memory before freeing it if != 0
29 #define DEBUG_SALLOC 0 // add a debug wrapper around all sallocs
30 #define PREFER_MALLOC 0 // use malloc and not the slice allocator
31
32 #include <pthread.h>
33
34 #include <cstddef>
35 #include <cmath>
36 #include <new>
37 #include <vector>
38
39 #include <glib.h>
40
41 #include <shstr.h>
42 #include <traits.h>
43
44 #if DEBUG_SALLOC
45 # define g_slice_alloc0(s) debug_slice_alloc0(s)
46 # define g_slice_alloc(s) debug_slice_alloc(s)
47 # define g_slice_free1(s,p) debug_slice_free1(s,p)
48 void *g_slice_alloc (unsigned long size);
49 void *g_slice_alloc0 (unsigned long size);
50 void g_slice_free1 (unsigned long size, void *ptr);
51 #elif PREFER_MALLOC
52 # define g_slice_alloc0(s) calloc (1, (s))
53 # define g_slice_alloc(s) malloc ((s))
54 # define g_slice_free1(s,p) free ((p))
55 #endif
56
57 // use C0X decltype for auto declarations until ISO C++ sanctifies them (if ever)
58 #define auto(var,expr) decltype(expr) var = (expr)
59
60 // very ugly macro that basically declares and initialises a variable
61 // that is in scope for the next statement only
62 // works only for stuff that can be assigned 0 and converts to false
63 // (note: works great for pointers)
64 // most ugly macro I ever wrote
65 #define statementvar(type, name, value) if (type name = 0) { } else if (((name) = (value)), 1)
66
67 // in range including end
68 #define IN_RANGE_INC(val,beg,end) \
69 ((unsigned int)(val) - (unsigned int)(beg) <= (unsigned int)(end) - (unsigned int)(beg))
70
71 // in range excluding end
72 #define IN_RANGE_EXC(val,beg,end) \
73 ((unsigned int)(val) - (unsigned int)(beg) < (unsigned int)(end) - (unsigned int)(beg))
74
75 void cleanup (const char *cause, bool make_core = false);
76 void fork_abort (const char *msg);
77
78 // rationale for using (U) not (T) is to reduce signed/unsigned issues,
79 // as a is often a constant while b is the variable. it is still a bug, though.
80 template<typename T, typename U> static inline T min (T a, U b) { return (U)a < b ? (U)a : b; }
81 template<typename T, typename U> static inline T max (T a, U b) { return (U)a > b ? (U)a : b; }
82 template<typename T, typename U, typename V> static inline T clamp (T v, U a, V b) { return v < (T)a ? (T)a : v >(T)b ? (T)b : v; }
83
84 template<typename T, typename U> static inline void min_it (T &v, U m) { v = min (v, (T)m); }
85 template<typename T, typename U> static inline void max_it (T &v, U m) { v = max (v, (T)m); }
86 template<typename T, typename U, typename V> static inline void clamp_it (T &v, U a, V b) { v = clamp (v, (T)a, (T)b); }
87
88 template<typename T, typename U> static inline void swap (T& a, U& b) { T t=a; a=(T)b; b=(U)t; }
89
90 template<typename T, typename U, typename V> static inline T min (T a, U b, V c) { return min (a, min (b, c)); }
91 template<typename T, typename U, typename V> static inline T max (T a, U b, V c) { return max (a, max (b, c)); }
92
93 // sign returns -1 or +1
94 template<typename T>
95 static inline T sign (T v) { return v < 0 ? -1 : +1; }
96 // relies on 2c representation
97 template<>
98 inline sint8 sign (sint8 v) { return 1 - (sint8 (uint8 (v) >> 7) * 2); }
99
100 // sign0 returns -1, 0 or +1
101 template<typename T>
102 static inline T sign0 (T v) { return v ? sign (v) : 0; }
103
104 template<typename T, typename U>
105 static inline T copysign (T a, U b) { return a > 0 ? b : -b; }
106
107 // div* only work correctly for div > 0
108 // div, with correct rounding (< 0.5 downwards, >=0.5 upwards)
109 template<typename T> static inline T div (T val, T div)
110 {
111 return expect_false (val < 0) ? - ((-val + (div - 1) / 2) / div) : (val + div / 2) / div;
112 }
113 // div, round-up
114 template<typename T> static inline T div_ru (T val, T div)
115 {
116 return expect_false (val < 0) ? - ((-val ) / div) : (val + div - 1) / div;
117 }
118 // div, round-down
119 template<typename T> static inline T div_rd (T val, T div)
120 {
121 return expect_false (val < 0) ? - ((-val + (div - 1) ) / div) : (val ) / div;
122 }
123
124 // lerp* only work correctly for min_in < max_in
125 // Linear intERPolate, scales val from min_in..max_in to min_out..max_out
126 template<typename T>
127 static inline T
128 lerp (T val, T min_in, T max_in, T min_out, T max_out)
129 {
130 return min_out + div <T> ((val - min_in) * (max_out - min_out), max_in - min_in);
131 }
132
133 // lerp, round-down
134 template<typename T>
135 static inline T
136 lerp_rd (T val, T min_in, T max_in, T min_out, T max_out)
137 {
138 return min_out + div_rd<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
139 }
140
141 // lerp, round-up
142 template<typename T>
143 static inline T
144 lerp_ru (T val, T min_in, T max_in, T min_out, T max_out)
145 {
146 return min_out + div_ru<T> ((val - min_in) * (max_out - min_out), max_in - min_in);
147 }
148
149 // lots of stuff taken from FXT
150
151 /* Rotate right. This is used in various places for checksumming */
152 //TODO: that sucks, use a better checksum algo
153 static inline uint32_t
154 rotate_right (uint32_t c, uint32_t count = 1)
155 {
156 return (c << (32 - count)) | (c >> count);
157 }
158
159 static inline uint32_t
160 rotate_left (uint32_t c, uint32_t count = 1)
161 {
162 return (c >> (32 - count)) | (c << count);
163 }
164
165 // Return abs(a-b)
166 // Both a and b must not have the most significant bit set
167 static inline uint32_t
168 upos_abs_diff (uint32_t a, uint32_t b)
169 {
170 long d1 = b - a;
171 long d2 = (d1 & (d1 >> 31)) << 1;
172
173 return d1 - d2; // == (b - d) - (a + d);
174 }
175
176 // Both a and b must not have the most significant bit set
177 static inline uint32_t
178 upos_min (uint32_t a, uint32_t b)
179 {
180 int32_t d = b - a;
181 d &= d >> 31;
182 return a + d;
183 }
184
185 // Both a and b must not have the most significant bit set
186 static inline uint32_t
187 upos_max (uint32_t a, uint32_t b)
188 {
189 int32_t d = b - a;
190 d &= d >> 31;
191 return b - d;
192 }
193
194 // this is much faster than crossfire's original algorithm
195 // on modern cpus
196 inline int
197 isqrt (int n)
198 {
199 return (int)sqrtf ((float)n);
200 }
201
202 // this is kind of like the ^^ operator, if it would exist, without sequence point.
203 // more handy than it looks like, due to the implicit !! done on its arguments
204 inline bool
205 logical_xor (bool a, bool b)
206 {
207 return a != b;
208 }
209
210 inline bool
211 logical_implies (bool a, bool b)
212 {
213 return a <= b;
214 }
215
216 // this is only twice as fast as naive sqrtf (dx*dy+dy*dy)
217 #if 0
218 // and has a max. error of 6 in the range -100..+100.
219 #else
220 // and has a max. error of 9 in the range -100..+100.
221 #endif
222 inline int
223 idistance (int dx, int dy)
224 {
225 unsigned int dx_ = abs (dx);
226 unsigned int dy_ = abs (dy);
227
228 #if 0
229 return dx_ > dy_
230 ? (dx_ * 61685 + dy_ * 26870) >> 16
231 : (dy_ * 61685 + dx_ * 26870) >> 16;
232 #else
233 return dx_ + dy_ - min (dx_, dy_) * 5 / 8;
234 #endif
235 }
236
237 /*
238 * absdir(int): Returns a number between 1 and 8, which represent
239 * the "absolute" direction of a number (it actually takes care of
240 * "overflow" in previous calculations of a direction).
241 */
242 inline int
243 absdir (int d)
244 {
245 return ((d - 1) & 7) + 1;
246 }
247
248 // avoid ctz name because netbsd or freebsd spams it's namespace with it
249 #if GCC_VERSION(3,4)
250 static inline int least_significant_bit (uint32_t x)
251 {
252 return __builtin_ctz (x);
253 }
254 #else
255 int least_significant_bit (uint32_t x);
256 #endif
257
258 #define for_all_bits_sparse_32(mask, idxvar) \
259 for (uint32_t idxvar, mask_ = mask; \
260 mask_ && ((idxvar = least_significant_bit (mask_)), mask_ &= ~(1 << idxvar), 1);)
261
262 extern ssize_t slice_alloc; // statistics
263
264 void *salloc_ (int n) throw (std::bad_alloc);
265 void *salloc_ (int n, void *src) throw (std::bad_alloc);
266
267 // strictly the same as g_slice_alloc, but never returns 0
268 template<typename T>
269 inline T *salloc (int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T)); }
270
271 // also copies src into the new area, like "memdup"
272 // if src is 0, clears the memory
273 template<typename T>
274 inline T *salloc (int n, T *src) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), (void *)src); }
275
276 // clears the memory
277 template<typename T>
278 inline T *salloc0(int n = 1) throw (std::bad_alloc) { return (T *)salloc_ (n * sizeof (T), 0); }
279
280 // for symmetry
281 template<typename T>
282 inline void sfree (T *ptr, int n = 1) throw ()
283 {
284 if (expect_true (ptr))
285 {
286 slice_alloc -= n * sizeof (T);
287 if (DEBUG_POISON) memset (ptr, DEBUG_POISON, n * sizeof (T));
288 g_slice_free1 (n * sizeof (T), (void *)ptr);
289 assert (slice_alloc >= 0);//D
290 }
291 }
292
293 // nulls the pointer
294 template<typename T>
295 inline void sfree0 (T *&ptr, int n = 1) throw ()
296 {
297 sfree<T> (ptr, n);
298 ptr = 0;
299 }
300
301 // makes dynamically allocated objects zero-initialised
302 struct zero_initialised
303 {
304 void *operator new (size_t s, void *p)
305 {
306 memset (p, 0, s);
307 return p;
308 }
309
310 void *operator new (size_t s)
311 {
312 return salloc0<char> (s);
313 }
314
315 void *operator new[] (size_t s)
316 {
317 return salloc0<char> (s);
318 }
319
320 void operator delete (void *p, size_t s)
321 {
322 sfree ((char *)p, s);
323 }
324
325 void operator delete[] (void *p, size_t s)
326 {
327 sfree ((char *)p, s);
328 }
329 };
330
331 // makes dynamically allocated objects zero-initialised
332 struct slice_allocated
333 {
334 void *operator new (size_t s, void *p)
335 {
336 return p;
337 }
338
339 void *operator new (size_t s)
340 {
341 return salloc<char> (s);
342 }
343
344 void *operator new[] (size_t s)
345 {
346 return salloc<char> (s);
347 }
348
349 void operator delete (void *p, size_t s)
350 {
351 sfree ((char *)p, s);
352 }
353
354 void operator delete[] (void *p, size_t s)
355 {
356 sfree ((char *)p, s);
357 }
358 };
359
360 // a STL-compatible allocator that uses g_slice
361 // boy, this is verbose
362 template<typename Tp>
363 struct slice_allocator
364 {
365 typedef size_t size_type;
366 typedef ptrdiff_t difference_type;
367 typedef Tp *pointer;
368 typedef const Tp *const_pointer;
369 typedef Tp &reference;
370 typedef const Tp &const_reference;
371 typedef Tp value_type;
372
373 template <class U>
374 struct rebind
375 {
376 typedef slice_allocator<U> other;
377 };
378
379 slice_allocator () throw () { }
380 slice_allocator (const slice_allocator &) throw () { }
381 template<typename Tp2>
382 slice_allocator (const slice_allocator<Tp2> &) throw () { }
383
384 ~slice_allocator () { }
385
386 pointer address (reference x) const { return &x; }
387 const_pointer address (const_reference x) const { return &x; }
388
389 pointer allocate (size_type n, const_pointer = 0)
390 {
391 return salloc<Tp> (n);
392 }
393
394 void deallocate (pointer p, size_type n)
395 {
396 sfree<Tp> (p, n);
397 }
398
399 size_type max_size () const throw ()
400 {
401 return size_t (-1) / sizeof (Tp);
402 }
403
404 void construct (pointer p, const Tp &val)
405 {
406 ::new (p) Tp (val);
407 }
408
409 void destroy (pointer p)
410 {
411 p->~Tp ();
412 }
413 };
414
415 // P. L'Ecuyer, “Maximally Equidistributed Combined Tausworthe Generators”, Mathematics of Computation, 65, 213 (1996), 203–213.
416 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
417 // http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
418 struct tausworthe_random_generator
419 {
420 uint32_t state [4];
421
422 void operator =(const tausworthe_random_generator &src)
423 {
424 state [0] = src.state [0];
425 state [1] = src.state [1];
426 state [2] = src.state [2];
427 state [3] = src.state [3];
428 }
429
430 void seed (uint32_t seed);
431 uint32_t next ();
432 };
433
434 // Xorshift RNGs, George Marsaglia
435 // http://www.jstatsoft.org/v08/i14/paper
436 // this one is about 40% faster than the tausworthe one above (i.e. not much),
437 // despite the inlining, and has the issue of only creating 2**32-1 numbers.
438 // see also http://www.iro.umontreal.ca/~lecuyer/myftp/papers/xorshift.pdf
439 struct xorshift_random_generator
440 {
441 uint32_t x, y;
442
443 void operator =(const xorshift_random_generator &src)
444 {
445 x = src.x;
446 y = src.y;
447 }
448
449 void seed (uint32_t seed)
450 {
451 x = seed;
452 y = seed * 69069U;
453 }
454
455 uint32_t next ()
456 {
457 uint32_t t = x ^ (x << 10);
458 x = y;
459 y = y ^ (y >> 13) ^ t ^ (t >> 10);
460 return y;
461 }
462 };
463
464 template<class generator>
465 struct random_number_generator : generator
466 {
467 // uniform distribution, 0 .. max (0, num - 1)
468 uint32_t operator ()(uint32_t num)
469 {
470 return !is_constant (num) ? get_range (num) // non-constant
471 : num & (num - 1) ? (this->next () * (uint64_t)num) >> 32U // constant, non-power-of-two
472 : this->next () & (num - 1); // constant, power-of-two
473 }
474
475 // return a number within (min .. max)
476 int operator () (int r_min, int r_max)
477 {
478 return is_constant (r_min) && is_constant (r_max) && r_min <= r_max
479 ? r_min + operator ()(r_max - r_min + 1)
480 : get_range (r_min, r_max);
481 }
482
483 double operator ()()
484 {
485 return this->next () / (double)0xFFFFFFFFU;
486 }
487
488 protected:
489 uint32_t get_range (uint32_t r_max);
490 int get_range (int r_min, int r_max);
491 };
492
493 typedef random_number_generator<tausworthe_random_generator> rand_gen;
494
495 extern rand_gen rndm, rmg_rndm;
496
497 INTERFACE_CLASS (attachable)
498 struct refcnt_base
499 {
500 typedef int refcnt_t;
501 mutable refcnt_t ACC (RW, refcnt);
502
503 MTH void refcnt_inc () const { ++refcnt; }
504 MTH void refcnt_dec () const { --refcnt; }
505
506 refcnt_base () : refcnt (0) { }
507 };
508
509 // to avoid branches with more advanced compilers
510 extern refcnt_base::refcnt_t refcnt_dummy;
511
512 template<class T>
513 struct refptr
514 {
515 // p if not null
516 refcnt_base::refcnt_t *refcnt_ref () { return p ? &p->refcnt : &refcnt_dummy; }
517
518 void refcnt_dec ()
519 {
520 if (!is_constant (p))
521 --*refcnt_ref ();
522 else if (p)
523 --p->refcnt;
524 }
525
526 void refcnt_inc ()
527 {
528 if (!is_constant (p))
529 ++*refcnt_ref ();
530 else if (p)
531 ++p->refcnt;
532 }
533
534 T *p;
535
536 refptr () : p(0) { }
537 refptr (const refptr<T> &p) : p(p.p) { refcnt_inc (); }
538 refptr (T *p) : p(p) { refcnt_inc (); }
539 ~refptr () { refcnt_dec (); }
540
541 const refptr<T> &operator =(T *o)
542 {
543 // if decrementing ever destroys we need to reverse the order here
544 refcnt_dec ();
545 p = o;
546 refcnt_inc ();
547 return *this;
548 }
549
550 const refptr<T> &operator =(const refptr<T> &o)
551 {
552 *this = o.p;
553 return *this;
554 }
555
556 T &operator * () const { return *p; }
557 T *operator ->() const { return p; }
558
559 operator T *() const { return p; }
560 };
561
562 typedef refptr<maptile> maptile_ptr;
563 typedef refptr<object> object_ptr;
564 typedef refptr<archetype> arch_ptr;
565 typedef refptr<client> client_ptr;
566 typedef refptr<player> player_ptr;
567
568 #define STRHSH_NULL 2166136261
569
570 static inline uint32_t
571 strhsh (const char *s)
572 {
573 // use FNV-1a hash (http://isthe.com/chongo/tech/comp/fnv/)
574 // it is about twice as fast as the one-at-a-time one,
575 // with good distribution.
576 // FNV-1a is faster on many cpus because the multiplication
577 // runs concurrently with the looping logic.
578 uint32_t hash = STRHSH_NULL;
579
580 while (*s)
581 hash = (hash ^ *s++) * 16777619U;
582
583 return hash;
584 }
585
586 static inline uint32_t
587 memhsh (const char *s, size_t len)
588 {
589 uint32_t hash = STRHSH_NULL;
590
591 while (len--)
592 hash = (hash ^ *s++) * 16777619U;
593
594 return hash;
595 }
596
597 struct str_hash
598 {
599 std::size_t operator ()(const char *s) const
600 {
601 return strhsh (s);
602 }
603
604 std::size_t operator ()(const shstr &s) const
605 {
606 return strhsh (s);
607 }
608 };
609
610 struct str_equal
611 {
612 bool operator ()(const char *a, const char *b) const
613 {
614 return !strcmp (a, b);
615 }
616 };
617
618 // Mostly the same as std::vector, but insert/erase can reorder
619 // the elements, making append(=insert)/remove O(1) instead of O(n).
620 //
621 // NOTE: only some forms of erase are available
622 template<class T>
623 struct unordered_vector : std::vector<T, slice_allocator<T> >
624 {
625 typedef typename unordered_vector::iterator iterator;
626
627 void erase (unsigned int pos)
628 {
629 if (pos < this->size () - 1)
630 (*this)[pos] = (*this)[this->size () - 1];
631
632 this->pop_back ();
633 }
634
635 void erase (iterator i)
636 {
637 erase ((unsigned int )(i - this->begin ()));
638 }
639 };
640
641 // This container blends advantages of linked lists
642 // (efficiency) with vectors (random access) by
643 // by using an unordered vector and storing the vector
644 // index inside the object.
645 //
646 // + memory-efficient on most 64 bit archs
647 // + O(1) insert/remove
648 // + free unique (but varying) id for inserted objects
649 // + cache-friendly iteration
650 // - only works for pointers to structs
651 //
652 // NOTE: only some forms of erase/insert are available
653 typedef int object_vector_index;
654
655 template<class T, object_vector_index T::*indexmember>
656 struct object_vector : std::vector<T *, slice_allocator<T *> >
657 {
658 typedef typename object_vector::iterator iterator;
659
660 bool contains (const T *obj) const
661 {
662 return obj->*indexmember;
663 }
664
665 iterator find (const T *obj)
666 {
667 return obj->*indexmember
668 ? this->begin () + obj->*indexmember - 1
669 : this->end ();
670 }
671
672 void push_back (T *obj)
673 {
674 std::vector<T *, slice_allocator<T *> >::push_back (obj);
675 obj->*indexmember = this->size ();
676 }
677
678 void insert (T *obj)
679 {
680 push_back (obj);
681 }
682
683 void insert (T &obj)
684 {
685 insert (&obj);
686 }
687
688 void erase (T *obj)
689 {
690 unsigned int pos = obj->*indexmember;
691 obj->*indexmember = 0;
692
693 if (pos < this->size ())
694 {
695 (*this)[pos - 1] = (*this)[this->size () - 1];
696 (*this)[pos - 1]->*indexmember = pos;
697 }
698
699 this->pop_back ();
700 }
701
702 void erase (T &obj)
703 {
704 erase (&obj);
705 }
706 };
707
708 // basically does what strncpy should do, but appends "..." to strings exceeding length
709 // returns the number of bytes actually used (including \0)
710 int assign (char *dst, const char *src, int maxsize);
711
712 // type-safe version of assign
713 template<int N>
714 inline int assign (char (&dst)[N], const char *src)
715 {
716 return assign ((char *)&dst, src, N);
717 }
718
719 typedef double tstamp;
720
721 // return current time as timestamp
722 tstamp now ();
723
724 int similar_direction (int a, int b);
725
726 // like v?sprintf, but returns a "static" buffer
727 char *vformat (const char *format, va_list ap);
728 char *format (const char *format, ...) attribute ((format (printf, 1, 2)));
729
730 // safety-check player input which will become object->msg
731 bool msg_is_safe (const char *msg);
732
733 /////////////////////////////////////////////////////////////////////////////
734 // threads, very very thin wrappers around pthreads
735
736 struct thread
737 {
738 pthread_t id;
739
740 void start (void *(*start_routine)(void *), void *arg = 0);
741
742 void cancel ()
743 {
744 pthread_cancel (id);
745 }
746
747 void *join ()
748 {
749 void *ret;
750
751 if (pthread_join (id, &ret))
752 cleanup ("pthread_join failed", 1);
753
754 return ret;
755 }
756 };
757
758 // note that mutexes are not classes
759 typedef pthread_mutex_t smutex;
760
761 #if __linux && defined (PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP)
762 #define SMUTEX_INITIALISER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
763 #else
764 #define SMUTEX_INITIALISER PTHREAD_MUTEX_INITIALIZER
765 #endif
766
767 #define SMUTEX(name) smutex name = SMUTEX_INITIALISER
768 #define SMUTEX_LOCK(name) pthread_mutex_lock (&(name))
769 #define SMUTEX_UNLOCK(name) pthread_mutex_unlock (&(name))
770
771 typedef pthread_cond_t scond;
772
773 #define SCOND(name) scond name = PTHREAD_COND_INITIALIZER
774 #define SCOND_SIGNAL(name) pthread_cond_signal (&(name))
775 #define SCOND_BROADCAST(name) pthread_cond_broadcast (&(name))
776 #define SCOND_WAIT(name,mutex) pthread_cond_wait (&(name), &(mutex))
777
778 #endif
779