ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/deliantra/server/random_maps/maze_gen.C
(Generate patch)

Comparing deliantra/server/random_maps/maze_gen.C (file contents):
Revision 1.7 by root, Sat Jan 27 02:19:37 2007 UTC vs.
Revision 1.16 by root, Sat Nov 7 18:32:45 2009 UTC

1/*
2 * This file is part of Deliantra, the Roguelike Realtime MMORPG.
3 *
4 * Copyright (©) 2005,2006,2007,2008,2009 Marc Alexander Lehmann / Robin Redeker / the Deliantra team
5 * Copyright (©) Crossfire Development Team (restored, original file without copyright notice)
6 *
7 * Deliantra is free software: you can redistribute it and/or modify it under
8 * the terms of the Affero GNU General Public License as published by the
9 * Free Software Foundation, either version 3 of the License, or (at your
10 * option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the Affero GNU General Public License
18 * and the GNU General Public License along with this program. If not, see
19 * <http://www.gnu.org/licenses/>.
20 *
21 * The authors can be reached via e-mail to <support@deliantra.net>
22 */
1 23
2/* peterm@langmuir.eecs.berkeley.edu: this function generates a random 24/* peterm@langmuir.eecs.berkeley.edu: this function generates a random
3blocked maze with the property that there is only one path from one spot 25blocked maze with the property that there is only one path from one spot
4to any other, and there is always a path from one spot to any other. 26to any other, and there is always a path from one spot to any other.
5 27
13 35
14/* we need to maintain a list of wall points to generate 36/* we need to maintain a list of wall points to generate
15 reasonable mazes: a straightforward recursive random walk maze 37 reasonable mazes: a straightforward recursive random walk maze
16 generator would generate a map with a trivial circle-the-outer-wall solution */ 38 generator would generate a map with a trivial circle-the-outer-wall solution */
17 39
18#include <stdio.h>
19#include <global.h> 40#include <global.h>
20 41
21/*#include <random_map.h>*/ 42#include "random_map.h"
22#include <maze_gen.h> 43#include "rproto.h"
23#include <time.h>
24 44
25/* global variables that everyone needs: don't want to pass them in 45/* global variables that everyone needs: don't want to pass them in
26 as parameters every time. */ 46 as parameters every time. */
27int *wall_x_list = 0; 47static int *wall_x_list = 0;
28int *wall_y_list = 0; 48static int *wall_y_list = 0;
29int wall_free_size = 0; 49static int wall_free_size = 0;
30
31/* heuristically, we need to change wall_chance based on the size of
32 the maze. */
33
34int wall_chance;
35
36/* the outsize interface routine: accepts sizes, returns a char
37** maze. option is a flag for either a sparse or a full maze. Sparse
38mazes have sizable rooms. option = 1, full, 0, sparse.*/
39
40char **
41maze_gen (int xsize, int ysize, int option)
42{
43 int i, j;
44
45 /* allocate that array, set it up */
46 char **maze = (char **) calloc (sizeof (char *), xsize);
47
48 for (i = 0; i < xsize; i++)
49 {
50 maze[i] = (char *) calloc (sizeof (char), ysize);
51 }
52
53 /* write the outer walls */
54 for (i = 0; i < xsize; i++)
55 maze[i][0] = maze[i][ysize - 1] = '#';
56 for (j = 0; j < ysize; j++)
57 maze[0][j] = maze[xsize - 1][j] = '#';
58
59
60 /* find how many free wall spots there are */
61 wall_free_size = 2 * (xsize - 4) + 2 * (ysize - 4);
62
63 make_wall_free_list (xsize, ysize);
64
65 /* return the empty maze */
66 if (wall_free_size <= 0)
67 return maze;
68
69 /* recursively generate the walls of the maze */
70 /* first pop a random starting point */
71 while (wall_free_size > 0)
72 {
73 pop_wall_point (&i, &j);
74 if (option)
75 fill_maze_full (maze, i, j, xsize, ysize);
76 else
77 fill_maze_sparse (maze, i, j, xsize, ysize);
78 }
79
80 /* clean up our intermediate data structures. */
81
82 free (wall_x_list);
83 free (wall_y_list);
84
85 return maze;
86}
87
88
89 50
90/* the free wall points are those outer points which aren't corners or 51/* the free wall points are those outer points which aren't corners or
91 near corners, and don't have a maze wall growing out of them already. */ 52 near corners, and don't have a maze wall growing out of them already. */
92 53static void
93void
94make_wall_free_list (int xsize, int ysize) 54make_wall_free_list (int xsize, int ysize)
95{ 55{
96 int i, j, count; 56 int i, j, count;
97 57
98 count = 0; /* entries already placed in the free list */ 58 count = 0; /* entries already placed in the free list */
99 /*allocate it */ 59 /*allocate it */
100 if (wall_free_size < 0) 60 if (wall_free_size < 0)
101 return; 61 return;
62
102 wall_x_list = (int *) calloc (sizeof (int), wall_free_size); 63 wall_x_list = (int *)calloc (sizeof (int), wall_free_size);
103 wall_y_list = (int *) calloc (sizeof (int), wall_free_size); 64 wall_y_list = (int *)calloc (sizeof (int), wall_free_size);
104
105 65
106 /* top and bottom wall */ 66 /* top and bottom wall */
107 for (i = 2; i < xsize - 2; i++) 67 for (i = 2; i < xsize - 2; i++)
108 { 68 {
109 wall_x_list[count] = i; 69 wall_x_list[count] = i;
124 wall_y_list[count] = j; 84 wall_y_list[count] = j;
125 count++; 85 count++;
126 } 86 }
127} 87}
128 88
129
130
131/* randomly returns one of the elements from the wall point list */ 89/* randomly returns one of the elements from the wall point list */
132 90static void
133void
134pop_wall_point (int *x, int *y) 91pop_wall_point (int *x, int *y)
135{ 92{
136 int index = rndm (wall_free_size); 93 int index = rmg_rndm (wall_free_size);
137 94
138 *x = wall_x_list[index]; 95 *x = wall_x_list[index];
139 *y = wall_y_list[index]; 96 *y = wall_y_list[index];
140 /* write the last array point here */ 97 /* write the last array point here */
141 wall_x_list[index] = wall_x_list[wall_free_size - 1]; 98 wall_x_list[index] = wall_x_list[wall_free_size - 1];
142 wall_y_list[index] = wall_y_list[wall_free_size - 1]; 99 wall_y_list[index] = wall_y_list[wall_free_size - 1];
143 wall_free_size--; 100 wall_free_size--;
144} 101}
145 102
146
147
148/* find free point: randomly look for a square adjacent to this one where 103/* find free point: randomly look for a square adjacent to this one where
149we can place a new block without closing a path. We may only look 104we can place a new block without closing a path. We may only look
150up, down, right, or left. */ 105up, down, right, or left. */
151 106static int
152int
153find_free_point (char **maze, int *x, int *y, int xc, int yc, int xsize, int ysize) 107find_free_point (char **maze, int *x, int *y, int xc, int yc, int xsize, int ysize)
154{ 108{
155
156/* we will randomly pick from this list, 1=up,2=down,3=right,4=left */ 109 /* we will randomly pick from this list, 1=up,2=down,3=right,4=left */
157 int dirlist[4]; 110 int dirlist[4];
158 int count = 0; /* # elements in dirlist */ 111 int count = 0; /* # elements in dirlist */
159 112
160 /* look up */ 113 /* look up */
161 if (yc < ysize - 2 && xc > 2 && xc < xsize - 2) /* it is valid to look up */ 114 if (yc < ysize - 2 && xc > 2 && xc < xsize - 2) /* it is valid to look up */
163 int cleartest = (int) maze[xc][yc + 1] + (int) maze[xc - 1][yc + 1] + (int) maze[xc + 1][yc + 1]; 116 int cleartest = (int) maze[xc][yc + 1] + (int) maze[xc - 1][yc + 1] + (int) maze[xc + 1][yc + 1];
164 117
165 cleartest += (int) maze[xc][yc + 2] + (int) maze[xc - 1][yc + 2] + (int) maze[xc + 1][yc + 2]; 118 cleartest += (int) maze[xc][yc + 2] + (int) maze[xc - 1][yc + 2] + (int) maze[xc + 1][yc + 2];
166 119
167 if (cleartest == 0) 120 if (cleartest == 0)
168 {
169 dirlist[count] = 1; 121 dirlist[count++] = 1;
170 count++;
171 }
172 } 122 }
173
174 123
175 /* look down */ 124 /* look down */
176 if (yc > 2 && xc > 2 && xc < xsize - 2) /* it is valid to look down */ 125 if (yc > 2 && xc > 2 && xc < xsize - 2) /* it is valid to look down */
177 { 126 {
178 int cleartest = (int) maze[xc][yc - 1] + (int) maze[xc - 1][yc - 1] + (int) maze[xc + 1][yc - 1]; 127 int cleartest = (int) maze[xc][yc - 1] + (int) maze[xc - 1][yc - 1] + (int) maze[xc + 1][yc - 1];
179 128
180 cleartest += (int) maze[xc][yc - 2] + (int) maze[xc - 1][yc - 2] + (int) maze[xc + 1][yc - 2]; 129 cleartest += (int) maze[xc][yc - 2] + (int) maze[xc - 1][yc - 2] + (int) maze[xc + 1][yc - 2];
181 130
182 if (cleartest == 0) 131 if (cleartest == 0)
183 {
184 dirlist[count] = 2; 132 dirlist[count++] = 2;
185 count++;
186 }
187 } 133 }
188
189 134
190 /* look right */ 135 /* look right */
191 if (xc < xsize - 2 && yc > 2 && yc < ysize - 2) /* it is valid to look left */ 136 if (xc < xsize - 2 && yc > 2 && yc < ysize - 2) /* it is valid to look left */
192 { 137 {
193 int cleartest = (int) maze[xc + 1][yc] + (int) maze[xc + 1][yc - 1] + (int) maze[xc + 1][yc + 1]; 138 int cleartest = (int) maze[xc + 1][yc] + (int) maze[xc + 1][yc - 1] + (int) maze[xc + 1][yc + 1];
194 139
195 cleartest += (int) maze[xc + 2][yc] + (int) maze[xc + 2][yc - 1] + (int) maze[xc + 2][yc + 1]; 140 cleartest += (int) maze[xc + 2][yc] + (int) maze[xc + 2][yc - 1] + (int) maze[xc + 2][yc + 1];
196 141
197 if (cleartest == 0) 142 if (cleartest == 0)
198 {
199 dirlist[count] = 3; 143 dirlist[count++] = 3;
200 count++;
201 }
202 } 144 }
203
204 145
205 /* look left */ 146 /* look left */
206 if (xc > 2 && yc > 2 && yc < ysize - 2) /* it is valid to look down */ 147 if (xc > 2 && yc > 2 && yc < ysize - 2) /* it is valid to look down */
207 { 148 {
208 int cleartest = (int) maze[xc - 1][yc] + (int) maze[xc - 1][yc - 1] + (int) maze[xc - 1][yc + 1]; 149 int cleartest = (int) maze[xc - 1][yc] + (int) maze[xc - 1][yc - 1] + (int) maze[xc - 1][yc + 1];
209 150
210 cleartest += (int) maze[xc - 2][yc] + (int) maze[xc - 2][yc - 1] + (int) maze[xc - 2][yc + 1]; 151 cleartest += (int) maze[xc - 2][yc] + (int) maze[xc - 2][yc - 1] + (int) maze[xc - 2][yc + 1];
211 152
212 if (cleartest == 0) 153 if (cleartest == 0)
213 {
214 dirlist[count] = 4; 154 dirlist[count++] = 4;
215 count++;
216 }
217 } 155 }
218 156
219 if (count == 0) 157 if (count == 0)
220 return -1; /* failed to find any clear points */ 158 return -1; /* failed to find any clear points */
221 159
222 /* choose a random direction */ 160 /* choose a random direction */
223 if (count > 1)
224 count = rndm (count);
225 else
226 count = 0;
227
228 switch (dirlist[count]) 161 switch (dirlist [rmg_rndm (count)])
229 { 162 {
230 case 1: /* up */ 163 case 1: /* up */
231 {
232 *y = yc + 1; 164 *y = yc + 1;
233 *x = xc; 165 *x = xc;
234 break; 166 break;
235 }; 167
236 case 2: /* down */ 168 case 2: /* down */
237 {
238 *y = yc - 1; 169 *y = yc - 1;
239 *x = xc; 170 *x = xc;
240 break; 171 break;
241 }; 172
242 case 3: /* right */ 173 case 3: /* right */
243 {
244 *y = yc; 174 *y = yc;
245 *x = xc + 1; 175 *x = xc + 1;
246 break; 176 break;
247 } 177
248 case 4: /* left */ 178 case 4: /* left */
249 {
250 *x = xc - 1; 179 *x = xc - 1;
251 *y = yc; 180 *y = yc;
252 break; 181 break;
253 } 182
254 default: /* ??? */ 183 default: /* ??? */
255 {
256 return -1; 184 return -1;
257 } 185
258 } 186 }
187
259 return 1; 188 return 1;
260} 189}
261 190
262/* recursive routine which will fill every available space in the maze 191/* recursive routine which will fill every available space in the maze
263 with walls*/ 192 with walls*/
264 193static void
265void
266fill_maze_full (char **maze, int x, int y, int xsize, int ysize) 194fill_maze_full (char **maze, int x, int y, int xsize, int ysize)
267{ 195{
268 int xc, yc; 196 int xc, yc;
269 197
270 /* write a wall here */ 198 /* write a wall here */
271 maze[x][y] = '#'; 199 maze[x][y] = '#';
272 200
273 /* decide if we're going to pick from the wall_free_list */ 201 /* decide if we're going to pick from the wall_free_list */
274 if (rndm (4) && wall_free_size > 0) 202 if (rmg_rndm (4) && wall_free_size > 0)
275 { 203 {
276 pop_wall_point (&xc, &yc); 204 pop_wall_point (&xc, &yc);
277 fill_maze_full (maze, xc, yc, xsize, ysize); 205 fill_maze_full (maze, xc, yc, xsize, ysize);
278 } 206 }
279 207
280 /* change the if to a while for a complete maze. */ 208 /* change the if to a while for a complete maze. */
281 while (find_free_point (maze, &xc, &yc, x, y, xsize, ysize) != -1) 209 while (find_free_point (maze, &xc, &yc, x, y, xsize, ysize) != -1)
282 {
283 fill_maze_full (maze, xc, yc, xsize, ysize); 210 fill_maze_full (maze, xc, yc, xsize, ysize);
284 }
285} 211}
286
287 212
288/* recursive routine which will fill much of the maze, but will leave 213/* recursive routine which will fill much of the maze, but will leave
289 some free spots (possibly large) toward the center.*/ 214 some free spots (possibly large) toward the center.*/
290 215static void
291void
292fill_maze_sparse (char **maze, int x, int y, int xsize, int ysize) 216fill_maze_sparse (char **maze, int x, int y, int xsize, int ysize)
293{ 217{
294 int xc, yc; 218 int xc, yc;
295 219
296 /* write a wall here */ 220 /* write a wall here */
297 maze[x][y] = '#'; 221 maze[x][y] = '#';
298 222
299 /* decide if we're going to pick from the wall_free_list */ 223 /* decide if we're going to pick from the wall_free_list */
300 if (rndm (4) && wall_free_size > 0) 224 if (rmg_rndm (4) && wall_free_size > 0)
301 { 225 {
302 pop_wall_point (&xc, &yc); 226 pop_wall_point (&xc, &yc);
303 fill_maze_sparse (maze, xc, yc, xsize, ysize); 227 fill_maze_sparse (maze, xc, yc, xsize, ysize);
304 } 228 }
305 229
306 /* change the if to a while for a complete maze. */ 230 /* change the if to a while for a complete maze. */
307 if (find_free_point (maze, &xc, &yc, x, y, xsize, ysize) != -1) 231 if (find_free_point (maze, &xc, &yc, x, y, xsize, ysize) != -1)
308 {
309 fill_maze_sparse (maze, xc, yc, xsize, ysize); 232 fill_maze_sparse (maze, xc, yc, xsize, ysize);
233}
234
235/* the outsize interface routine: accepts sizes, returns a char
236** maze. option is a flag for either a sparse or a full maze. Sparse
237mazes have sizable rooms. option = 1, full, 0, sparse.*/
238void
239maze_gen (Layout maze, int option)
240{
241 maze->clear ();
242 maze->border ();
243
244 /* find how many free wall spots there are */
245 wall_free_size = 2 * (maze->w - 4) + 2 * (maze->h - 4);
246
247 make_wall_free_list (maze->w, maze->h);
248
249 /* return the empty maze */
250 if (wall_free_size <= 0)
251 return;
252
253 /* recursively generate the walls of the maze */
254 /* first pop a random starting point */
255 while (wall_free_size > 0)
310 } 256 {
257 int i, j;
258
259 pop_wall_point (&i, &j);
260
261 if (option)
262 fill_maze_full (maze, i, j, maze->w, maze->h);
263 else
264 fill_maze_sparse (maze, i, j, maze->w, maze->h);
265 }
266
267 /* clean up our intermediate data structures. */
268
269 free (wall_x_list);
270 free (wall_y_list);
311} 271}
272

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines