/** * random.C: SIMD oriented Fast Mersenne Twister(SFMT) * * Copyright © 2007 Pippijn van Steenhoven / The Ermyth Team (http://ermyth.schmorp.de) * Copyright © 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima * University. All rights reserved. * * @author Mutsuo Saito (Hiroshima University) * @author Makoto Matsumoto (Hiroshima University) * * The new BSD License is applied to this software, see doc/poddoc/license.pod */ static char const rcsid[] = "$Id: random.C,v 1.2 2007/09/09 20:05:52 pippijn Exp $"; #include #include #include /*----------------- BASIC DEFINITIONS -----------------*/ /** SFMT generator has an internal state array of 128-bit integers, * and N is its size. */ #define N (216091 / 128 + 1) /** N32 is the size of internal state array when regarded as an array * of 32-bit integers.*/ #define N32 (N * 4) /** N64 is the size of internal state array when regarded as an array * of 64-bit integers.*/ #define N64 (N * 2) /*---------------------- the parameters of SFMT following definitions are in paramsXXXX.h file. ----------------------*/ // the pick up position of the array. #define POS1 627 // the parameter of shift left as four 32-bit registers. #define SL1 11 // the parameter of shift left as one 128-bit register. // The 128-bit integer is shifted by (SL2 * 8) bits. #define SL2 3 // the parameter of shift right as four 32-bit registers. #define SR1 10 // the parameter of shift right as one 128-bit register. // The 128-bit integer is shifted by (SL2 * 8) bits. #define SR2 1 // A bitmask, used in the recursion. These parameters are introduced // to break symmetry of SIMD. #define MSK1 0xbff7bff7U #define MSK2 0xbfffffffU #define MSK3 0xbffffa7fU #define MSK4 0xffddfbfbU // These definitions are part of a 128-bit period certification vector. #define PARITY1 0xf8000001U #define PARITY2 0x89e80709U #define PARITY3 0x3bd2b64bU #define PARITY4 0x0c64b1e4U /* PARAMETERS FOR ALTIVEC */ #if defined(__APPLE__) /* For OSX */ #define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1) #define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1) #define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4) #define ALTI_MSK64 (vector unsigned int)(MSK2, MSK1, MSK4, MSK3) #define ALTI_SL2_PERM (vector unsigned char)(3,21,21,21,7,0,1,2,11,4,5,6,15,8,9,10) #define ALTI_SL2_PERM64 (vector unsigned char)(3,4,5,6,7,29,29,29,11,12,13,14,15,0,1,2) #define ALTI_SR2_PERM (vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14) #define ALTI_SR2_PERM64 (vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14) #else // !__APPLE__ #define ALTI_SL1 {SL1, SL1, SL1, SL1} #define ALTI_SR1 {SR1, SR1, SR1, SR1} #define ALTI_MSK {MSK1, MSK2, MSK3, MSK4} #define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3} #define ALTI_SL2_PERM { 3,21,21,21, 7, 0, 1, 2,11, 4, 5, 6,15, 8, 9,10} #define ALTI_SL2_PERM64 { 3, 4, 5, 6, 7,29,29,29,11,12,13,14,15, 0, 1, 2} #define ALTI_SR2_PERM { 7, 0, 1, 2,11, 4, 5, 6,15, 8, 9,10,17,12,13,14} #define ALTI_SR2_PERM64 {15, 0, 1, 2, 3, 4, 5, 6,17, 8, 9,10,11,12,13,14} #endif // __APPLE__ #define IDSTR "SFMT-216091:627-11-3-10-1:bff7bff7-bfffffff-bffffa7f-ffddfbfb" #if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64) #define BIG_ENDIAN64 1 #endif #if defined(HAVE_ALTIVEC) && !defined(BIG_ENDIAN64) #define BIG_ENDIAN64 1 #endif #if defined(ONLY64) && !defined(BIG_ENDIAN64) #if defined(__GNUC__) #error "-DONLY64 must be specified with -DBIG_ENDIAN64" #endif #undef ONLY64 #endif /*-------------------------------------- FILE GLOBAL VARIABLES internal state, index counter and flag --------------------------------------*/ /** the 128-bit internal state array */ static w128_t sfmt[N]; /** the 32bit integer pointer to the 128-bit internal state array */ static uint32_t *psfmt32 = &sfmt[0].u[0]; #if !defined(BIG_ENDIAN64) || defined(ONLY64) /** the 64bit integer pointer to the 128-bit internal state array */ static uint64_t *psfmt64 = reinterpret_cast (&sfmt[0].u[0]); #endif /** index counter to the 32-bit internal state array */ static int idx; /** a flag: it is 0 if and only if the internal state is not yet * initialized. */ static int initialized = 0; /** a parity check vector which certificate the period of 2^{MEXP} */ static uint32_t parity[4] = { PARITY1, PARITY2, PARITY3, PARITY4 }; /*---------------- STATIC FUNCTIONS ----------------*/ inline static int idxof (int i); inline static void rshift128 (w128_t *out, w128_t const *in, int shift); inline static void lshift128 (w128_t *out, w128_t const *in, int shift); inline static void gen_rand_all (void); inline static void gen_rand_array (w128_t *array, int size); inline static uint32_t func1 (uint32_t x); inline static uint32_t func2 (uint32_t x); inline static void period_certification (void); #if defined(BIG_ENDIAN64) && !defined(ONLY64) inline static void swap (w128_t *array, int size); #endif #if defined(HAVE_ALTIVEC) inline static vector unsigned int vec_recursion (vector unsigned int a, vector unsigned int b, vector unsigned int c, vector unsigned int d) ALWAYSINLINE; /** * This function represents the recursion formula in AltiVec and BIG ENDIAN. * @param a a 128-bit part of the interal state array * @param b a 128-bit part of the interal state array * @param c a 128-bit part of the interal state array * @param d a 128-bit part of the interal state array * @return output */ inline static vector unsigned int vec_recursion (vector unsigned int a, vector unsigned int b, vector unsigned int c, vector unsigned int d) { const vector unsigned int sl1 = ALTI_SL1; const vector unsigned int sr1 = ALTI_SR1; #ifdef ONLY64 const vector unsigned int mask = ALTI_MSK64; const vector unsigned char perm_sl = ALTI_SL2_PERM64; const vector unsigned char perm_sr = ALTI_SR2_PERM64; #else const vector unsigned int mask = ALTI_MSK; const vector unsigned char perm_sl = ALTI_SL2_PERM; const vector unsigned char perm_sr = ALTI_SR2_PERM; #endif vector unsigned int v, w, x, y, z; x = vec_perm (a, (vector unsigned int) perm_sl, perm_sl); v = a; y = vec_sr (b, sr1); z = vec_perm (c, (vector unsigned int) perm_sr, perm_sr); w = vec_sl (d, sl1); z = vec_xor (z, w); y = vec_and (y, mask); v = vec_xor (v, x); z = vec_xor (z, y); z = vec_xor (z, v); return z; } /** * This function fills the internal state array with pseudorandom * integers. */ inline static void gen_rand_all (void) { int i; vector unsigned int r, r1, r2; r1 = sfmt[N - 2].s; r2 = sfmt[N - 1].s; for (i = 0; i < N - POS1; i++) { r = vec_recursion (sfmt[i].s, sfmt[i + POS1].s, r1, r2); sfmt[i].s = r; r1 = r2; r2 = r; } for (; i < N; i++) { r = vec_recursion (sfmt[i].s, sfmt[i + POS1 - N].s, r1, r2); sfmt[i].s = r; r1 = r2; r2 = r; } } /** * This function fills the user-specified array with pseudorandom * integers. * * @param array an 128-bit array to be filled by pseudorandom numbers. * @param size number of 128-bit pesudorandom numbers to be generated. */ inline static void gen_rand_array (w128_t *array, int size) { int i, j; vector unsigned int r, r1, r2; r1 = sfmt[N - 2].s; r2 = sfmt[N - 1].s; for (i = 0; i < N - POS1; i++) { r = vec_recursion (sfmt[i].s, sfmt[i + POS1].s, r1, r2); array[i].s = r; r1 = r2; r2 = r; } for (; i < N; i++) { r = vec_recursion (sfmt[i].s, array[i + POS1 - N].s, r1, r2); array[i].s = r; r1 = r2; r2 = r; } /* main loop */ for (; i < size - N; i++) { r = vec_recursion (array[i - N].s, array[i + POS1 - N].s, r1, r2); array[i].s = r; r1 = r2; r2 = r; } for (j = 0; j < 2 * N - size; j++) { sfmt[j].s = array[j + size - N].s; } for (; i < size; i++) { r = vec_recursion (array[i - N].s, array[i + POS1 - N].s, r1, r2); array[i].s = r; sfmt[j++].s = r; r1 = r2; r2 = r; } } #ifndef ONLY64 #if defined(__APPLE__) #define ALTI_SWAP (vector unsigned char) \ (4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11) #else #define ALTI_SWAP {4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11} #endif /** * This function swaps high and low 32-bit of 64-bit integers in user * specified array. * * @param array an 128-bit array to be swaped. * @param size size of 128-bit array. */ inline static void swap (w128_t *array, int size) { int i; const vector unsigned char perm = ALTI_SWAP; for (i = 0; i < size; i++) { array[i].s = vec_perm (array[i].s, (vector unsigned int) perm, perm); } } #endif #elif defined(HAVE_SSE2) inline static __m128i mm_recursion (__m128i *a, __m128i *b, __m128i c, __m128i d, __m128i mask); /** * This function represents the recursion formula. * @param a a 128-bit part of the interal state array * @param b a 128-bit part of the interal state array * @param c a 128-bit part of the interal state array * @param d a 128-bit part of the interal state array * @param mask 128-bit mask * @return output */ inline static __m128i mm_recursion (__m128i *a, __m128i *b, __m128i c, __m128i d, __m128i mask) { __m128i v, x, y, z; x = _mm_load_si128 (a); y = _mm_srli_epi32 (*b, SR1); z = _mm_srli_si128 (c, SR2); v = _mm_slli_epi32 (d, SL1); z = _mm_xor_si128 (z, x); z = _mm_xor_si128 (z, v); x = _mm_slli_si128 (x, SL2); y = _mm_and_si128 (y, mask); z = _mm_xor_si128 (z, x); z = _mm_xor_si128 (z, y); return z; } /** * This function fills the internal state array with pseudorandom * integers. */ inline static void gen_rand_all (void) { int i; __m128i r, r1, r2, mask; mask = _mm_set_epi32 (MSK4, MSK3, MSK2, MSK1); r1 = _mm_load_si128 (&sfmt[N - 2].si); r2 = _mm_load_si128 (&sfmt[N - 1].si); for (i = 0; i < N - POS1; i++) { r = mm_recursion (&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask); _mm_store_si128 (&sfmt[i].si, r); r1 = r2; r2 = r; } for (; i < N; i++) { r = mm_recursion (&sfmt[i].si, &sfmt[i + POS1 - N].si, r1, r2, mask); _mm_store_si128 (&sfmt[i].si, r); r1 = r2; r2 = r; } } /** * This function fills the user-specified array with pseudorandom * integers. * * @param array an 128-bit array to be filled by pseudorandom numbers. * @param size number of 128-bit pesudorandom numbers to be generated. */ inline static void gen_rand_array (w128_t *array, int size) { int i, j; __m128i r, r1, r2, mask; mask = _mm_set_epi32 (MSK4, MSK3, MSK2, MSK1); r1 = _mm_load_si128 (&sfmt[N - 2].si); r2 = _mm_load_si128 (&sfmt[N - 1].si); for (i = 0; i < N - POS1; i++) { r = mm_recursion (&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask); _mm_store_si128 (&array[i].si, r); r1 = r2; r2 = r; } for (; i < N; i++) { r = mm_recursion (&sfmt[i].si, &array[i + POS1 - N].si, r1, r2, mask); _mm_store_si128 (&array[i].si, r); r1 = r2; r2 = r; } /* main loop */ for (; i < size - N; i++) { r = mm_recursion (&array[i - N].si, &array[i + POS1 - N].si, r1, r2, mask); _mm_store_si128 (&array[i].si, r); r1 = r2; r2 = r; } for (j = 0; j < 2 * N - size; j++) { r = _mm_load_si128 (&array[j + size - N].si); _mm_store_si128 (&sfmt[j].si, r); } for (; i < size; i++) { r = mm_recursion (&array[i - N].si, &array[i + POS1 - N].si, r1, r2, mask); _mm_store_si128 (&array[i].si, r); _mm_store_si128 (&sfmt[j++].si, r); r1 = r2; r2 = r; } } #endif /** * This function simulate a 64-bit index of LITTLE ENDIAN * in BIG ENDIAN machine. */ #ifdef ONLY64 inline static int idxof (int i) { return i ^ 1; } #else inline static int idxof (int i) { return i; } #endif /** * This function simulates SIMD 128-bit right shift by the standard C. * The 128-bit integer given in in is shifted by (shift * 8) bits. * This function simulates the LITTLE ENDIAN SIMD. * @param out the output of this function * @param in the 128-bit data to be shifted * @param shift the shift value */ #ifdef ONLY64 inline static void rshift128 (w128_t *out, w128_t const *in, int shift) { uint64_t th, tl, oh, ol; th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]); tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]); oh = th >> (shift * 8); ol = tl >> (shift * 8); ol |= th << (64 - shift * 8); out->u[0] = (uint32_t) (ol >> 32); out->u[1] = (uint32_t) ol; out->u[2] = (uint32_t) (oh >> 32); out->u[3] = (uint32_t) oh; } #else inline static void rshift128 (w128_t *out, w128_t const *in, int shift) { uint64_t th, tl, oh, ol; th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]); tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]); oh = th >> (shift * 8); ol = tl >> (shift * 8); ol |= th << (64 - shift * 8); out->u[1] = (uint32_t) (ol >> 32); out->u[0] = (uint32_t) ol; out->u[3] = (uint32_t) (oh >> 32); out->u[2] = (uint32_t) oh; } #endif /** * This function simulates SIMD 128-bit left shift by the standard C. * The 128-bit integer given in in is shifted by (shift * 8) bits. * This function simulates the LITTLE ENDIAN SIMD. * @param out the output of this function * @param in the 128-bit data to be shifted * @param shift the shift value */ #ifdef ONLY64 inline static void lshift128 (w128_t *out, w128_t const *in, int shift) { uint64_t th, tl, oh, ol; th = ((uint64_t) in->u[2] << 32) | ((uint64_t) in->u[3]); tl = ((uint64_t) in->u[0] << 32) | ((uint64_t) in->u[1]); oh = th << (shift * 8); ol = tl << (shift * 8); oh |= tl >> (64 - shift * 8); out->u[0] = (uint32_t) (ol >> 32); out->u[1] = (uint32_t) ol; out->u[2] = (uint32_t) (oh >> 32); out->u[3] = (uint32_t) oh; } #else inline static void lshift128 (w128_t *out, w128_t const *in, int shift) { uint64_t th, tl, oh, ol; th = ((uint64_t) in->u[3] << 32) | ((uint64_t) in->u[2]); tl = ((uint64_t) in->u[1] << 32) | ((uint64_t) in->u[0]); oh = th << (shift * 8); ol = tl << (shift * 8); oh |= tl >> (64 - shift * 8); out->u[1] = (uint32_t) (ol >> 32); out->u[0] = (uint32_t) ol; out->u[3] = (uint32_t) (oh >> 32); out->u[2] = (uint32_t) oh; } #endif /** * This function represents the recursion formula. * @param r output * @param a a 128-bit part of the internal state array * @param b a 128-bit part of the internal state array * @param c a 128-bit part of the internal state array * @param d a 128-bit part of the internal state array */ #ifdef ONLY64 inline static void do_recursion (w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d) { w128_t x; w128_t y; lshift128 (&x, a, SL2); rshift128 (&y, c, SR2); r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0] ^ (d->u[0] << SL1); r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1] ^ (d->u[1] << SL1); r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2] ^ (d->u[2] << SL1); r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3] ^ (d->u[3] << SL1); } #else inline static void do_recursion (w128_t *r, w128_t *a, w128_t *b, w128_t *c, w128_t *d) { w128_t x; w128_t y; lshift128 (&x, a, SL2); rshift128 (&y, c, SR2); r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0] ^ (d->u[0] << SL1); r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1] ^ (d->u[1] << SL1); r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2] ^ (d->u[2] << SL1); r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3] ^ (d->u[3] << SL1); } #endif #if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2)) /** * This function fills the internal state array with pseudorandom * integers. */ inline static void gen_rand_all (void) { int i; w128_t *r1, *r2; r1 = &sfmt[N - 2]; r2 = &sfmt[N - 1]; for (i = 0; i < N - POS1; i++) { do_recursion (&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2); r1 = r2; r2 = &sfmt[i]; } for (; i < N; i++) { do_recursion (&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2); r1 = r2; r2 = &sfmt[i]; } } /** * This function fills the user-specified array with pseudorandom * integers. * * @param array an 128-bit array to be filled by pseudorandom numbers. * @param size number of 128-bit pseudorandom numbers to be generated. */ inline static void gen_rand_array (w128_t *array, int size) { int i, j; w128_t *r1, *r2; r1 = &sfmt[N - 2]; r2 = &sfmt[N - 1]; for (i = 0; i < N - POS1; i++) { do_recursion (&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2); r1 = r2; r2 = &array[i]; } for (; i < N; i++) { do_recursion (&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2); r1 = r2; r2 = &array[i]; } for (; i < size - N; i++) { do_recursion (&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); r1 = r2; r2 = &array[i]; } for (j = 0; j < 2 * N - size; j++) { sfmt[j] = array[j + size - N]; } for (; i < size; i++, j++) { do_recursion (&array[i], &array[i - N], &array[i + POS1 - N], r1, r2); r1 = r2; r2 = &array[i]; sfmt[j] = array[i]; } } #endif #if defined(BIG_ENDIAN64) && !defined(ONLY64) && !defined(HAVE_ALTIVEC) inline static void swap (w128_t *array, int size) { int i; uint32_t x, y; for (i = 0; i < size; i++) { x = array[i].u[0]; y = array[i].u[2]; array[i].u[0] = array[i].u[1]; array[i].u[2] = array[i].u[3]; array[i].u[1] = x; array[i].u[3] = y; } } #endif /** * This function represents a function used in the initialization * by init_by_array * @param x 32-bit integer * @return 32-bit integer */ inline static uint32_t func1 (uint32_t x) { return (x ^ (x >> 27)) * (uint32_t) 1664525UL; } /** * This function represents a function used in the initialization * by init_by_array * @param x 32-bit integer * @return 32-bit integer */ inline static uint32_t func2 (uint32_t x) { return (x ^ (x >> 27)) * (uint32_t) 1566083941UL; } /** * This function certificate the period of 2^{MEXP} */ static void period_certification (void) { int inner = 0; int i, j; uint32_t work; for (i = 0; i < 4; i++) inner ^= psfmt32[idxof (i)] & parity[i]; for (i = 16; i > 0; i >>= 1) inner ^= inner >> i; inner &= 1; /* check OK */ if (inner == 1) { return; } /* check NG, and modification */ for (i = 0; i < 4; i++) { work = 1; for (j = 0; j < 32; j++) { if ((work & parity[i]) != 0) { psfmt32[idxof (i)] ^= work; return; } work = work << 1; } } } /*---------------- PUBLIC FUNCTIONS ----------------*/ /** * This function returns the identification string. * The string shows the word size, the Mersenne exponent, * and all parameters of this generator. */ char const * const get_idstring (void) { return IDSTR; } /** * This function returns the minimum size of array used for \b * fill_array32() function. * @return minimum size of array used for fill_array32() function. */ int get_min_array_size32 (void) { return N32; } /** * This function returns the minimum size of array used for \b * fill_array64() function. * @return minimum size of array used for fill_array64() function. */ int get_min_array_size64 (void) { return N64; } #ifndef ONLY64 /** * This function generates and returns 32-bit pseudorandom number. * init_gen_rand or init_by_array must be called before this function. * @return 32-bit pseudorandom number */ uint32_t gen_rand32 (void) { uint32_t r; assert (initialized); if (idx >= N32) { gen_rand_all (); idx = 0; } r = psfmt32[idx++]; return r; } #endif /** * This function generates and returns 64-bit pseudorandom number. * init_gen_rand or init_by_array must be called before this function. * The function gen_rand64 should not be called after gen_rand32, * unless an initialization is again executed. * @return 64-bit pseudorandom number */ uint64_t gen_rand64 (void) { #if defined(BIG_ENDIAN64) && !defined(ONLY64) uint32_t r1, r2; #else uint64_t r; #endif assert (initialized); assert (idx % 2 == 0); if (idx >= N32) { gen_rand_all (); idx = 0; } #if defined(BIG_ENDIAN64) && !defined(ONLY64) r1 = psfmt32[idx]; r2 = psfmt32[idx + 1]; idx += 2; return ((uint64_t) r2 << 32) | r1; #else r = psfmt64[idx / 2]; idx += 2; return r; #endif } #ifndef ONLY64 /** * This function generates pseudorandom 32-bit integers in the * specified array[] by one call. The number of pseudorandom integers * is specified by the argument size, which must be at least 624 and a * multiple of four. The generation by this function is much faster * than the following gen_rand function. * * For initialization, init_gen_rand or init_by_array must be called * before the first call of this function. This function can not be * used after calling gen_rand function, without initialization. * * @param array an array where pseudorandom 32-bit integers are filled * by this function. The pointer to the array must be \b "aligned" * (namely, must be a multiple of 16) in the SIMD version, since it * refers to the address of a 128-bit integer. In the standard C * version, the pointer is arbitrary. * * @param size the number of 32-bit pseudorandom integers to be * generated. size must be a multiple of 4, and greater than or equal * to (MEXP / 128 + 1) * 4. * * @note \b memalign or \b posix_memalign is available to get aligned * memory. Mac OSX doesn't have these functions, but \b malloc of OSX * returns the pointer to the aligned memory block. */ void fill_array32 (uint32_t * array, int size) { assert (initialized); assert (idx == N32); assert (size % 4 == 0); assert (size >= N32); gen_rand_array (reinterpret_cast (array), size / 4); idx = N32; } #endif /** * This function generates pseudorandom 64-bit integers in the * specified array[] by one call. The number of pseudorandom integers * is specified by the argument size, which must be at least 312 and a * multiple of two. The generation by this function is much faster * than the following gen_rand function. * * For initialization, init_gen_rand or init_by_array must be called * before the first call of this function. This function can not be * used after calling gen_rand function, without initialization. * * @param array an array where pseudorandom 64-bit integers are filled * by this function. The pointer to the array must be "aligned" * (namely, must be a multiple of 16) in the SIMD version, since it * refers to the address of a 128-bit integer. In the standard C * version, the pointer is arbitrary. * * @param size the number of 64-bit pseudorandom integers to be * generated. size must be a multiple of 2, and greater than or equal * to (MEXP / 128 + 1) * 2 * * @note \b memalign or \b posix_memalign is available to get aligned * memory. Mac OSX doesn't have these functions, but \b malloc of OSX * returns the pointer to the aligned memory block. */ void fill_array64 (uint64_t * array, int size) { assert (initialized); assert (idx == N32); assert (size % 2 == 0); assert (size >= N64); gen_rand_array (reinterpret_cast (array), size / 2); idx = N32; #if defined(BIG_ENDIAN64) && !defined(ONLY64) swap (reinterpret_cast (array), size / 2); #endif } /** * This function initializes the internal state array with a 32-bit * integer seed. * * @param seed a 32-bit integer used as the seed. */ void init_gen_rand (uint32_t seed) { int i; psfmt32[idxof (0)] = seed; for (i = 1; i < N32; i++) { psfmt32[idxof (i)] = 1812433253UL * (psfmt32[idxof (i - 1)] ^ (psfmt32[idxof (i - 1)] >> 30)) + i; } idx = N32; period_certification (); initialized = 1; } /** * This function initializes the internal state array, * with an array of 32-bit integers used as the seeds * @param init_key the array of 32-bit integers, used as a seed. * @param key_length the length of init_key. */ void init_by_array (uint32_t * init_key, int key_length) { int i, j, count; uint32_t r; int lag; int mid; int size = N * 4; if (size >= 623) { lag = 11; } else if (size >= 68) { lag = 7; } else if (size >= 39) { lag = 5; } else { lag = 3; } mid = (size - lag) / 2; memset (sfmt, 0x8b, sizeof (sfmt)); if (key_length + 1 > N32) { count = key_length + 1; } else { count = N32; } r = func1 (psfmt32[idxof (0)] ^ psfmt32[idxof (mid)] ^ psfmt32[idxof (N32 - 1)]); psfmt32[idxof (mid)] += r; r += key_length; psfmt32[idxof (mid + lag)] += r; psfmt32[idxof (0)] = r; count--; for (i = 1, j = 0; (j < count) && (j < key_length); j++) { r = func1 (psfmt32[idxof (i)] ^ psfmt32[idxof ((i + mid) % N32)] ^ psfmt32[idxof ((i + N32 - 1) % N32)]); psfmt32[idxof ((i + mid) % N32)] += r; r += init_key[j] + i; psfmt32[idxof ((i + mid + lag) % N32)] += r; psfmt32[idxof (i)] = r; i = (i + 1) % N32; } for (; j < count; j++) { r = func1 (psfmt32[idxof (i)] ^ psfmt32[idxof ((i + mid) % N32)] ^ psfmt32[idxof ((i + N32 - 1) % N32)]); psfmt32[idxof ((i + mid) % N32)] += r; r += i; psfmt32[idxof ((i + mid + lag) % N32)] += r; psfmt32[idxof (i)] = r; i = (i + 1) % N32; } for (j = 0; j < N32; j++) { r = func2 (psfmt32[idxof (i)] + psfmt32[idxof ((i + mid) % N32)] + psfmt32[idxof ((i + N32 - 1) % N32)]); psfmt32[idxof ((i + mid) % N32)] ^= r; r -= i; psfmt32[idxof ((i + mid + lag) % N32)] ^= r; psfmt32[idxof (i)] = r; i = (i + 1) % N32; } idx = N32; period_certification (); initialized = 1; }