ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
Revision: 1.199
Committed: Fri Aug 20 19:39:15 2021 UTC (2 years, 9 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.198: +78 -1 lines
Log Message:
mix/unmix

File Contents

# Content
1 /*
2 * libecb - http://software.schmorp.de/pkg/libecb
3 *
4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright notice,
12 * this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
20 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
21 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
22 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Alternatively, the contents of this file may be used under the terms of
30 * the GNU General Public License ("GPL") version 2 or any later version,
31 * in which case the provisions of the GPL are applicable instead of
32 * the above. If you wish to allow the use of your version of this file
33 * only under the terms of the GPL and not to allow others to use your
34 * version of this file under the BSD license, indicate your decision
35 * by deleting the provisions above and replace them with the notice
36 * and other provisions required by the GPL. If you do not delete the
37 * provisions above, a recipient may use your version of this file under
38 * either the BSD or the GPL.
39 */
40
41 #ifndef ECB_H
42 #define ECB_H
43
44 /* 16 bits major, 16 bits minor */
45 #define ECB_VERSION 0x0001000a
46
47 #include <string.h> /* for memcpy */
48
49 #if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t;
51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
54 typedef signed short int16_t;
55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
58 typedef signed int int32_t;
59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
62 #if __GNUC__
63 typedef signed long long int64_t;
64 typedef unsigned long long uint64_t;
65 #else /* _MSC_VER || __BORLANDC__ */
66 typedef signed __int64 int64_t;
67 typedef unsigned __int64 uint64_t;
68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
71 #ifdef _WIN64
72 #define ECB_PTRSIZE 8
73 typedef uint64_t uintptr_t;
74 typedef int64_t intptr_t;
75 #else
76 #define ECB_PTRSIZE 4
77 typedef uint32_t uintptr_t;
78 typedef int32_t intptr_t;
79 #endif
80 #else
81 #include <inttypes.h>
82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 #define ECB_PTRSIZE 8
84 #else
85 #define ECB_PTRSIZE 4
86 #endif
87 #endif
88
89 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92 #ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98 #endif
99
100 /* work around x32 idiocy by defining proper macros */
101 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 #if _ILP32
103 #define ECB_AMD64_X32 1
104 #else
105 #define ECB_AMD64 1
106 #endif
107 #endif
108
109 #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111 #else
112 #define ECB_64BIT_NATIVE 0
113 #endif
114
115 /* many compilers define _GNUC_ to some versions but then only implement
116 * what their idiot authors think are the "more important" extensions,
117 * causing enormous grief in return for some better fake benchmark numbers.
118 * or so.
119 * we try to detect these and simply assume they are not gcc - if they have
120 * an issue with that they should have done it right in the first place.
121 */
122 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
123 #define ECB_GCC_VERSION(major,minor) 0
124 #else
125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
126 #endif
127
128 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129
130 #if __clang__ && defined __has_builtin
131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132 #else
133 #define ECB_CLANG_BUILTIN(x) 0
134 #endif
135
136 #if __clang__ && defined __has_extension
137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138 #else
139 #define ECB_CLANG_EXTENSION(x) 0
140 #endif
141
142 #define ECB_CPP (__cplusplus+0)
143 #define ECB_CPP11 (__cplusplus >= 201103L)
144 #define ECB_CPP14 (__cplusplus >= 201402L)
145 #define ECB_CPP17 (__cplusplus >= 201703L)
146
147 #if ECB_CPP
148 #define ECB_C 0
149 #define ECB_STDC_VERSION 0
150 #else
151 #define ECB_C 1
152 #define ECB_STDC_VERSION __STDC_VERSION__
153 #endif
154
155 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158
159 #if ECB_CPP
160 #define ECB_EXTERN_C extern "C"
161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162 #define ECB_EXTERN_C_END }
163 #else
164 #define ECB_EXTERN_C extern
165 #define ECB_EXTERN_C_BEG
166 #define ECB_EXTERN_C_END
167 #endif
168
169 /*****************************************************************************/
170
171 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
172 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
173
174 #if ECB_NO_THREADS
175 #define ECB_NO_SMP 1
176 #endif
177
178 #if ECB_NO_SMP
179 #define ECB_MEMORY_FENCE do { } while (0)
180 #endif
181
182 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183 #if __xlC__ && ECB_CPP
184 #include <builtins.h>
185 #endif
186
187 #if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189 #endif
190
191 #ifndef ECB_MEMORY_FENCE
192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
194 #if __i386 || __i386__
195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
198 #elif ECB_GCC_AMD64
199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
218 #elif __aarch64__
219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
224 #elif defined __s390__ || defined __s390x__
225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 #elif defined __mips__
227 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 #elif defined __alpha__
231 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232 #elif defined __hppa__
233 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235 #elif defined __ia64__
236 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 #elif defined __m68k__
238 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239 #elif defined __m88k__
240 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241 #elif defined __sh__
242 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
243 #endif
244 #endif
245 #endif
246
247 #ifndef ECB_MEMORY_FENCE
248 #if ECB_GCC_VERSION(4,7)
249 /* see comment below (stdatomic.h) about the C11 memory model. */
250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255
256 #elif ECB_CLANG_EXTENSION(c_atomic)
257 /* see comment below (stdatomic.h) about the C11 memory model. */
258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263
264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
265 #define ECB_MEMORY_FENCE __sync_synchronize ()
266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
272 #elif _MSC_VER >= 1400 /* VC++ 2005 */
273 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
274 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
275 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
276 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
277 #elif defined _WIN32
278 #include <WinNT.h>
279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
281 #include <mbarrier.h>
282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 #elif __xlC__
287 #define ECB_MEMORY_FENCE __sync ()
288 #endif
289 #endif
290
291 #ifndef ECB_MEMORY_FENCE
292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293 /* we assume that these memory fences work on all variables/all memory accesses, */
294 /* not just C11 atomics and atomic accesses */
295 #include <stdatomic.h>
296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
299 #endif
300 #endif
301
302 #ifndef ECB_MEMORY_FENCE
303 #if !ECB_AVOID_PTHREADS
304 /*
305 * if you get undefined symbol references to pthread_mutex_lock,
306 * or failure to find pthread.h, then you should implement
307 * the ECB_MEMORY_FENCE operations for your cpu/compiler
308 * OR provide pthread.h and link against the posix thread library
309 * of your system.
310 */
311 #include <pthread.h>
312 #define ECB_NEEDS_PTHREADS 1
313 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
314
315 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
316 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
317 #endif
318 #endif
319
320 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
321 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
322 #endif
323
324 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
326 #endif
327
328 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330 #endif
331
332 /*****************************************************************************/
333
334 #if ECB_CPP
335 #define ecb_inline static inline
336 #elif ECB_GCC_VERSION(2,5)
337 #define ecb_inline static __inline__
338 #elif ECB_C99
339 #define ecb_inline static inline
340 #else
341 #define ecb_inline static
342 #endif
343
344 #if ECB_GCC_VERSION(3,3)
345 #define ecb_restrict __restrict__
346 #elif ECB_C99
347 #define ecb_restrict restrict
348 #else
349 #define ecb_restrict
350 #endif
351
352 typedef int ecb_bool;
353
354 #define ECB_CONCAT_(a, b) a ## b
355 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356 #define ECB_STRINGIFY_(a) # a
357 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359
360 #define ecb_function_ ecb_inline
361
362 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
363 #define ecb_attribute(attrlist) __attribute__ (attrlist)
364 #else
365 #define ecb_attribute(attrlist)
366 #endif
367
368 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
369 #define ecb_is_constant(expr) __builtin_constant_p (expr)
370 #else
371 /* possible C11 impl for integral types
372 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
373 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
374
375 #define ecb_is_constant(expr) 0
376 #endif
377
378 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
379 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
380 #else
381 #define ecb_expect(expr,value) (expr)
382 #endif
383
384 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
385 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
386 #else
387 #define ecb_prefetch(addr,rw,locality)
388 #endif
389
390 /* no emulation for ecb_decltype */
391 #if ECB_CPP11
392 // older implementations might have problems with decltype(x)::type, work around it
393 template<class T> struct ecb_decltype_t { typedef T type; };
394 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
395 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
396 #define ecb_decltype(x) __typeof__ (x)
397 #endif
398
399 #if _MSC_VER >= 1300
400 #define ecb_deprecated __declspec (deprecated)
401 #else
402 #define ecb_deprecated ecb_attribute ((__deprecated__))
403 #endif
404
405 #if _MSC_VER >= 1500
406 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
407 #elif ECB_GCC_VERSION(4,5)
408 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
409 #else
410 #define ecb_deprecated_message(msg) ecb_deprecated
411 #endif
412
413 #if _MSC_VER >= 1400
414 #define ecb_noinline __declspec (noinline)
415 #else
416 #define ecb_noinline ecb_attribute ((__noinline__))
417 #endif
418
419 #define ecb_unused ecb_attribute ((__unused__))
420 #define ecb_const ecb_attribute ((__const__))
421 #define ecb_pure ecb_attribute ((__pure__))
422
423 #if ECB_C11 || __IBMC_NORETURN
424 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
425 #define ecb_noreturn _Noreturn
426 #elif ECB_CPP11
427 #define ecb_noreturn [[noreturn]]
428 #elif _MSC_VER >= 1200
429 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
430 #define ecb_noreturn __declspec (noreturn)
431 #else
432 #define ecb_noreturn ecb_attribute ((__noreturn__))
433 #endif
434
435 #if ECB_GCC_VERSION(4,3)
436 #define ecb_artificial ecb_attribute ((__artificial__))
437 #define ecb_hot ecb_attribute ((__hot__))
438 #define ecb_cold ecb_attribute ((__cold__))
439 #else
440 #define ecb_artificial
441 #define ecb_hot
442 #define ecb_cold
443 #endif
444
445 /* put around conditional expressions if you are very sure that the */
446 /* expression is mostly true or mostly false. note that these return */
447 /* booleans, not the expression. */
448 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
449 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
450 /* for compatibility to the rest of the world */
451 #define ecb_likely(expr) ecb_expect_true (expr)
452 #define ecb_unlikely(expr) ecb_expect_false (expr)
453
454 /* count trailing zero bits and count # of one bits */
455 #if ECB_GCC_VERSION(3,4) \
456 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
457 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
458 && ECB_CLANG_BUILTIN(__builtin_popcount))
459 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
460 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
461 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
462 #define ecb_ctz32(x) __builtin_ctz (x)
463 #define ecb_ctz64(x) __builtin_ctzll (x)
464 #define ecb_popcount32(x) __builtin_popcount (x)
465 /* no popcountll */
466 #else
467 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
468 ecb_function_ ecb_const int
469 ecb_ctz32 (uint32_t x)
470 {
471 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
472 unsigned long r;
473 _BitScanForward (&r, x);
474 return (int)r;
475 #else
476 int r = 0;
477
478 x &= ~x + 1; /* this isolates the lowest bit */
479
480 #if ECB_branchless_on_i386
481 r += !!(x & 0xaaaaaaaa) << 0;
482 r += !!(x & 0xcccccccc) << 1;
483 r += !!(x & 0xf0f0f0f0) << 2;
484 r += !!(x & 0xff00ff00) << 3;
485 r += !!(x & 0xffff0000) << 4;
486 #else
487 if (x & 0xaaaaaaaa) r += 1;
488 if (x & 0xcccccccc) r += 2;
489 if (x & 0xf0f0f0f0) r += 4;
490 if (x & 0xff00ff00) r += 8;
491 if (x & 0xffff0000) r += 16;
492 #endif
493
494 return r;
495 #endif
496 }
497
498 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
499 ecb_function_ ecb_const int
500 ecb_ctz64 (uint64_t x)
501 {
502 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
503 unsigned long r;
504 _BitScanForward64 (&r, x);
505 return (int)r;
506 #else
507 int shift = x & 0xffffffff ? 0 : 32;
508 return ecb_ctz32 (x >> shift) + shift;
509 #endif
510 }
511
512 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
513 ecb_function_ ecb_const int
514 ecb_popcount32 (uint32_t x)
515 {
516 x -= (x >> 1) & 0x55555555;
517 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
518 x = ((x >> 4) + x) & 0x0f0f0f0f;
519 x *= 0x01010101;
520
521 return x >> 24;
522 }
523
524 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
525 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
526 {
527 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
528 unsigned long r;
529 _BitScanReverse (&r, x);
530 return (int)r;
531 #else
532 int r = 0;
533
534 if (x >> 16) { x >>= 16; r += 16; }
535 if (x >> 8) { x >>= 8; r += 8; }
536 if (x >> 4) { x >>= 4; r += 4; }
537 if (x >> 2) { x >>= 2; r += 2; }
538 if (x >> 1) { r += 1; }
539
540 return r;
541 #endif
542 }
543
544 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
545 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
546 {
547 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
548 unsigned long r;
549 _BitScanReverse64 (&r, x);
550 return (int)r;
551 #else
552 int r = 0;
553
554 if (x >> 32) { x >>= 32; r += 32; }
555
556 return r + ecb_ld32 (x);
557 #endif
558 }
559 #endif
560
561 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
562 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
563 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
564 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
565
566 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
567 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
568 {
569 return ( (x * 0x0802U & 0x22110U)
570 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
571 }
572
573 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
574 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
575 {
576 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
577 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
578 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
579 x = ( x >> 8 ) | ( x << 8);
580
581 return x;
582 }
583
584 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
585 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
586 {
587 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
588 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
589 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
590 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
591 x = ( x >> 16 ) | ( x << 16);
592
593 return x;
594 }
595
596 /* popcount64 is only available on 64 bit cpus as gcc builtin */
597 /* so for this version we are lazy */
598 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
599 ecb_function_ ecb_const int
600 ecb_popcount64 (uint64_t x)
601 {
602 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
603 }
604
605 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
606 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
607 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
608 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
609 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
610 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
611 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
612 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
613
614 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
615 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
616 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
617 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
618 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
619 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
620 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
621 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
622
623 #if ECB_CPP
624
625 inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
626 inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
627 inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
628 inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
629
630 inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
631 inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
632 inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
633 inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
634
635 inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
636 inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
637 inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
638 inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
639
640 inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
641 inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
642 inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
643 inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
644
645 inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
646 inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
647 inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
648
649 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
650 inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
651 inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
652 inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
653
654 inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
655 inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
656 inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
657 inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
658
659 #endif
660
661 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
662 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
663 #define ecb_bswap16(x) __builtin_bswap16 (x)
664 #else
665 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
666 #endif
667 #define ecb_bswap32(x) __builtin_bswap32 (x)
668 #define ecb_bswap64(x) __builtin_bswap64 (x)
669 #elif _MSC_VER
670 #include <stdlib.h>
671 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
672 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
673 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
674 #else
675 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
676 ecb_function_ ecb_const uint16_t
677 ecb_bswap16 (uint16_t x)
678 {
679 return ecb_rotl16 (x, 8);
680 }
681
682 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
683 ecb_function_ ecb_const uint32_t
684 ecb_bswap32 (uint32_t x)
685 {
686 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
687 }
688
689 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
690 ecb_function_ ecb_const uint64_t
691 ecb_bswap64 (uint64_t x)
692 {
693 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
694 }
695 #endif
696
697 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
698 #define ecb_unreachable() __builtin_unreachable ()
699 #else
700 /* this seems to work fine, but gcc always emits a warning for it :/ */
701 ecb_inline ecb_noreturn void ecb_unreachable (void);
702 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
703 #endif
704
705 /* try to tell the compiler that some condition is definitely true */
706 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
707
708 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
709 ecb_inline ecb_const uint32_t
710 ecb_byteorder_helper (void)
711 {
712 /* the union code still generates code under pressure in gcc, */
713 /* but less than using pointers, and always seems to */
714 /* successfully return a constant. */
715 /* the reason why we have this horrible preprocessor mess */
716 /* is to avoid it in all cases, at least on common architectures */
717 /* or when using a recent enough gcc version (>= 4.6) */
718 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
719 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
720 #define ECB_LITTLE_ENDIAN 1
721 return 0x44332211;
722 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
723 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
724 #define ECB_BIG_ENDIAN 1
725 return 0x11223344;
726 #else
727 union
728 {
729 uint8_t c[4];
730 uint32_t u;
731 } u = { 0x11, 0x22, 0x33, 0x44 };
732 return u.u;
733 #endif
734 }
735
736 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
737 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
738 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
739 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
740
741 /*****************************************************************************/
742 /* unaligned load/store */
743
744 ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
745 ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
746 ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
747
748 ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
749 ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
750 ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
751
752 ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
753 ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
754 ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
755
756 ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
757 ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
758 ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
759
760 ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
761 ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
762 ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
763
764 ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
765 ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
766 ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
767
768 ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
769 ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
770 ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
771
772 ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
773 ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
774 ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
775
776 ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
777 ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
778 ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
779
780 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
781 ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
782 ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
783
784 #if ECB_CPP
785
786 inline uint8_t ecb_bswap (uint8_t v) { return v; }
787 inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
788 inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
789 inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
790
791 template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
792 template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
793 template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
794 template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
795 template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
796 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
797 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
798 template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
799
800 template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
801 template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
802 template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
803 template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
804 template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
805 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
806 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
807 template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
808
809 #endif
810
811 /*****************************************************************************/
812 /* pointer/integer hashing */
813
814 /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
815 ecb_function_ uint32_t ecb_mix32 (uint32_t v);
816 ecb_function_ uint32_t ecb_mix32 (uint32_t v)
817 {
818 v ^= v >> 16; v *= 0x7feb352dU;
819 v ^= v >> 15; v *= 0x846ca68bU;
820 v ^= v >> 16;
821 return v;
822 }
823
824 ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
825 ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
826 {
827 v ^= v >> 16 ; v *= 0x43021123U;
828 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
829 v ^= v >> 16 ;
830 return v;
831 }
832
833 /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
834 ecb_function_ uint64_t ecb_mix64 (uint64_t v);
835 ecb_function_ uint64_t ecb_mix64 (uint64_t v)
836 {
837 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
838 v ^= v >> 27; v *= 0x94d049bb133111ebU;
839 v ^= v >> 31;
840 return v;
841 }
842
843 ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
844 ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
845 {
846 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
847 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
848 v ^= v >> 30 ^ v >> 60;
849 return v;
850 }
851
852 ecb_function_ uintptr_t ecb_ptrmix (void *p);
853 ecb_function_ uintptr_t ecb_ptrmix (void *p)
854 {
855 #if ECB_PTRSIZE <= 4
856 return ecb_mix32 ((uint32_t)p);
857 #else
858 return ecb_mix64 ((uint64_t)p);
859 #endif
860 }
861
862 ecb_function_ void *ecb_ptrunmix (uintptr_t v);
863 ecb_function_ void *ecb_ptrunmix (uintptr_t v)
864 {
865 #if ECB_PTRSIZE <= 4
866 return (void *)ecb_unmix32 (v);
867 #else
868 return (void *)ecb_unmix64 (v);
869 #endif
870 }
871
872 #if ECB_CPP
873
874 template<typename T>
875 inline uintptr_t ecb_ptrmix (T *p)
876 {
877 return ecb_ptrmix (static_cast<void *>(p));
878 }
879
880 template<typename T>
881 inline T *ecb_ptrunmix (uintptr_t v)
882 {
883 return static_cast<T *>(ecb_ptrunmix (v));
884 }
885
886 #endif
887
888 /*****************************************************************************/
889 /* division */
890
891 #if ECB_GCC_VERSION(3,0) || ECB_C99
892 /* C99 tightened the definition of %, so we can use a more efficient version */
893 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
894 #else
895 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
896 #endif
897
898 #if ECB_CPP
899 template<typename T>
900 static inline T ecb_div_rd (T val, T div)
901 {
902 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
903 }
904 template<typename T>
905 static inline T ecb_div_ru (T val, T div)
906 {
907 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
908 }
909 #else
910 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
911 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
912 #endif
913
914 /*****************************************************************************/
915 /* array length */
916
917 #if ecb_cplusplus_does_not_suck
918 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
919 template<typename T, int N>
920 static inline int ecb_array_length (const T (&arr)[N])
921 {
922 return N;
923 }
924 #else
925 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
926 #endif
927
928 /*****************************************************************************/
929 /* IEEE 754-2008 half float conversions */
930
931 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
932 ecb_function_ ecb_const uint32_t
933 ecb_binary16_to_binary32 (uint32_t x)
934 {
935 unsigned int s = (x & 0x8000) << (31 - 15);
936 int e = (x >> 10) & 0x001f;
937 unsigned int m = x & 0x03ff;
938
939 if (ecb_expect_false (e == 31))
940 /* infinity or NaN */
941 e = 255 - (127 - 15);
942 else if (ecb_expect_false (!e))
943 {
944 if (ecb_expect_true (!m))
945 /* zero, handled by code below by forcing e to 0 */
946 e = 0 - (127 - 15);
947 else
948 {
949 /* subnormal, renormalise */
950 unsigned int s = 10 - ecb_ld32 (m);
951
952 m = (m << s) & 0x3ff; /* mask implicit bit */
953 e -= s - 1;
954 }
955 }
956
957 /* e and m now are normalised, or zero, (or inf or nan) */
958 e += 127 - 15;
959
960 return s | (e << 23) | (m << (23 - 10));
961 }
962
963 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
964 ecb_function_ ecb_const uint16_t
965 ecb_binary32_to_binary16 (uint32_t x)
966 {
967 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
968 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
969 unsigned int m = x & 0x007fffff;
970
971 x &= 0x7fffffff;
972
973 /* if it's within range of binary16 normals, use fast path */
974 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
975 {
976 /* mantissa round-to-even */
977 m += 0x00000fff + ((m >> (23 - 10)) & 1);
978
979 /* handle overflow */
980 if (ecb_expect_false (m >= 0x00800000))
981 {
982 m >>= 1;
983 e += 1;
984 }
985
986 return s | (e << 10) | (m >> (23 - 10));
987 }
988
989 /* handle large numbers and infinity */
990 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
991 return s | 0x7c00;
992
993 /* handle zero, subnormals and small numbers */
994 if (ecb_expect_true (x < 0x38800000))
995 {
996 /* zero */
997 if (ecb_expect_true (!x))
998 return s;
999
1000 /* handle subnormals */
1001
1002 /* too small, will be zero */
1003 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1004 return s;
1005
1006 m |= 0x00800000; /* make implicit bit explicit */
1007
1008 /* very tricky - we need to round to the nearest e (+10) bit value */
1009 {
1010 unsigned int bits = 14 - e;
1011 unsigned int half = (1 << (bits - 1)) - 1;
1012 unsigned int even = (m >> bits) & 1;
1013
1014 /* if this overflows, we will end up with a normalised number */
1015 m = (m + half + even) >> bits;
1016 }
1017
1018 return s | m;
1019 }
1020
1021 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1022 m >>= 13;
1023
1024 return s | 0x7c00 | m | !m;
1025 }
1026
1027 /*******************************************************************************/
1028 /* fast integer to ascii */
1029
1030 /*
1031 * This code is pretty complicated because it is general. The idea behind it,
1032 * however, is pretty simple: first, the number is multiplied with a scaling
1033 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1034 * number with the first digit in the upper bits.
1035 * Then this digit is converted to text and masked out. The resulting number
1036 * is then multiplied by 10, by multiplying the fixed point representation
1037 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1038 * format becomes 5.27, 6.26 and so on.
1039 * The rest involves only advancing the pointer if we already generated a
1040 * non-zero digit, so leading zeroes are overwritten.
1041 */
1042
1043 // simply return a mask with "bits" bits set
1044 #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1045
1046 // oputput a single digit. maskvalue is 10**digitidx
1047 #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1048 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1049 { \
1050 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1051 *ptr = digit + '0'; /* output it */ \
1052 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1053 ptr += nz; /* output digit only if non-zero digit seen */ \
1054 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1055 }
1056
1057 // convert integer to fixed point format and multiply out digits, highest first
1058 // requires magic constants: max. digits and number of bits after the decimal point
1059 #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1060 ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1061 { \
1062 char nz = lz; /* non-zero digit seen? */ \
1063 /* convert to x.bits fixed-point */ \
1064 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1065 /* output up to 10 digits */ \
1066 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1067 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1068 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1069 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1070 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1071 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1072 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1073 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1074 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1075 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1076 return ptr; \
1077 }
1078
1079 // predefined versions of the above, for various digits
1080 // ecb_i2a_xN = almost N digits, limit defined by macro
1081 // ecb_i2a_N = up to N digits, leading zeroes suppressed
1082 // ecb_i2a_0N = exactly N digits, including leading zeroes
1083
1084 // non-leading-zero versions, limited range
1085 #define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5
1086 #define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10
1087 ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1088 ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1089
1090 // non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit
1091 ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1092 ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1093 ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1094 ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1095 ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1096 ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1097 ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1098 ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1099
1100 // leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit
1101 ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1102 ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1103 ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1104 ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1105 ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1106 ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1107 ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1108 ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1109
1110 #define ECB_I2A_I32_DIGITS 11
1111 #define ECB_I2A_U32_DIGITS 10
1112 #define ECB_I2A_I64_DIGITS 20
1113 #define ECB_I2A_U64_DIGITS 21
1114 #define ECB_I2A_MAX_DIGITS 21
1115
1116 ecb_inline char *
1117 ecb_i2a_u32 (char *ptr, uint32_t u)
1118 {
1119 #if ECB_64BIT_NATIVE
1120 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1121 ptr = ecb_i2a_x10 (ptr, u);
1122 else // x10 almost, but not fully, covers 32 bit
1123 {
1124 uint32_t u1 = u % 1000000000;
1125 uint32_t u2 = u / 1000000000;
1126
1127 *ptr++ = u2 + '0';
1128 ptr = ecb_i2a_09 (ptr, u1);
1129 }
1130 #else
1131 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1132 ecb_i2a_x5 (ptr, u);
1133 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1134 {
1135 uint32_t u1 = u % 10000;
1136 uint32_t u2 = u / 10000;
1137
1138 ptr = ecb_i2a_x5 (ptr, u2);
1139 ptr = ecb_i2a_04 (ptr, u1);
1140 }
1141 else
1142 {
1143 uint32_t u1 = u % 10000;
1144 uint32_t ua = u / 10000;
1145 uint32_t u2 = ua % 10000;
1146 uint32_t u3 = ua / 10000;
1147
1148 ptr = ecb_i2a_2 (ptr, u3);
1149 ptr = ecb_i2a_04 (ptr, u2);
1150 ptr = ecb_i2a_04 (ptr, u1);
1151 }
1152 #endif
1153
1154 return ptr;
1155 }
1156
1157 ecb_inline char *
1158 ecb_i2a_i32 (char *ptr, int32_t v)
1159 {
1160 *ptr = '-'; ptr += v < 0;
1161 uint32_t u = v < 0 ? -(uint32_t)v : v;
1162
1163 #if ECB_64BIT_NATIVE
1164 ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit
1165 #else
1166 ptr = ecb_i2a_u32 (ptr, u);
1167 #endif
1168
1169 return ptr;
1170 }
1171
1172 ecb_inline char *
1173 ecb_i2a_u64 (char *ptr, uint64_t u)
1174 {
1175 #if ECB_64BIT_NATIVE
1176 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1177 ptr = ecb_i2a_x10 (ptr, u);
1178 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1179 {
1180 uint64_t u1 = u % 1000000000;
1181 uint64_t u2 = u / 1000000000;
1182
1183 ptr = ecb_i2a_x10 (ptr, u2);
1184 ptr = ecb_i2a_09 (ptr, u1);
1185 }
1186 else
1187 {
1188 uint64_t u1 = u % 1000000000;
1189 uint64_t ua = u / 1000000000;
1190 uint64_t u2 = ua % 1000000000;
1191 uint64_t u3 = ua / 1000000000;
1192
1193 ptr = ecb_i2a_2 (ptr, u3);
1194 ptr = ecb_i2a_09 (ptr, u2);
1195 ptr = ecb_i2a_09 (ptr, u1);
1196 }
1197 #else
1198 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1199 ptr = ecb_i2a_x5 (ptr, u);
1200 else
1201 {
1202 uint64_t u1 = u % 10000;
1203 uint64_t u2 = u / 10000;
1204
1205 ptr = ecb_i2a_u64 (ptr, u2);
1206 ptr = ecb_i2a_04 (ptr, u1);
1207 }
1208 #endif
1209
1210 return ptr;
1211 }
1212
1213 ecb_inline char *
1214 ecb_i2a_i64 (char *ptr, int64_t v)
1215 {
1216 *ptr = '-'; ptr += v < 0;
1217 uint64_t u = v < 0 ? -(uint64_t)v : v;
1218
1219 #if ECB_64BIT_NATIVE
1220 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1221 ptr = ecb_i2a_x10 (ptr, u);
1222 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1223 {
1224 uint64_t u1 = u % 1000000000;
1225 uint64_t u2 = u / 1000000000;
1226
1227 ptr = ecb_i2a_x10 (ptr, u2);
1228 ptr = ecb_i2a_09 (ptr, u1);
1229 }
1230 else
1231 {
1232 uint64_t u1 = u % 1000000000;
1233 uint64_t ua = u / 1000000000;
1234 uint64_t u2 = ua % 1000000000;
1235 uint64_t u3 = ua / 1000000000;
1236
1237 // 2**31 is 19 digits, so the top is exactly one digit
1238 *ptr++ = u3 + '0';
1239 ptr = ecb_i2a_09 (ptr, u2);
1240 ptr = ecb_i2a_09 (ptr, u1);
1241 }
1242 #else
1243 ptr = ecb_i2a_u64 (ptr, u);
1244 #endif
1245
1246 return ptr;
1247 }
1248
1249 /*******************************************************************************/
1250 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1251
1252 /* basically, everything uses "ieee pure-endian" floating point numbers */
1253 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1254 #if 0 \
1255 || __i386 || __i386__ \
1256 || ECB_GCC_AMD64 \
1257 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1258 || defined __s390__ || defined __s390x__ \
1259 || defined __mips__ \
1260 || defined __alpha__ \
1261 || defined __hppa__ \
1262 || defined __ia64__ \
1263 || defined __m68k__ \
1264 || defined __m88k__ \
1265 || defined __sh__ \
1266 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1267 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1268 || defined __aarch64__
1269 #define ECB_STDFP 1
1270 #else
1271 #define ECB_STDFP 0
1272 #endif
1273
1274 #ifndef ECB_NO_LIBM
1275
1276 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1277
1278 /* only the oldest of old doesn't have this one. solaris. */
1279 #ifdef INFINITY
1280 #define ECB_INFINITY INFINITY
1281 #else
1282 #define ECB_INFINITY HUGE_VAL
1283 #endif
1284
1285 #ifdef NAN
1286 #define ECB_NAN NAN
1287 #else
1288 #define ECB_NAN ECB_INFINITY
1289 #endif
1290
1291 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1292 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1293 #define ecb_frexpf(x,e) frexpf ((x), (e))
1294 #else
1295 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1296 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1297 #endif
1298
1299 /* convert a float to ieee single/binary32 */
1300 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1301 ecb_function_ ecb_const uint32_t
1302 ecb_float_to_binary32 (float x)
1303 {
1304 uint32_t r;
1305
1306 #if ECB_STDFP
1307 memcpy (&r, &x, 4);
1308 #else
1309 /* slow emulation, works for anything but -0 */
1310 uint32_t m;
1311 int e;
1312
1313 if (x == 0e0f ) return 0x00000000U;
1314 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1315 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1316 if (x != x ) return 0x7fbfffffU;
1317
1318 m = ecb_frexpf (x, &e) * 0x1000000U;
1319
1320 r = m & 0x80000000U;
1321
1322 if (r)
1323 m = -m;
1324
1325 if (e <= -126)
1326 {
1327 m &= 0xffffffU;
1328 m >>= (-125 - e);
1329 e = -126;
1330 }
1331
1332 r |= (e + 126) << 23;
1333 r |= m & 0x7fffffU;
1334 #endif
1335
1336 return r;
1337 }
1338
1339 /* converts an ieee single/binary32 to a float */
1340 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1341 ecb_function_ ecb_const float
1342 ecb_binary32_to_float (uint32_t x)
1343 {
1344 float r;
1345
1346 #if ECB_STDFP
1347 memcpy (&r, &x, 4);
1348 #else
1349 /* emulation, only works for normals and subnormals and +0 */
1350 int neg = x >> 31;
1351 int e = (x >> 23) & 0xffU;
1352
1353 x &= 0x7fffffU;
1354
1355 if (e)
1356 x |= 0x800000U;
1357 else
1358 e = 1;
1359
1360 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1361 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1362
1363 r = neg ? -r : r;
1364 #endif
1365
1366 return r;
1367 }
1368
1369 /* convert a double to ieee double/binary64 */
1370 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1371 ecb_function_ ecb_const uint64_t
1372 ecb_double_to_binary64 (double x)
1373 {
1374 uint64_t r;
1375
1376 #if ECB_STDFP
1377 memcpy (&r, &x, 8);
1378 #else
1379 /* slow emulation, works for anything but -0 */
1380 uint64_t m;
1381 int e;
1382
1383 if (x == 0e0 ) return 0x0000000000000000U;
1384 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1385 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1386 if (x != x ) return 0X7ff7ffffffffffffU;
1387
1388 m = frexp (x, &e) * 0x20000000000000U;
1389
1390 r = m & 0x8000000000000000;;
1391
1392 if (r)
1393 m = -m;
1394
1395 if (e <= -1022)
1396 {
1397 m &= 0x1fffffffffffffU;
1398 m >>= (-1021 - e);
1399 e = -1022;
1400 }
1401
1402 r |= ((uint64_t)(e + 1022)) << 52;
1403 r |= m & 0xfffffffffffffU;
1404 #endif
1405
1406 return r;
1407 }
1408
1409 /* converts an ieee double/binary64 to a double */
1410 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1411 ecb_function_ ecb_const double
1412 ecb_binary64_to_double (uint64_t x)
1413 {
1414 double r;
1415
1416 #if ECB_STDFP
1417 memcpy (&r, &x, 8);
1418 #else
1419 /* emulation, only works for normals and subnormals and +0 */
1420 int neg = x >> 63;
1421 int e = (x >> 52) & 0x7ffU;
1422
1423 x &= 0xfffffffffffffU;
1424
1425 if (e)
1426 x |= 0x10000000000000U;
1427 else
1428 e = 1;
1429
1430 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1431 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1432
1433 r = neg ? -r : r;
1434 #endif
1435
1436 return r;
1437 }
1438
1439 /* convert a float to ieee half/binary16 */
1440 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1441 ecb_function_ ecb_const uint16_t
1442 ecb_float_to_binary16 (float x)
1443 {
1444 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1445 }
1446
1447 /* convert an ieee half/binary16 to float */
1448 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1449 ecb_function_ ecb_const float
1450 ecb_binary16_to_float (uint16_t x)
1451 {
1452 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1453 }
1454
1455 #endif
1456
1457 #endif
1458