--- libecb/ecb.h 2011/05/26 18:26:59 1.14 +++ libecb/ecb.h 2022/03/25 15:23:14 1.209 @@ -1,7 +1,7 @@ /* - * libecb + * libecb - http://software.schmorp.de/pkg/libecb * - * Copyright (©) 2009-2011 Marc Alexander Lehmann + * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann * Copyright (©) 2011 Emanuele Giaquinta * All rights reserved. * @@ -25,175 +25,1721 @@ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Alternatively, the contents of this file may be used under the terms of + * the GNU General Public License ("GPL") version 2 or any later version, + * in which case the provisions of the GPL are applicable instead of + * the above. If you wish to allow the use of your version of this file + * only under the terms of the GPL and not to allow others to use your + * version of this file under the BSD license, indicate your decision + * by deleting the provisions above and replace them with the notice + * and other provisions required by the GPL. If you do not delete the + * provisions above, a recipient may use your version of this file under + * either the BSD or the GPL. */ #ifndef ECB_H #define ECB_H -#include +/* 16 bits major, 16 bits minor */ +#define ECB_VERSION 0x0001000c + +#include /* for memcpy */ + +#if defined (_WIN32) && !defined (__MINGW32__) + typedef signed char int8_t; + typedef unsigned char uint8_t; + typedef signed char int_fast8_t; + typedef unsigned char uint_fast8_t; + typedef signed short int16_t; + typedef unsigned short uint16_t; + typedef signed int int_fast16_t; + typedef unsigned int uint_fast16_t; + typedef signed int int32_t; + typedef unsigned int uint32_t; + typedef signed int int_fast32_t; + typedef unsigned int uint_fast32_t; + #if __GNUC__ + typedef signed long long int64_t; + typedef unsigned long long uint64_t; + #else /* _MSC_VER || __BORLANDC__ */ + typedef signed __int64 int64_t; + typedef unsigned __int64 uint64_t; + #endif + typedef int64_t int_fast64_t; + typedef uint64_t uint_fast64_t; + #ifdef _WIN64 + #define ECB_PTRSIZE 8 + typedef uint64_t uintptr_t; + typedef int64_t intptr_t; + #else + #define ECB_PTRSIZE 4 + typedef uint32_t uintptr_t; + typedef int32_t intptr_t; + #endif +#else + #include + #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU + #define ECB_PTRSIZE 8 + #else + #define ECB_PTRSIZE 4 + #endif +#endif + +#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) +#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) + +#ifndef ECB_OPTIMIZE_SIZE + #if __OPTIMIZE_SIZE__ + #define ECB_OPTIMIZE_SIZE 1 + #else + #define ECB_OPTIMIZE_SIZE 0 + #endif +#endif + +/* work around x32 idiocy by defining proper macros */ +#if ECB_GCC_AMD64 || ECB_MSVC_AMD64 + #if _ILP32 + #define ECB_AMD64_X32 1 + #else + #define ECB_AMD64 1 + #endif +#endif + +#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32 + #define ECB_64BIT_NATIVE 1 +#else + #define ECB_64BIT_NATIVE 0 +#endif /* many compilers define _GNUC_ to some versions but then only implement * what their idiot authors think are the "more important" extensions, - * causing enourmous grief for some better fake benchmark numbers or so. + * causing enormous grief in return for some better fake benchmark numbers. + * or so. * we try to detect these and simply assume they are not gcc - if they have * an issue with that they should have done it right in the first place. */ -#ifndef ECB_GCC_VERSION -# if defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__llvm__) -# define ECB_GCC_VERSION(major,minor) 0 -# else -# define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) -# endif +#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ + #define ECB_GCC_VERSION(major,minor) 0 +#else + #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) #endif -#ifndef __cplusplus -# if __STDC_VERSION__ >= 199901L -# define ECB_INLINE inline -typedef _Bool ecb_bool; -# else -# define ECB_INLINE inline /* yeah! */ -typedef int ecb_bool; -# endif +#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) + +#if __clang__ && defined __has_builtin + #define ECB_CLANG_BUILTIN(x) __has_builtin (x) +#else + #define ECB_CLANG_BUILTIN(x) 0 +#endif + +#if __clang__ && defined __has_extension + #define ECB_CLANG_EXTENSION(x) __has_extension (x) +#else + #define ECB_CLANG_EXTENSION(x) 0 +#endif + +#define ECB_CPP (__cplusplus+0) +#define ECB_CPP11 (__cplusplus >= 201103L) +#define ECB_CPP14 (__cplusplus >= 201402L) +#define ECB_CPP17 (__cplusplus >= 201703L) + +#if ECB_CPP + #define ECB_C 0 + #define ECB_STDC_VERSION 0 +#else + #define ECB_C 1 + #define ECB_STDC_VERSION __STDC_VERSION__ +#endif + +#define ECB_C99 (ECB_STDC_VERSION >= 199901L) +#define ECB_C11 (ECB_STDC_VERSION >= 201112L) +#define ECB_C17 (ECB_STDC_VERSION >= 201710L) + +#if ECB_CPP + #define ECB_EXTERN_C extern "C" + #define ECB_EXTERN_C_BEG ECB_EXTERN_C { + #define ECB_EXTERN_C_END } +#else + #define ECB_EXTERN_C extern + #define ECB_EXTERN_C_BEG + #define ECB_EXTERN_C_END +#endif + +/*****************************************************************************/ + +/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ +/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ + +#if ECB_NO_THREADS + #define ECB_NO_SMP 1 +#endif + +#if ECB_NO_SMP + #define ECB_MEMORY_FENCE do { } while (0) #endif +/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ +#if __xlC__ && ECB_CPP + #include +#endif + +#if 1400 <= _MSC_VER + #include /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ +#endif + +#ifndef ECB_MEMORY_FENCE + #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 + #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory") + #if __i386 || __i386__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") + #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") + #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") + #elif ECB_GCC_AMD64 + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") + #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") + #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") + #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") + #elif defined __ARM_ARCH_2__ \ + || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ + || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ + || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ + || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ + || defined __ARM_ARCH_5TEJ__ + /* should not need any, unless running old code on newer cpu - arm doesn't support that */ + #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ + || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ + || defined __ARM_ARCH_6T2__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") + #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ + || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") + #elif __aarch64__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") + #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") + #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") + #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") + #elif defined __s390__ || defined __s390x__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") + #elif defined __mips__ + /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ + /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ + #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") + #elif defined __alpha__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") + #elif defined __hppa__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") + #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") + #elif defined __ia64__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") + #elif defined __m68k__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") + #elif defined __m88k__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") + #elif defined __sh__ + #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") + #endif + #endif +#endif + +#ifndef ECB_MEMORY_FENCE + #if ECB_GCC_VERSION(4,7) + /* see comment below (stdatomic.h) about the C11 memory model. */ + #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) + #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) + #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) + #undef ECB_MEMORY_FENCE_RELAXED + #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) + + #elif ECB_CLANG_EXTENSION(c_atomic) + /* see comment below (stdatomic.h) about the C11 memory model. */ + #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) + #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) + #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) + #undef ECB_MEMORY_FENCE_RELAXED + #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) + + #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ + #define ECB_MEMORY_FENCE __sync_synchronize () + #elif _MSC_VER >= 1500 /* VC++ 2008 */ + /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ + #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) + #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() + #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ + #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() + #elif _MSC_VER >= 1400 /* VC++ 2005 */ + #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) + #define ECB_MEMORY_FENCE _ReadWriteBarrier () + #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ + #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () + #elif defined _WIN32 + #include + #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ + #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 + #include + #define ECB_MEMORY_FENCE __machine_rw_barrier () + #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier () + #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier () + #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier () + #elif __xlC__ + #define ECB_MEMORY_FENCE __sync () + #endif +#endif + +#ifndef ECB_MEMORY_FENCE + #if ECB_C11 && !defined __STDC_NO_ATOMICS__ + /* we assume that these memory fences work on all variables/all memory accesses, */ + /* not just C11 atomics and atomic accesses */ + #include + #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) + #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire) + #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release) + #endif +#endif + +#ifndef ECB_MEMORY_FENCE + #if !ECB_AVOID_PTHREADS + /* + * if you get undefined symbol references to pthread_mutex_lock, + * or failure to find pthread.h, then you should implement + * the ECB_MEMORY_FENCE operations for your cpu/compiler + * OR provide pthread.h and link against the posix thread library + * of your system. + */ + #include + #define ECB_NEEDS_PTHREADS 1 + #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 + + static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; + #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) + #endif +#endif + +#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE + #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE +#endif + +#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE + #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE +#endif + +#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE + #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */ +#endif + +/*****************************************************************************/ + +#if ECB_CPP + #define ecb_inline static inline +#elif ECB_GCC_VERSION(2,5) + #define ecb_inline static __inline__ +#elif ECB_C99 + #define ecb_inline static inline +#else + #define ecb_inline static +#endif + +#if ECB_GCC_VERSION(3,3) + #define ecb_restrict __restrict__ +#elif ECB_C99 + #define ecb_restrict restrict +#else + #define ecb_restrict +#endif + +typedef int ecb_bool; + #define ECB_CONCAT_(a, b) a ## b #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) #define ECB_STRINGIFY_(a) # a #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) +#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) + +#define ecb_function_ ecb_inline + +#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) + #define ecb_attribute(attrlist) __attribute__ (attrlist) +#else + #define ecb_attribute(attrlist) +#endif -#define ECB_HEADER_INLINE static ECB_INLINE +#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) + #define ecb_is_constant(expr) __builtin_constant_p (expr) +#else + /* possible C11 impl for integral types + typedef struct ecb_is_constant_struct ecb_is_constant_struct; + #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ + + #define ecb_is_constant(expr) 0 +#endif + +#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) + #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) +#else + #define ecb_expect(expr,value) (expr) +#endif -#if ECB_GCC_VERSION(3,1) -# define ecb_attribute(attrlist) __attribute__(attrlist) -# define ecb_is_constant(c) __builtin_constant_p (c) -# define ecb_expect(expr,value) __builtin_expect ((expr),(value)) -# define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) -#else -# define ecb_attribute(attrlist) -# define ecb_is_constant(c) 0 -# define ecb_expect(expr,value) (expr) -# define ecb_prefetch(addr,rw,locality) +#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) + #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) +#else + #define ecb_prefetch(addr,rw,locality) #endif /* no emulation for ecb_decltype */ -#if ECB_GCC_VERSION(4,5) -# define ecb_decltype(x) __decltype(x) -#elif ECB_GCC_VERSION(3,0) -# define ecb_decltype(x) typeof(x) -#endif - -#define ecb_noinline ecb_attribute ((noinline)) -#define ecb_noreturn ecb_attribute ((noreturn)) -#define ecb_unused ecb_attribute ((unused)) -#define ecb_const ecb_attribute ((const)) -#define ecb_pure ecb_attribute ((pure)) -#define ecb_hot ecb_attribute ((hot)) /* 4.3 */ -#define ecb_cold ecb_attribute ((cold)) /* 4.3 */ - -/* put into ifs if you are very sure that the expression */ -/* is mostly true or mosty false. note that these return */ -/* booleans, not the expression. */ -#define ecb_unlikely(expr) ecb_expect (!!(expr), 0) -#define ecb_likely(expr) ecb_expect (!!(expr), 1) +#if ECB_CPP11 + // older implementations might have problems with decltype(x)::type, work around it + template struct ecb_decltype_t { typedef T type; }; + #define ecb_decltype(x) ecb_decltype_t::type +#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) + #define ecb_decltype(x) __typeof__ (x) +#endif -/* try to tell the compiler that some condition is definitely true */ -#define ecb_assume(cond) do { if (!(cond)) unreachable (); } while (0) +#if _MSC_VER >= 1300 + #define ecb_deprecated __declspec (deprecated) +#else + #define ecb_deprecated ecb_attribute ((__deprecated__)) +#endif + +#if _MSC_VER >= 1500 + #define ecb_deprecated_message(msg) __declspec (deprecated (msg)) +#elif ECB_GCC_VERSION(4,5) + #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) +#else + #define ecb_deprecated_message(msg) ecb_deprecated +#endif + +#if _MSC_VER >= 1400 + #define ecb_noinline __declspec (noinline) +#else + #define ecb_noinline ecb_attribute ((__noinline__)) +#endif + +#define ecb_unused ecb_attribute ((__unused__)) +#define ecb_const ecb_attribute ((__const__)) +#define ecb_pure ecb_attribute ((__pure__)) + +#if ECB_C11 || __IBMC_NORETURN + /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ + #define ecb_noreturn _Noreturn +#elif ECB_CPP11 + #define ecb_noreturn [[noreturn]] +#elif _MSC_VER >= 1200 + /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ + #define ecb_noreturn __declspec (noreturn) +#else + #define ecb_noreturn ecb_attribute ((__noreturn__)) +#endif + +#if ECB_GCC_VERSION(4,3) + #define ecb_artificial ecb_attribute ((__artificial__)) + #define ecb_hot ecb_attribute ((__hot__)) + #define ecb_cold ecb_attribute ((__cold__)) +#else + #define ecb_artificial + #define ecb_hot + #define ecb_cold +#endif + +/* put around conditional expressions if you are very sure that the */ +/* expression is mostly true or mostly false. note that these return */ +/* booleans, not the expression. */ +#define ecb_expect_false(expr) ecb_expect (!!(expr), 0) +#define ecb_expect_true(expr) ecb_expect (!!(expr), 1) +/* for compatibility to the rest of the world */ +#define ecb_likely(expr) ecb_expect_true (expr) +#define ecb_unlikely(expr) ecb_expect_false (expr) /* count trailing zero bits and count # of one bits */ -ECB_HEADER_INLINE int ecb_ctz32 (uint32_t x) ecb_const; -ECB_HEADER_INLINE int ecb_popcount32 (uint32_t x) ecb_const; -#if ECB_GCC_VERSION(3,4) -ECB_HEADER_INLINE int ecb_ctz32 (uint32_t x) { return __builtin_ctz (x); } -ECB_HEADER_INLINE int ecb_popcount32 (uint32_t x) { return __builtin_popcount (x); } +#if ECB_GCC_VERSION(3,4) \ + || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ + && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ + && ECB_CLANG_BUILTIN(__builtin_popcount)) + #define ecb_ctz32(x) __builtin_ctz (x) + #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x)) + #define ecb_clz32(x) __builtin_clz (x) + #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x)) + #define ecb_ld32(x) (ecb_clz32 (x) ^ 31) + #define ecb_ld64(x) (ecb_clz64 (x) ^ 63) + #define ecb_popcount32(x) __builtin_popcount (x) + /* ecb_popcount64 is more difficult, see below */ #else -ECB_HEADER_INLINE -ecb_ctz32 (uint32_t x) -{ - int r = 0; + ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); + ecb_function_ ecb_const int + ecb_ctz32 (uint32_t x) + { +#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanForward (&r, x); + return (int)r; +#else + int r; + + x &= ~x + 1; /* this isolates the lowest bit */ - x &= -x; /* this isolates the lowest bit */ + #if 1 + /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */ + /* This happens to return 32 for x == 0, but the API does not support this */ + + /* -0 marks unused entries */ + static unsigned char table[64] = + { + 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14, + 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15, + 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26, + 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0 + }; + + /* magic constant results in 33 unique values in the upper 6 bits */ + x *= 0x0450fbafU; /* == 17 * 65 * 65535 */ + + r = table [x >> 26]; + #elif 0 /* branchless on i386, typically */ + r = 0; + r += !!(x & 0xaaaaaaaa) << 0; + r += !!(x & 0xcccccccc) << 1; + r += !!(x & 0xf0f0f0f0) << 2; + r += !!(x & 0xff00ff00) << 3; + r += !!(x & 0xffff0000) << 4; + #else /* branchless on modern compilers, typically */ + r = 0; + if (x & 0xaaaaaaaa) r += 1; + if (x & 0xcccccccc) r += 2; + if (x & 0xf0f0f0f0) r += 4; + if (x & 0xff00ff00) r += 8; + if (x & 0xffff0000) r += 16; +#endif - if (x & 0xaaaaaaaa) r += 1; - if (x & 0xcccccccc) r += 2; - if (x & 0xf0f0f0f0) r += 4; - if (x & 0xff00ff00) r += 8; - if (x & 0xffff0000) r += 16; + return r; +#endif + } - return r; + ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); + ecb_function_ ecb_const int + ecb_ctz64 (uint64_t x) + { +#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanForward64 (&r, x); + return (int)r; +#else + int shift = x & 0xffffffff ? 0 : 32; + return ecb_ctz32 (x >> shift) + shift; +#endif + } + + ecb_function_ ecb_const int ecb_clz32 (uint32_t x); + ecb_function_ ecb_const int + ecb_clz32 (uint32_t x) + { +#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanReverse (&r, x); + return (int)r; +#else + + /* Robert Harley's algorithm from comp.arch 1996-12-07 */ + /* This happens to return 32 for x == 0, but the API does not support this */ + + /* -0 marks unused table elements */ + static unsigned char table[64] = + { + 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0, + -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0, + 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18, + 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0 + }; + + /* propagate leftmost 1 bit to the right */ + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; + + /* magic constant results in 33 unique values in the upper 6 bits */ + x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */ + + return table [x >> 26]; +#endif + } + + ecb_function_ ecb_const int ecb_clz64 (uint64_t x); + ecb_function_ ecb_const int + ecb_clz64 (uint64_t x) + { +#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanReverse64 (&r, x); + return (int)r; +#else + uint32_t l = x >> 32; + int shift = l ? 0 : 32; + return ecb_clz32 (l ? l : x) + shift; +#endif + } + + ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); + ecb_function_ ecb_const int + ecb_popcount32 (uint32_t x) + { + x -= (x >> 1) & 0x55555555; + x = ((x >> 2) & 0x33333333) + (x & 0x33333333); + x = ((x >> 4) + x) & 0x0f0f0f0f; + x *= 0x01010101; + + return x >> 24; + } + + ecb_function_ ecb_const int ecb_ld32 (uint32_t x); + ecb_function_ ecb_const int ecb_ld32 (uint32_t x) + { +#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanReverse (&r, x); + return (int)r; +#else + int r = 0; + + if (x >> 16) { x >>= 16; r += 16; } + if (x >> 8) { x >>= 8; r += 8; } + if (x >> 4) { x >>= 4; r += 4; } + if (x >> 2) { x >>= 2; r += 2; } + if (x >> 1) { r += 1; } + + return r; +#endif + } + + ecb_function_ ecb_const int ecb_ld64 (uint64_t x); + ecb_function_ ecb_const int ecb_ld64 (uint64_t x) + { +#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) + unsigned long r; + _BitScanReverse64 (&r, x); + return (int)r; +#else + int r = 0; + + if (x >> 32) { x >>= 32; r += 32; } + + return r + ecb_ld32 (x); +#endif + } +#endif + +ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); +ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } +ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); +ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } + +ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); +ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) +{ + return ( (x * 0x0802U & 0x22110U) + | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; } -ECB_HEADER_INLINE -ecb_popcount32 (uint32_t x) +ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); +ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) { - x -= (x >> 1) & 0x55555555; - x = ((x >> 2) & 0x33333333) + (x & 0x33333333); - x = ((x >> 4) + x) & 0x0f0f0f0f; - x *= 0x01010101; + x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); + x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); + x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); + x = ( x >> 8 ) | ( x << 8); - return x >> 24; + return x; +} + +ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); +ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) +{ + x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); + x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); + x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); + x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); + x = ( x >> 16 ) | ( x << 16); + + return x; +} + +ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); +ecb_function_ ecb_const int +ecb_popcount64 (uint64_t x) +{ + /* popcount64 is only available on 64 bit cpus as gcc builtin. */ + /* also, gcc/clang make this surprisingly difficult to use */ +#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl)) + return __builtin_popcountl (x); +#else + return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); +#endif } + +ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); +ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); +ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); +ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); +ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); +ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); +ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); +ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); + +ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } +ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } +ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } +ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } +ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } +ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } +ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } +ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } + +#if ECB_CPP + +inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } +inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } +inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); } +inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); } + +inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); } +inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); } +inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); } +inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); } + +inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); } +inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); } +inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); } +inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); } + +inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); } +inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); } +inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); } +inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); } + +inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); } +inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); } +inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); } + +inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); } +inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); } +inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); } +inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); } + +inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); } +inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); } +inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); } +inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); } + #endif -ECB_HEADER_INLINE uint32_t ecb_bswap32 (uint32_t x) ecb_const; -#if ECB_GCC_VERSION(4,3) -ECB_HEADER_INLINE uint32_t ecb_bswap32 (uint32_t x) { return __builtin_bswap32 (x); } +#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) + #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) + #define ecb_bswap16(x) __builtin_bswap16 (x) + #else + #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) + #endif + #define ecb_bswap32(x) __builtin_bswap32 (x) + #define ecb_bswap64(x) __builtin_bswap64 (x) +#elif _MSC_VER + #include + #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) + #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) + #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) +#else + ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); + ecb_function_ ecb_const uint16_t + ecb_bswap16 (uint16_t x) + { + return ecb_rotl16 (x, 8); + } + + ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); + ecb_function_ ecb_const uint32_t + ecb_bswap32 (uint32_t x) + { + return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); + } + + ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); + ecb_function_ ecb_const uint64_t + ecb_bswap64 (uint64_t x) + { + return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); + } +#endif + +#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) + #define ecb_unreachable() __builtin_unreachable () #else -ECB_HEADER_INLINE uint32_t -ecb_bswap32 (uint32_t x) + /* this seems to work fine, but gcc always emits a warning for it :/ */ + ecb_inline ecb_noreturn void ecb_unreachable (void); + ecb_inline ecb_noreturn void ecb_unreachable (void) { } +#endif + +/* try to tell the compiler that some condition is definitely true */ +#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 + +ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); +ecb_inline ecb_const uint32_t +ecb_byteorder_helper (void) { - return (x >> 24) - | ((x >> 8) & 0x0000ff00) - | ((x << 8) & 0x00ff0000) - | (x << 24); + /* the union code still generates code under pressure in gcc, */ + /* but less than using pointers, and always seems to */ + /* successfully return a constant. */ + /* the reason why we have this horrible preprocessor mess */ + /* is to avoid it in all cases, at least on common architectures */ + /* or when using a recent enough gcc version (>= 4.6) */ +#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ + || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) + #define ECB_LITTLE_ENDIAN 1 + return 0x44332211; +#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ + || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) + #define ECB_BIG_ENDIAN 1 + return 0x11223344; +#else + union + { + uint8_t c[4]; + uint32_t u; + } u = { 0x11, 0x22, 0x33, 0x44 }; + return u.u; +#endif } + +ecb_inline ecb_const ecb_bool ecb_big_endian (void); +ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } +ecb_inline ecb_const ecb_bool ecb_little_endian (void); +ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } + +/*****************************************************************************/ +/* unaligned load/store */ + +ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } +ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } +ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } + +ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } +ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } +ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } + +ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; } +ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; } +ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; } + +ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); } +ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); } +ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); } + +ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); } +ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); } +ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); } + +ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } +ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } +ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } + +ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } +ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } +ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } + +ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); } +ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); } +ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } + +ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } +ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } +ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } + +ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } +ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } +ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } + +#if ECB_CPP + +inline uint8_t ecb_bswap (uint8_t v) { return v; } +inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); } +inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); } +inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); } + +template inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } +template inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } +template inline T ecb_peek (const void *ptr) { return *(const T *)ptr; } +template inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek (ptr)); } +template inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek (ptr)); } +template inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; } +template inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u (ptr)); } +template inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u (ptr)); } + +template inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } +template inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } +template inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; } +template inline void ecb_poke_be (void *ptr, T v) { return ecb_poke (ptr, ecb_host_to_be (v)); } +template inline void ecb_poke_le (void *ptr, T v) { return ecb_poke (ptr, ecb_host_to_le (v)); } +template inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); } +template inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u (ptr, ecb_host_to_be (v)); } +template inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u (ptr, ecb_host_to_le (v)); } + #endif -ECB_HEADER_INLINE void ecb_unreachable (void) ecb_attribute ((noreturn)); -#if ECB_GCC_VERSION(4,5) -ECB_HEADER_INLINE void ecb_unreachable (void) { __builtin_unreachable (); } -#else -/* this seems to work fine, but gcc always emits a warning for it :/ */ -ECB_HEADER_INLINE void ecb_unreachable (void) { } +/*****************************************************************************/ +/* pointer/integer hashing */ + +/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ +ecb_function_ uint32_t ecb_mix32 (uint32_t v); +ecb_function_ uint32_t ecb_mix32 (uint32_t v) +{ + v ^= v >> 16; v *= 0x7feb352dU; + v ^= v >> 15; v *= 0x846ca68bU; + v ^= v >> 16; + return v; +} + +ecb_function_ uint32_t ecb_unmix32 (uint32_t v); +ecb_function_ uint32_t ecb_unmix32 (uint32_t v) +{ + v ^= v >> 16 ; v *= 0x43021123U; + v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; + v ^= v >> 16 ; + return v; +} + +/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ +ecb_function_ uint64_t ecb_mix64 (uint64_t v); +ecb_function_ uint64_t ecb_mix64 (uint64_t v) +{ + v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; + v ^= v >> 27; v *= 0x94d049bb133111ebU; + v ^= v >> 31; + return v; +} + +ecb_function_ uint64_t ecb_unmix64 (uint64_t v); +ecb_function_ uint64_t ecb_unmix64 (uint64_t v) +{ + v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; + v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; + v ^= v >> 30 ^ v >> 60; + return v; +} + +ecb_function_ uintptr_t ecb_ptrmix (void *p); +ecb_function_ uintptr_t ecb_ptrmix (void *p) +{ + #if ECB_PTRSIZE <= 4 + return ecb_mix32 ((uint32_t)p); + #else + return ecb_mix64 ((uint64_t)p); + #endif +} + +ecb_function_ void *ecb_ptrunmix (uintptr_t v); +ecb_function_ void *ecb_ptrunmix (uintptr_t v) +{ + #if ECB_PTRSIZE <= 4 + return (void *)ecb_unmix32 (v); + #else + return (void *)ecb_unmix64 (v); + #endif +} + +#if ECB_CPP + +template +inline uintptr_t ecb_ptrmix (T *p) +{ + return ecb_ptrmix (static_cast(p)); +} + +template +inline T *ecb_ptrunmix (uintptr_t v) +{ + return static_cast(ecb_ptrunmix (v)); +} + #endif -ECB_HEADER_INLINE unsigned char ecb_byteorder_helper () ecb_const; +/*****************************************************************************/ +/* gray code */ + +ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); } +ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); } +ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); } +ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); } -ECB_HEADER_INLINE unsigned char -ecb_byteorder_helper () +ecb_function_ uint8_t ecb_gray8_decode (uint8_t g) { - const uint32_t u = 0x11223344; - return *(unsigned char *)&u; + g ^= g >> 1; + g ^= g >> 2; + g ^= g >> 4; + + return g; } -ECB_HEADER_INLINE ecb_bool ecb_big_endian () ecb_const; -ECB_HEADER_INLINE ecb_bool ecb_big_endian () { return ecb_byteorder_helper () == 0x11; }; -ECB_HEADER_INLINE ecb_bool ecb_little_endian () ecb_const; -ECB_HEADER_INLINE ecb_bool ecb_little_endian () { return ecb_byteorder_helper () == 0x44; }; +ecb_function_ uint16_t ecb_gray16_decode (uint16_t g) +{ + g ^= g >> 1; + g ^= g >> 2; + g ^= g >> 4; + g ^= g >> 8; -#if ecb_cplusplus_does_not_suck -// does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) -template -static inline int ecb_array_length (const T (&arr)[N]) + return g; +} + +ecb_function_ uint32_t ecb_gray32_decode (uint32_t g) +{ + g ^= g >> 1; + g ^= g >> 2; + g ^= g >> 4; + g ^= g >> 8; + g ^= g >> 16; + + return g; +} + +ecb_function_ uint64_t ecb_gray64_decode (uint64_t g) +{ + g ^= g >> 1; + g ^= g >> 2; + g ^= g >> 4; + g ^= g >> 8; + g ^= g >> 16; + g ^= g >> 32; + + return g; +} + +#if ECB_CPP + +ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); } +ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); } +ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); } +ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); } + +ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); } +ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); } +ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); } +ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); } + +#endif + +/*****************************************************************************/ +/* 2d hilbert curves */ + +/* algorithm from the book Hacker's Delight, modified to not */ +/* run into undefined behaviour for n==16 */ +static uint32_t +ecb_hilbert2d_index_to_coord32 (int n, uint32_t s) +{ + uint32_t comp, swap, cs, t, sr; + + /* pad s on the left (unused) bits with 01 (no change groups) */ + s |= 0x55555555U << n << n; + /* "s shift right" */ + sr = (s >> 1) & 0x55555555U; + /* compute complement and swap info in two-bit groups */ + cs = ((s & 0x55555555U) + sr) ^ 0x55555555U; + + /* parallel prefix xor op to propagate both complement + * and swap info together from left to right (there is + * no step "cs ^= cs >> 1", so in effect it computes + * two independent parallel prefix operations on two + * interleaved sets of sixteen bits). + */ + cs ^= cs >> 2; + cs ^= cs >> 4; + cs ^= cs >> 8; + cs ^= cs >> 16; + + /* separate swap and complement bits */ + swap = cs & 0x55555555U; + comp = (cs >> 1) & 0x55555555U; + + /* calculate coordinates in odd and even bit positions */ + t = (s & swap) ^ comp; + s = s ^ sr ^ t ^ (t << 1); + + /* unpad/clear out any junk on the left */ + s = s & ((1 << n << n) - 1); + + /* Now "unshuffle" to separate the x and y bits. */ + t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1); + t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2); + t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4); + t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8); + + /* now s contains two 16-bit coordinates */ + return s; +} + +/* 64 bit, a straightforward extension to the 32 bit case */ +static uint64_t +ecb_hilbert2d_index_to_coord64 (int n, uint64_t s) +{ + uint64_t comp, swap, cs, t, sr; + + /* pad s on the left (unused) bits with 01 (no change groups) */ + s |= 0x5555555555555555U << n << n; + /* "s shift right" */ + sr = (s >> 1) & 0x5555555555555555U; + /* compute complement and swap info in two-bit groups */ + cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U; + + /* parallel prefix xor op to propagate both complement + * and swap info together from left to right (there is + * no step "cs ^= cs >> 1", so in effect it computes + * two independent parallel prefix operations on two + * interleaved sets of thirty-two bits). + */ + cs ^= cs >> 2; + cs ^= cs >> 4; + cs ^= cs >> 8; + cs ^= cs >> 16; + cs ^= cs >> 32; + + /* separate swap and complement bits */ + swap = cs & 0x5555555555555555U; + comp = (cs >> 1) & 0x5555555555555555U; + + /* calculate coordinates in odd and even bit positions */ + t = (s & swap) ^ comp; + s = s ^ sr ^ t ^ (t << 1); + + /* unpad/clear out any junk on the left */ + s = s & ((1 << n << n) - 1); + + /* Now "unshuffle" to separate the x and y bits. */ + t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1); + t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2); + t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4); + t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8); + t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16); + + /* now s contains two 32-bit coordinates */ + return s; +} + +/* algorithm from the book Hacker's Delight, but a similar algorithm*/ +/* is given in https://doi.org/10.1002/spe.4380160103 */ +/* this has been slightly improved over the original version */ +ecb_function_ uint32_t +ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy) +{ + uint32_t row; + uint32_t state = 0; + uint32_t s = 0; + + do + { + --n; + + row = 4 * state + | (2 & (xy >> n >> 15)) + | (1 & (xy >> n )); + + /* these funky constants are lookup tables for two-bit values */ + s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; + state = (0x8fe65831U >> 2 * row) & 3; + } + while (n > 0); + + return s; +} + +/* 64 bit, essentially the same as 32 bit */ +ecb_function_ uint64_t +ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy) { - return N; + uint32_t row; + uint32_t state = 0; + uint64_t s = 0; + + do + { + --n; + + row = 4 * state + | (2 & (xy >> n >> 31)) + | (1 & (xy >> n )); + + /* these funky constants are lookup tables for two-bit values */ + s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; + state = (0x8fe65831U >> 2 * row) & 3; + } + while (n > 0); + + return s; } + +/*****************************************************************************/ +/* division */ + +#if ECB_GCC_VERSION(3,0) || ECB_C99 + /* C99 tightened the definition of %, so we can use a more efficient version */ + #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) +#else + #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) +#endif + +#if ECB_CPP + template + static inline T ecb_div_rd (T val, T div) + { + return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; + } + template + static inline T ecb_div_ru (T val, T div) + { + return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; + } +#else + #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) + #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) +#endif + +/*****************************************************************************/ +/* array length */ + +#if ecb_cplusplus_does_not_suck + /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ + template + static inline int ecb_array_length (const T (&arr)[N]) + { + return N; + } #else -#define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) + #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) #endif -ECB_INLINE uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; -ECB_INLINE uint32_t -ecb_rotr32 (uint32_t x, unsigned int count) +/*****************************************************************************/ +/* IEEE 754-2008 half float conversions */ + +ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); +ecb_function_ ecb_const uint32_t +ecb_binary16_to_binary32 (uint32_t x) { - return (x << (32 - count)) | (x >> count); + unsigned int s = (x & 0x8000) << (31 - 15); + int e = (x >> 10) & 0x001f; + unsigned int m = x & 0x03ff; + + if (ecb_expect_false (e == 31)) + /* infinity or NaN */ + e = 255 - (127 - 15); + else if (ecb_expect_false (!e)) + { + if (ecb_expect_true (!m)) + /* zero, handled by code below by forcing e to 0 */ + e = 0 - (127 - 15); + else + { + /* subnormal, renormalise */ + unsigned int s = 10 - ecb_ld32 (m); + + m = (m << s) & 0x3ff; /* mask implicit bit */ + e -= s - 1; + } + } + + /* e and m now are normalised, or zero, (or inf or nan) */ + e += 127 - 15; + + return s | (e << 23) | (m << (23 - 10)); } -ECB_INLINE uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; -ECB_INLINE uint32_t -ecb_rotl32 (uint32_t x, unsigned int count) +ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); +ecb_function_ ecb_const uint16_t +ecb_binary32_to_binary16 (uint32_t x) { - return (x >> (32 - count)) | (x << count); + unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ + int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ + unsigned int m = x & 0x007fffff; + + x &= 0x7fffffff; + + /* if it's within range of binary16 normals, use fast path */ + if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) + { + /* mantissa round-to-even */ + m += 0x00000fff + ((m >> (23 - 10)) & 1); + + /* handle overflow */ + if (ecb_expect_false (m >= 0x00800000)) + { + m >>= 1; + e += 1; + } + + return s | (e << 10) | (m >> (23 - 10)); + } + + /* handle large numbers and infinity */ + if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) + return s | 0x7c00; + + /* handle zero, subnormals and small numbers */ + if (ecb_expect_true (x < 0x38800000)) + { + /* zero */ + if (ecb_expect_true (!x)) + return s; + + /* handle subnormals */ + + /* too small, will be zero */ + if (e < (14 - 24)) /* might not be sharp, but is good enough */ + return s; + + m |= 0x00800000; /* make implicit bit explicit */ + + /* very tricky - we need to round to the nearest e (+10) bit value */ + { + unsigned int bits = 14 - e; + unsigned int half = (1 << (bits - 1)) - 1; + unsigned int even = (m >> bits) & 1; + + /* if this overflows, we will end up with a normalised number */ + m = (m + half + even) >> bits; + } + + return s | m; + } + + /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ + m >>= 13; + + return s | 0x7c00 | m | !m; } +/*******************************************************************************/ +/* fast integer to ascii */ + +/* + * This code is pretty complicated because it is general. The idea behind it, + * however, is pretty simple: first, the number is multiplied with a scaling + * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point + * number with the first digit in the upper bits. + * Then this digit is converted to text and masked out. The resulting number + * is then multiplied by 10, by multiplying the fixed point representation + * by 5 and shifting the (binary) decimal point one to the right, so a 4.28 + * format becomes 5.27, 6.26 and so on. + * The rest involves only advancing the pointer if we already generated a + * non-zero digit, so leading zeroes are overwritten. + */ + +/* simply return a mask with "bits" bits set */ +#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) + +/* oputput a single digit. maskvalue is 10**digitidx */ +#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ + if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ + { \ + char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ + *ptr = digit + '0'; /* output it */ \ + nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ + ptr += nz; /* output digit only if non-zero digit seen */ \ + x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ + } + +/* convert integer to fixed point format and multiply out digits, highest first */ +/* requires magic constants: max. digits and number of bits after the decimal point */ +#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ +ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ +{ \ + char nz = lz; /* non-zero digit seen? */ \ + /* convert to x.bits fixed-point */ \ + type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \ + /* output up to 10 digits */ \ + ecb_i2a_digit (type,bits,digitmask, 1, 0); \ + ecb_i2a_digit (type,bits,digitmask, 10, 1); \ + ecb_i2a_digit (type,bits,digitmask, 100, 2); \ + ecb_i2a_digit (type,bits,digitmask, 1000, 3); \ + ecb_i2a_digit (type,bits,digitmask, 10000, 4); \ + ecb_i2a_digit (type,bits,digitmask, 100000, 5); \ + ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \ + ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \ + ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ + ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ + return ptr; \ +} + +/* predefined versions of the above, for various digits */ +/* ecb_i2a_xN = almost N digits, limit defined by macro */ +/* ecb_i2a_N = up to N digits, leading zeroes suppressed */ +/* ecb_i2a_0N = exactly N digits, including leading zeroes */ + +/* non-leading-zero versions, limited range */ +#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */ +#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */ +ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) +ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) + +/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */ +ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) +ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) +ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) +ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) +ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) +ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) +ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) +ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) + +/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */ +ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) +ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) +ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) +ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) +ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) +ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1) +ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1) +ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1) + +#define ECB_I2A_I32_DIGITS 11 +#define ECB_I2A_U32_DIGITS 10 +#define ECB_I2A_I64_DIGITS 20 +#define ECB_I2A_U64_DIGITS 21 +#define ECB_I2A_MAX_DIGITS 21 + +ecb_inline char * +ecb_i2a_u32 (char *ptr, uint32_t u) +{ + #if ECB_64BIT_NATIVE + if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) + ptr = ecb_i2a_x10 (ptr, u); + else /* x10 almost, but not fully, covers 32 bit */ + { + uint32_t u1 = u % 1000000000; + uint32_t u2 = u / 1000000000; + + *ptr++ = u2 + '0'; + ptr = ecb_i2a_09 (ptr, u1); + } + #else + if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) + ecb_i2a_x5 (ptr, u); + else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000)) + { + uint32_t u1 = u % 10000; + uint32_t u2 = u / 10000; + + ptr = ecb_i2a_x5 (ptr, u2); + ptr = ecb_i2a_04 (ptr, u1); + } + else + { + uint32_t u1 = u % 10000; + uint32_t ua = u / 10000; + uint32_t u2 = ua % 10000; + uint32_t u3 = ua / 10000; + + ptr = ecb_i2a_2 (ptr, u3); + ptr = ecb_i2a_04 (ptr, u2); + ptr = ecb_i2a_04 (ptr, u1); + } + #endif + + return ptr; +} + +ecb_inline char * +ecb_i2a_i32 (char *ptr, int32_t v) +{ + *ptr = '-'; ptr += v < 0; + uint32_t u = v < 0 ? -(uint32_t)v : v; + + #if ECB_64BIT_NATIVE + ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */ + #else + ptr = ecb_i2a_u32 (ptr, u); + #endif + + return ptr; +} + +ecb_inline char * +ecb_i2a_u64 (char *ptr, uint64_t u) +{ + #if ECB_64BIT_NATIVE + if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) + ptr = ecb_i2a_x10 (ptr, u); + else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) + { + uint64_t u1 = u % 1000000000; + uint64_t u2 = u / 1000000000; + + ptr = ecb_i2a_x10 (ptr, u2); + ptr = ecb_i2a_09 (ptr, u1); + } + else + { + uint64_t u1 = u % 1000000000; + uint64_t ua = u / 1000000000; + uint64_t u2 = ua % 1000000000; + uint64_t u3 = ua / 1000000000; + + ptr = ecb_i2a_2 (ptr, u3); + ptr = ecb_i2a_09 (ptr, u2); + ptr = ecb_i2a_09 (ptr, u1); + } + #else + if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) + ptr = ecb_i2a_x5 (ptr, u); + else + { + uint64_t u1 = u % 10000; + uint64_t u2 = u / 10000; + + ptr = ecb_i2a_u64 (ptr, u2); + ptr = ecb_i2a_04 (ptr, u1); + } + #endif + + return ptr; +} + +ecb_inline char * +ecb_i2a_i64 (char *ptr, int64_t v) +{ + *ptr = '-'; ptr += v < 0; + uint64_t u = v < 0 ? -(uint64_t)v : v; + + #if ECB_64BIT_NATIVE + if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) + ptr = ecb_i2a_x10 (ptr, u); + else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) + { + uint64_t u1 = u % 1000000000; + uint64_t u2 = u / 1000000000; + + ptr = ecb_i2a_x10 (ptr, u2); + ptr = ecb_i2a_09 (ptr, u1); + } + else + { + uint64_t u1 = u % 1000000000; + uint64_t ua = u / 1000000000; + uint64_t u2 = ua % 1000000000; + uint64_t u3 = ua / 1000000000; + + /* 2**31 is 19 digits, so the top is exactly one digit */ + *ptr++ = u3 + '0'; + ptr = ecb_i2a_09 (ptr, u2); + ptr = ecb_i2a_09 (ptr, u1); + } + #else + ptr = ecb_i2a_u64 (ptr, u); + #endif + + return ptr; +} + +/*******************************************************************************/ +/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ + +/* basically, everything uses "ieee pure-endian" floating point numbers */ +/* the only noteworthy exception is ancient armle, which uses order 43218765 */ +#if 0 \ + || __i386 || __i386__ \ + || ECB_GCC_AMD64 \ + || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ + || defined __s390__ || defined __s390x__ \ + || defined __mips__ \ + || defined __alpha__ \ + || defined __hppa__ \ + || defined __ia64__ \ + || defined __m68k__ \ + || defined __m88k__ \ + || defined __sh__ \ + || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ + || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ + || defined __aarch64__ + #define ECB_STDFP 1 +#else + #define ECB_STDFP 0 +#endif + +#ifndef ECB_NO_LIBM + + #include /* for frexp*, ldexp*, INFINITY, NAN */ + + /* only the oldest of old doesn't have this one. solaris. */ + #ifdef INFINITY + #define ECB_INFINITY INFINITY + #else + #define ECB_INFINITY HUGE_VAL + #endif + + #ifdef NAN + #define ECB_NAN NAN + #else + #define ECB_NAN ECB_INFINITY + #endif + + #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L + #define ecb_ldexpf(x,e) ldexpf ((x), (e)) + #define ecb_frexpf(x,e) frexpf ((x), (e)) + #else + #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) + #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) + #endif + + /* convert a float to ieee single/binary32 */ + ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); + ecb_function_ ecb_const uint32_t + ecb_float_to_binary32 (float x) + { + uint32_t r; + + #if ECB_STDFP + memcpy (&r, &x, 4); + #else + /* slow emulation, works for anything but -0 */ + uint32_t m; + int e; + + if (x == 0e0f ) return 0x00000000U; + if (x > +3.40282346638528860e+38f) return 0x7f800000U; + if (x < -3.40282346638528860e+38f) return 0xff800000U; + if (x != x ) return 0x7fbfffffU; + + m = ecb_frexpf (x, &e) * 0x1000000U; + + r = m & 0x80000000U; + + if (r) + m = -m; + + if (e <= -126) + { + m &= 0xffffffU; + m >>= (-125 - e); + e = -126; + } + + r |= (e + 126) << 23; + r |= m & 0x7fffffU; + #endif + + return r; + } + + /* converts an ieee single/binary32 to a float */ + ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); + ecb_function_ ecb_const float + ecb_binary32_to_float (uint32_t x) + { + float r; + + #if ECB_STDFP + memcpy (&r, &x, 4); + #else + /* emulation, only works for normals and subnormals and +0 */ + int neg = x >> 31; + int e = (x >> 23) & 0xffU; + + x &= 0x7fffffU; + + if (e) + x |= 0x800000U; + else + e = 1; + + /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ + r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); + + r = neg ? -r : r; + #endif + + return r; + } + + /* convert a double to ieee double/binary64 */ + ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); + ecb_function_ ecb_const uint64_t + ecb_double_to_binary64 (double x) + { + uint64_t r; + + #if ECB_STDFP + memcpy (&r, &x, 8); + #else + /* slow emulation, works for anything but -0 */ + uint64_t m; + int e; + + if (x == 0e0 ) return 0x0000000000000000U; + if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; + if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; + if (x != x ) return 0X7ff7ffffffffffffU; + + m = frexp (x, &e) * 0x20000000000000U; + + r = m & 0x8000000000000000;; + + if (r) + m = -m; + + if (e <= -1022) + { + m &= 0x1fffffffffffffU; + m >>= (-1021 - e); + e = -1022; + } + + r |= ((uint64_t)(e + 1022)) << 52; + r |= m & 0xfffffffffffffU; + #endif + + return r; + } + + /* converts an ieee double/binary64 to a double */ + ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); + ecb_function_ ecb_const double + ecb_binary64_to_double (uint64_t x) + { + double r; + + #if ECB_STDFP + memcpy (&r, &x, 8); + #else + /* emulation, only works for normals and subnormals and +0 */ + int neg = x >> 63; + int e = (x >> 52) & 0x7ffU; + + x &= 0xfffffffffffffU; + + if (e) + x |= 0x10000000000000U; + else + e = 1; + + /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ + r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); + + r = neg ? -r : r; + #endif + + return r; + } + + /* convert a float to ieee half/binary16 */ + ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); + ecb_function_ ecb_const uint16_t + ecb_float_to_binary16 (float x) + { + return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); + } + + /* convert an ieee half/binary16 to float */ + ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); + ecb_function_ ecb_const float + ecb_binary16_to_float (uint16_t x) + { + return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); + } + +#endif + #endif