ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.143 by root, Fri Oct 17 10:56:48 2014 UTC vs.
Revision 1.215 by root, Fri Mar 25 15:51:15 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010004 45#define ECB_VERSION 0x0001000c
46 46
47#ifdef _WIN32 47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
48 typedef signed char int8_t; 50 typedef signed char int8_t;
49 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
50 typedef signed short int16_t; 54 typedef signed short int16_t;
51 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
52 typedef signed int int32_t; 58 typedef signed int int32_t;
53 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
54 #if __GNUC__ 62 #if __GNUC__
55 typedef signed long long int64_t; 63 typedef signed long long int64_t;
56 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
57 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
58 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
59 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
60 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
61 #ifdef _WIN64 71 #ifdef _WIN64
62 #define ECB_PTRSIZE 8 72 #define ECB_PTRSIZE 8
63 typedef uint64_t uintptr_t; 73 typedef uint64_t uintptr_t;
64 typedef int64_t intptr_t; 74 typedef int64_t intptr_t;
65 #else 75 #else
67 typedef uint32_t uintptr_t; 77 typedef uint32_t uintptr_t;
68 typedef int32_t intptr_t; 78 typedef int32_t intptr_t;
69 #endif 79 #endif
70#else 80#else
71 #include <inttypes.h> 81 #include <inttypes.h>
72 #if UINTMAX_MAX > 0xffffffffU 82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
73 #define ECB_PTRSIZE 8 83 #define ECB_PTRSIZE 8
74 #else 84 #else
75 #define ECB_PTRSIZE 4 85 #define ECB_PTRSIZE 4
76 #endif 86 #endif
77#endif 87#endif
78 88
89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
99
79/* work around x32 idiocy by defining proper macros */ 100/* work around x32 idiocy by defining proper macros */
80#if __amd64 || __x86_64 || _M_AMD64 || _M_X64 101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
81 #if _ILP32 102 #if _ILP32
82 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
83 #else 104 #else
84 #define ECB_AMD64 1 105 #define ECB_AMD64 1
85 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
86#endif 113#endif
87 114
88/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
89 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
90 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
98 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) 125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
99#endif 126#endif
100 127
101#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) 128#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
102 129
103#if __clang__ && defined(__has_builtin) 130#if __clang__ && defined __has_builtin
104 #define ECB_CLANG_BUILTIN(x) __has_builtin(x) 131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
105#else 132#else
106 #define ECB_CLANG_BUILTIN(x) 0 133 #define ECB_CLANG_BUILTIN(x) 0
107#endif 134#endif
108 135
109#if __clang__ && defined(__has_extension) 136#if __clang__ && defined __has_extension
110 #define ECB_CLANG_EXTENSION(x) __has_extension(x) 137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
111#else 138#else
112 #define ECB_CLANG_EXTENSION(x) 0 139 #define ECB_CLANG_EXTENSION(x) 0
113#endif 140#endif
114 141
115#define ECB_CPP (__cplusplus+0) 142#define ECB_CPP (__cplusplus+0)
116#define ECB_CPP11 (__cplusplus >= 201103L) 143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
117 146
118#if ECB_CPP 147#if ECB_CPP
119 #define ECB_C 0 148 #define ECB_C 0
120 #define ECB_STDC_VERSION 0 149 #define ECB_STDC_VERSION 0
121#else 150#else
123 #define ECB_STDC_VERSION __STDC_VERSION__ 152 #define ECB_STDC_VERSION __STDC_VERSION__
124#endif 153#endif
125 154
126#define ECB_C99 (ECB_STDC_VERSION >= 199901L) 155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
127#define ECB_C11 (ECB_STDC_VERSION >= 201112L) 156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
128 158
129#if ECB_CPP 159#if ECB_CPP
130 #define ECB_EXTERN_C extern "C" 160 #define ECB_EXTERN_C extern "C"
131 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
132 #define ECB_EXTERN_C_END } 162 #define ECB_EXTERN_C_END }
147 177
148#if ECB_NO_SMP 178#if ECB_NO_SMP
149 #define ECB_MEMORY_FENCE do { } while (0) 179 #define ECB_MEMORY_FENCE do { } while (0)
150#endif 180#endif
151 181
182/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183#if __xlC__ && ECB_CPP
184 #include <builtins.h>
185#endif
186
187#if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189#endif
190
152#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
153 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
154 #if __i386 || __i386__ 194 #if __i386 || __i386__
155 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
156 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
157 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
158 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ 198 #elif ECB_GCC_AMD64
159 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
160 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
161 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
162 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
163 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
164 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
165 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
166 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
167 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
168 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
169 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
170 #elif __aarch64__ 218 #elif __aarch64__
171 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
172 #elif (__sparc || __sparc__) && !__sparcv8 220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
173 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
174 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") 222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
175 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") 223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
176 #elif defined __s390__ || defined __s390x__ 224 #elif defined __s390__ || defined __s390x__
177 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") 225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
200 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
201 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
202 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
203 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
204 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
205 255
206 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
207 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
208 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
209 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
210 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
211 263
212 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
213 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
214 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
215 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
225 #elif defined _WIN32 277 #elif defined _WIN32
226 #include <WinNT.h> 278 #include <WinNT.h>
227 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
228 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
229 #include <mbarrier.h> 281 #include <mbarrier.h>
230 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
231 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
232 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
233 #elif __xlC__ 286 #elif __xlC__
234 #define ECB_MEMORY_FENCE __sync () 287 #define ECB_MEMORY_FENCE __sync ()
235 #endif 288 #endif
236#endif 289#endif
237 290
238#ifndef ECB_MEMORY_FENCE 291#ifndef ECB_MEMORY_FENCE
239 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
240 /* we assume that these memory fences work on all variables/all memory accesses, */ 293 /* we assume that these memory fences work on all variables/all memory accesses, */
241 /* not just C11 atomics and atomic accesses */ 294 /* not just C11 atomics and atomic accesses */
242 #include <stdatomic.h> 295 #include <stdatomic.h>
243 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
244 /* any fence other than seq_cst, which isn't very efficient for us. */
245 /* Why that is, we don't know - either the C11 memory model is quite useless */
246 /* for most usages, or gcc and clang have a bug */
247 /* I *currently* lean towards the latter, and inefficiently implement */
248 /* all three of ecb's fences as a seq_cst fence */
249 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
250 /* for all __atomic_thread_fence's except seq_cst */
251 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
252 #endif 299 #endif
253#endif 300#endif
254 301
255#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
256 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
276 323
277#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
278 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
279#endif 326#endif
280 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
281/*****************************************************************************/ 332/*****************************************************************************/
282 333
283#if __cplusplus 334#if ECB_CPP
284 #define ecb_inline static inline 335 #define ecb_inline static inline
285#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
286 #define ecb_inline static __inline__ 337 #define ecb_inline static __inline__
287#elif ECB_C99 338#elif ECB_C99
288 #define ecb_inline static inline 339 #define ecb_inline static inline
302 353
303#define ECB_CONCAT_(a, b) a ## b 354#define ECB_CONCAT_(a, b) a ## b
304#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
305#define ECB_STRINGIFY_(a) # a 356#define ECB_STRINGIFY_(a) # a
306#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
307 359
360/* This marks larger functions that do not neccessarily need to be inlined */
361/* The idea is to possibly compile the header twice, */
362/* once exposing only the declarations, another time to define external functions */
363/* TODO: possibly static would be best for these at the moment? */
308#define ecb_function_ ecb_inline 364#define ecb_function_ ecb_inline
309 365
310#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) 366#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
311 #define ecb_attribute(attrlist) __attribute__ (attrlist) 367 #define ecb_attribute(attrlist) __attribute__ (attrlist)
312#else 368#else
335 #define ecb_prefetch(addr,rw,locality) 391 #define ecb_prefetch(addr,rw,locality)
336#endif 392#endif
337 393
338/* no emulation for ecb_decltype */ 394/* no emulation for ecb_decltype */
339#if ECB_CPP11 395#if ECB_CPP11
396 // older implementations might have problems with decltype(x)::type, work around it
397 template<class T> struct ecb_decltype_t { typedef T type; };
340 #define ecb_decltype(x) decltype (x) 398 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
341#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) 399#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
342 #define ecb_decltype(x) __typeof__ (x) 400 #define ecb_decltype(x) __typeof__ (x)
343#endif 401#endif
344 402
345#if _MSC_VER >= 1300 403#if _MSC_VER >= 1300
346 #define ecb_deprecated __declspec(deprecated) 404 #define ecb_deprecated __declspec (deprecated)
347#else 405#else
348 #define ecb_deprecated ecb_attribute ((__deprecated__)) 406 #define ecb_deprecated ecb_attribute ((__deprecated__))
349#endif 407#endif
350 408
409#if _MSC_VER >= 1500
410 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
411#elif ECB_GCC_VERSION(4,5)
412 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
413#else
414 #define ecb_deprecated_message(msg) ecb_deprecated
415#endif
416
417#if _MSC_VER >= 1400
418 #define ecb_noinline __declspec (noinline)
419#else
351#define ecb_noinline ecb_attribute ((__noinline__)) 420 #define ecb_noinline ecb_attribute ((__noinline__))
421#endif
422
352#define ecb_unused ecb_attribute ((__unused__)) 423#define ecb_unused ecb_attribute ((__unused__))
353#define ecb_const ecb_attribute ((__const__)) 424#define ecb_const ecb_attribute ((__const__))
354#define ecb_pure ecb_attribute ((__pure__)) 425#define ecb_pure ecb_attribute ((__pure__))
355 426
356/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */ 427#if ECB_C11 || __IBMC_NORETURN
357#if ECB_C11 428 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
358 #define ecb_noreturn _Noreturn 429 #define ecb_noreturn _Noreturn
430#elif ECB_CPP11
431 #define ecb_noreturn [[noreturn]]
432#elif _MSC_VER >= 1200
433 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
434 #define ecb_noreturn __declspec (noreturn)
359#else 435#else
360 #define ecb_noreturn ecb_attribute ((__noreturn__)) 436 #define ecb_noreturn ecb_attribute ((__noreturn__))
361#endif 437#endif
362 438
363#if ECB_GCC_VERSION(4,3) 439#if ECB_GCC_VERSION(4,3)
382/* count trailing zero bits and count # of one bits */ 458/* count trailing zero bits and count # of one bits */
383#if ECB_GCC_VERSION(3,4) \ 459#if ECB_GCC_VERSION(3,4) \
384 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 460 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
385 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 461 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
386 && ECB_CLANG_BUILTIN(__builtin_popcount)) 462 && ECB_CLANG_BUILTIN(__builtin_popcount))
387 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
388 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
389 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
390 #define ecb_ctz32(x) __builtin_ctz (x) 463 #define ecb_ctz32(x) __builtin_ctz (x)
464 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
391 #define ecb_ctz64(x) __builtin_ctzll (x) 465 #define ecb_clz32(x) __builtin_clz (x)
466 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
467 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
468 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
392 #define ecb_popcount32(x) __builtin_popcount (x) 469 #define ecb_popcount32(x) __builtin_popcount (x)
393 /* no popcountll */ 470 /* ecb_popcount64 is more difficult, see below */
394#else 471#else
395 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; 472 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
396 ecb_function_ int 473 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x)
397 ecb_ctz32 (uint32_t x)
398 { 474 {
475#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
476 unsigned long r;
477 _BitScanForward (&r, x);
478 return (int)r;
479#else
399 int r = 0; 480 int r;
400 481
401 x &= ~x + 1; /* this isolates the lowest bit */ 482 x &= ~x + 1; /* this isolates the lowest bit */
402 483
403#if ECB_branchless_on_i386 484 #if 1
485 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
486 /* This happens to return 32 for x == 0, but the API does not support this */
487
488 /* -0 marks unused entries */
489 static unsigned char table[64] =
490 {
491 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
492 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
493 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
494 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
495 };
496
497 /* magic constant results in 33 unique values in the upper 6 bits */
498 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
499
500 r = table [x >> 26];
501 #elif 0 /* branchless on i386, typically */
502 r = 0;
404 r += !!(x & 0xaaaaaaaa) << 0; 503 r += !!(x & 0xaaaaaaaa) << 0;
405 r += !!(x & 0xcccccccc) << 1; 504 r += !!(x & 0xcccccccc) << 1;
406 r += !!(x & 0xf0f0f0f0) << 2; 505 r += !!(x & 0xf0f0f0f0) << 2;
407 r += !!(x & 0xff00ff00) << 3; 506 r += !!(x & 0xff00ff00) << 3;
408 r += !!(x & 0xffff0000) << 4; 507 r += !!(x & 0xffff0000) << 4;
409#else 508 #else /* branchless on modern compilers, typically */
509 r = 0;
410 if (x & 0xaaaaaaaa) r += 1; 510 if (x & 0xaaaaaaaa) r += 1;
411 if (x & 0xcccccccc) r += 2; 511 if (x & 0xcccccccc) r += 2;
412 if (x & 0xf0f0f0f0) r += 4; 512 if (x & 0xf0f0f0f0) r += 4;
413 if (x & 0xff00ff00) r += 8; 513 if (x & 0xff00ff00) r += 8;
414 if (x & 0xffff0000) r += 16; 514 if (x & 0xffff0000) r += 16;
415#endif 515#endif
416 516
417 return r; 517 return r;
518#endif
418 } 519 }
419 520
420 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; 521 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
421 ecb_function_ int 522 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x)
422 ecb_ctz64 (uint64_t x)
423 { 523 {
524#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
525 unsigned long r;
526 _BitScanForward64 (&r, x);
527 return (int)r;
528#else
424 int shift = x & 0xffffffffU ? 0 : 32; 529 int shift = x & 0xffffffff ? 0 : 32;
425 return ecb_ctz32 (x >> shift) + shift; 530 return ecb_ctz32 (x >> shift) + shift;
531#endif
426 } 532 }
427 533
534 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
535 ecb_function_ ecb_const int ecb_clz32 (uint32_t x)
536 {
537#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
538 unsigned long r;
539 _BitScanReverse (&r, x);
540 return (int)r;
541#else
542
543 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
544 /* This happens to return 32 for x == 0, but the API does not support this */
545
546 /* -0 marks unused table elements */
547 static unsigned char table[64] =
548 {
549 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
550 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
551 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
552 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
553 };
554
555 /* propagate leftmost 1 bit to the right */
556 x |= x >> 1;
557 x |= x >> 2;
558 x |= x >> 4;
559 x |= x >> 8;
560 x |= x >> 16;
561
562 /* magic constant results in 33 unique values in the upper 6 bits */
563 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
564
565 return table [x >> 26];
566#endif
567 }
568
569 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
570 ecb_function_ ecb_const int ecb_clz64 (uint64_t x)
571 {
572#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573 unsigned long r;
574 _BitScanReverse64 (&r, x);
575 return (int)r;
576#else
577 uint32_t l = x >> 32;
578 int shift = l ? 0 : 32;
579 return ecb_clz32 (l ? l : x) + shift;
580#endif
581 }
582
428 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; 583 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
429 ecb_function_ int 584 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x)
430 ecb_popcount32 (uint32_t x)
431 { 585 {
432 x -= (x >> 1) & 0x55555555; 586 x -= (x >> 1) & 0x55555555;
433 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 587 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
434 x = ((x >> 4) + x) & 0x0f0f0f0f; 588 x = ((x >> 4) + x) & 0x0f0f0f0f;
435 x *= 0x01010101; 589 x *= 0x01010101;
436 590
437 return x >> 24; 591 return x >> 24;
438 } 592 }
439 593
440 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; 594 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
441 ecb_function_ int ecb_ld32 (uint32_t x) 595 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
442 { 596 {
597#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
598 unsigned long r;
599 _BitScanReverse (&r, x);
600 return (int)r;
601#else
443 int r = 0; 602 int r = 0;
444 603
445 if (x >> 16) { x >>= 16; r += 16; } 604 if (x >> 16) { x >>= 16; r += 16; }
446 if (x >> 8) { x >>= 8; r += 8; } 605 if (x >> 8) { x >>= 8; r += 8; }
447 if (x >> 4) { x >>= 4; r += 4; } 606 if (x >> 4) { x >>= 4; r += 4; }
448 if (x >> 2) { x >>= 2; r += 2; } 607 if (x >> 2) { x >>= 2; r += 2; }
449 if (x >> 1) { r += 1; } 608 if (x >> 1) { r += 1; }
450 609
451 return r; 610 return r;
611#endif
452 } 612 }
453 613
454 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; 614 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
455 ecb_function_ int ecb_ld64 (uint64_t x) 615 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
456 { 616 {
617#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
618 unsigned long r;
619 _BitScanReverse64 (&r, x);
620 return (int)r;
621#else
457 int r = 0; 622 int r = 0;
458 623
459 if (x >> 32) { x >>= 32; r += 32; } 624 if (x >> 32) { x >>= 32; r += 32; }
460 625
461 return r + ecb_ld32 (x); 626 return r + ecb_ld32 (x);
462 }
463#endif 627#endif
628 }
629#endif
464 630
465ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const; 631ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
466ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } 632ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
467ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const; 633ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
468ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } 634ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
469 635
470ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; 636ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
471ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) 637ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
472{ 638{
473 return ( (x * 0x0802U & 0x22110U) 639 return ( (x * 0x0802U & 0x22110U)
474 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 640 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
475} 641}
476 642
477ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; 643ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
478ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) 644ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
479{ 645{
480 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); 646 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
481 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); 647 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
482 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); 648 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
483 x = ( x >> 8 ) | ( x << 8); 649 x = ( x >> 8 ) | ( x << 8);
484 650
485 return x; 651 return x;
486} 652}
487 653
488ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; 654ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
489ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) 655ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
490{ 656{
491 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); 657 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
492 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); 658 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
493 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); 659 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
494 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); 660 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
495 x = ( x >> 16 ) | ( x << 16); 661 x = ( x >> 16 ) | ( x << 16);
496 662
497 return x; 663 return x;
498} 664}
499 665
666ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
667ecb_function_ ecb_const int ecb_popcount64 (uint64_t x)
668{
500/* popcount64 is only available on 64 bit cpus as gcc builtin */ 669 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
501/* so for this version we are lazy */ 670 /* also, gcc/clang make this surprisingly difficult to use */
502ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; 671#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
503ecb_function_ int 672 return __builtin_popcountl (x);
504ecb_popcount64 (uint64_t x) 673#else
505{
506 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 674 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
675#endif
507} 676}
508 677
509ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
510ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
511ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
512ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
513ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
514ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
515ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
516ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
517
518ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 678ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
519ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 679ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
520ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 680ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
521ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 681ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
522ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 682ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
523ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 683ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
524ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 684ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
525ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 685ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
686
687#if ECB_CPP
688
689inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
690inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
691inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
692inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
693
694inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
695inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
696inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
697inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
698
699inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
700inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
701inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
702inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
703
704inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
705inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
706inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
707inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
708
709inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
710inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
711inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
712
713inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
714inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
715inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
716inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
717
718inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
719inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
720inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
721inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
722
723#endif
526 724
527#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 725#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
726 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
727 #define ecb_bswap16(x) __builtin_bswap16 (x)
728 #else
528 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) 729 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
730 #endif
529 #define ecb_bswap32(x) __builtin_bswap32 (x) 731 #define ecb_bswap32(x) __builtin_bswap32 (x)
530 #define ecb_bswap64(x) __builtin_bswap64 (x) 732 #define ecb_bswap64(x) __builtin_bswap64 (x)
733#elif _MSC_VER
734 #include <stdlib.h>
735 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
736 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
737 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
531#else 738#else
532 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; 739 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
533 ecb_function_ uint16_t 740 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x)
534 ecb_bswap16 (uint16_t x)
535 { 741 {
536 return ecb_rotl16 (x, 8); 742 return ecb_rotl16 (x, 8);
537 } 743 }
538 744
539 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; 745 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
540 ecb_function_ uint32_t 746 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x)
541 ecb_bswap32 (uint32_t x)
542 { 747 {
543 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 748 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
544 } 749 }
545 750
546 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; 751 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
547 ecb_function_ uint64_t 752 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x)
548 ecb_bswap64 (uint64_t x)
549 { 753 {
550 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 754 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
551 } 755 }
552#endif 756#endif
553 757
554#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) 758#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
555 #define ecb_unreachable() __builtin_unreachable () 759 #define ecb_unreachable() __builtin_unreachable ()
556#else 760#else
557 /* this seems to work fine, but gcc always emits a warning for it :/ */ 761 /* this seems to work fine, but gcc always emits a warning for it :/ */
558 ecb_inline void ecb_unreachable (void) ecb_noreturn; 762 ecb_inline ecb_noreturn void ecb_unreachable (void);
559 ecb_inline void ecb_unreachable (void) { } 763 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
560#endif 764#endif
561 765
562/* try to tell the compiler that some condition is definitely true */ 766/* try to tell the compiler that some condition is definitely true */
563#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 767#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
564 768
565ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; 769ecb_inline uint32_t ecb_byteorder_helper (void);
566ecb_inline unsigned char 770ecb_inline uint32_t ecb_byteorder_helper (void)
567ecb_byteorder_helper (void)
568{ 771{
569 /* the union code still generates code under pressure in gcc, */ 772 /* the union code still generates code under pressure in gcc, */
570 /* but less than using pointers, and always seems to */ 773 /* but less than using pointers, and always seems to */
571 /* successfully return a constant. */ 774 /* successfully return a constant. */
572 /* the reason why we have this horrible preprocessor mess */ 775 /* the reason why we have this horrible preprocessor mess */
573 /* is to avoid it in all cases, at least on common architectures */ 776 /* is to avoid it in all cases, at least on common architectures */
574 /* or when using a recent enough gcc version (>= 4.6) */ 777 /* or when using a recent enough gcc version (>= 4.6) */
575#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
576 return 0x44;
577#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 778#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
779 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
780 #define ECB_LITTLE_ENDIAN 1
578 return 0x44; 781 return 0x44332211;
579#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 782#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
783 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
784 #define ECB_BIG_ENDIAN 1
580 return 0x11; 785 return 0x11223344;
581#else 786#else
582 union 787 union
583 { 788 {
789 uint8_t c[4];
584 uint32_t i; 790 uint32_t u;
585 uint8_t c;
586 } u = { 0x11223344 }; 791 } u = { 0x11, 0x22, 0x33, 0x44 };
587 return u.c; 792 return u.u;
588#endif 793#endif
589} 794}
590 795
591ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
592ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 796ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
593ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
594ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 797ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
798
799/*****************************************************************************/
800/* unaligned load/store */
801
802ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
803ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
804ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
805
806ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
807ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
808ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
809
810ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
811ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
812ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
813
814ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
815ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
816ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
817
818ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
819ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
820ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
821
822ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
823ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
824ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
825
826ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
827ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
828ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
829
830ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
831ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
832ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
833
834ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
835ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
836ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
837
838ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
839ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
840ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
841
842#if ECB_CPP
843
844inline uint8_t ecb_bswap (uint8_t v) { return v; }
845inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
846inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
847inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
848
849template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
850template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
851template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
852template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
853template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
854template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
855template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
856template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
857
858template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
859template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
860template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
861template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
862template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
863template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
864template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
865template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
866
867#endif
868
869/*****************************************************************************/
870/* pointer/integer hashing */
871
872/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
873ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v);
874ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v)
875{
876 v ^= v >> 16; v *= 0x7feb352dU;
877 v ^= v >> 15; v *= 0x846ca68bU;
878 v ^= v >> 16;
879 return v;
880}
881
882ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v);
883ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v)
884{
885 v ^= v >> 16 ; v *= 0x43021123U;
886 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
887 v ^= v >> 16 ;
888 return v;
889}
890
891/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
892ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v);
893ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v)
894{
895 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
896 v ^= v >> 27; v *= 0x94d049bb133111ebU;
897 v ^= v >> 31;
898 return v;
899}
900
901ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v);
902ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v)
903{
904 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
905 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
906 v ^= v >> 30 ^ v >> 60;
907 return v;
908}
909
910ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p);
911ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p)
912{
913 #if ECB_PTRSIZE <= 4
914 return ecb_mix32 ((uint32_t)p);
915 #else
916 return ecb_mix64 ((uint64_t)p);
917 #endif
918}
919
920ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v);
921ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v)
922{
923 #if ECB_PTRSIZE <= 4
924 return (void *)ecb_unmix32 (v);
925 #else
926 return (void *)ecb_unmix64 (v);
927 #endif
928}
929
930#if ECB_CPP
931
932template<typename T>
933inline uintptr_t ecb_ptrmix (T *p)
934{
935 return ecb_ptrmix (static_cast<void *>(p));
936}
937
938template<typename T>
939inline T *ecb_ptrunmix (uintptr_t v)
940{
941 return static_cast<T *>(ecb_ptrunmix (v));
942}
943
944#endif
945
946/*****************************************************************************/
947/* gray code */
948
949ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
950ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
951ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
952ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
953
954ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g);
955ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g)
956{
957 g ^= g >> 1;
958 g ^= g >> 2;
959 g ^= g >> 4;
960
961 return g;
962}
963
964ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g);
965ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g)
966{
967 g ^= g >> 1;
968 g ^= g >> 2;
969 g ^= g >> 4;
970 g ^= g >> 8;
971
972 return g;
973}
974
975ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g);
976ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g)
977{
978 g ^= g >> 1;
979 g ^= g >> 2;
980 g ^= g >> 4;
981 g ^= g >> 8;
982 g ^= g >> 16;
983
984 return g;
985}
986
987ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g);
988ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g)
989{
990 g ^= g >> 1;
991 g ^= g >> 2;
992 g ^= g >> 4;
993 g ^= g >> 8;
994 g ^= g >> 16;
995 g ^= g >> 32;
996
997 return g;
998}
999
1000#if ECB_CPP
1001
1002ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1003ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1004ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1005ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1006
1007ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1008ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1009ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1010ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1011
1012#endif
1013
1014/*****************************************************************************/
1015/* 2d hilbert curves */
1016
1017/* algorithm from the book Hacker's Delight, modified to not */
1018/* run into undefined behaviour for n==16 */
1019ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s);
1020ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1021{
1022 uint32_t comp, swap, cs, t, sr;
1023
1024 /* pad s on the left (unused) bits with 01 (no change groups) */
1025 s |= 0x55555555U << n << n;
1026 /* "s shift right" */
1027 sr = (s >> 1) & 0x55555555U;
1028 /* compute complement and swap info in two-bit groups */
1029 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1030
1031 /* parallel prefix xor op to propagate both complement
1032 * and swap info together from left to right (there is
1033 * no step "cs ^= cs >> 1", so in effect it computes
1034 * two independent parallel prefix operations on two
1035 * interleaved sets of sixteen bits).
1036 */
1037 cs ^= cs >> 2;
1038 cs ^= cs >> 4;
1039 cs ^= cs >> 8;
1040 cs ^= cs >> 16;
1041
1042 /* separate swap and complement bits */
1043 swap = cs & 0x55555555U;
1044 comp = (cs >> 1) & 0x55555555U;
1045
1046 /* calculate coordinates in odd and even bit positions */
1047 t = (s & swap) ^ comp;
1048 s = s ^ sr ^ t ^ (t << 1);
1049
1050 /* unpad/clear out any junk on the left */
1051 s = s & ((1 << n << n) - 1);
1052
1053 /* Now "unshuffle" to separate the x and y bits. */
1054 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1055 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1056 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1057 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1058
1059 /* now s contains two 16-bit coordinates */
1060 return s;
1061}
1062
1063/* 64 bit, a straightforward extension to the 32 bit case */
1064ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s);
1065ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1066{
1067 uint64_t comp, swap, cs, t, sr;
1068
1069 /* pad s on the left (unused) bits with 01 (no change groups) */
1070 s |= 0x5555555555555555U << n << n;
1071 /* "s shift right" */
1072 sr = (s >> 1) & 0x5555555555555555U;
1073 /* compute complement and swap info in two-bit groups */
1074 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1075
1076 /* parallel prefix xor op to propagate both complement
1077 * and swap info together from left to right (there is
1078 * no step "cs ^= cs >> 1", so in effect it computes
1079 * two independent parallel prefix operations on two
1080 * interleaved sets of thirty-two bits).
1081 */
1082 cs ^= cs >> 2;
1083 cs ^= cs >> 4;
1084 cs ^= cs >> 8;
1085 cs ^= cs >> 16;
1086 cs ^= cs >> 32;
1087
1088 /* separate swap and complement bits */
1089 swap = cs & 0x5555555555555555U;
1090 comp = (cs >> 1) & 0x5555555555555555U;
1091
1092 /* calculate coordinates in odd and even bit positions */
1093 t = (s & swap) ^ comp;
1094 s = s ^ sr ^ t ^ (t << 1);
1095
1096 /* unpad/clear out any junk on the left */
1097 s = s & ((1 << n << n) - 1);
1098
1099 /* Now "unshuffle" to separate the x and y bits. */
1100 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1101 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1102 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1103 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1104 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1105
1106 /* now s contains two 32-bit coordinates */
1107 return s;
1108}
1109
1110/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1111/* is given in https://doi.org/10.1002/spe.4380160103 */
1112/* this has been slightly improved over the original version */
1113ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy);
1114ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1115{
1116 uint32_t row;
1117 uint32_t state = 0;
1118 uint32_t s = 0;
1119
1120 do
1121 {
1122 --n;
1123
1124 row = 4 * state
1125 | (2 & (xy >> n >> 15))
1126 | (1 & (xy >> n ));
1127
1128 /* these funky constants are lookup tables for two-bit values */
1129 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1130 state = (0x8fe65831U >> 2 * row) & 3;
1131 }
1132 while (n > 0);
1133
1134 return s;
1135}
1136
1137/* 64 bit, essentially the same as 32 bit */
1138ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy);
1139ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1140{
1141 uint32_t row;
1142 uint32_t state = 0;
1143 uint64_t s = 0;
1144
1145 do
1146 {
1147 --n;
1148
1149 row = 4 * state
1150 | (2 & (xy >> n >> 31))
1151 | (1 & (xy >> n ));
1152
1153 /* these funky constants are lookup tables for two-bit values */
1154 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1155 state = (0x8fe65831U >> 2 * row) & 3;
1156 }
1157 while (n > 0);
1158
1159 return s;
1160}
1161
1162/*****************************************************************************/
1163/* division */
595 1164
596#if ECB_GCC_VERSION(3,0) || ECB_C99 1165#if ECB_GCC_VERSION(3,0) || ECB_C99
1166 /* C99 tightened the definition of %, so we can use a more efficient version */
597 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
598#else 1168#else
599 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1169 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
600#endif 1170#endif
601 1171
602#if __cplusplus 1172#if ECB_CPP
603 template<typename T> 1173 template<typename T>
604 static inline T ecb_div_rd (T val, T div) 1174 static inline T ecb_div_rd (T val, T div)
605 { 1175 {
606 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; 1176 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
607 } 1177 }
612 } 1182 }
613#else 1183#else
614 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1184 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
615 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1185 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
616#endif 1186#endif
1187
1188/*****************************************************************************/
1189/* array length */
617 1190
618#if ecb_cplusplus_does_not_suck 1191#if ecb_cplusplus_does_not_suck
619 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
620 template<typename T, int N> 1193 template<typename T, int N>
621 static inline int ecb_array_length (const T (&arr)[N]) 1194 static inline int ecb_array_length (const T (&arr)[N])
624 } 1197 }
625#else 1198#else
626 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
627#endif 1200#endif
628 1201
1202/*****************************************************************************/
1203/* IEEE 754-2008 half float conversions */
1204
1205ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1206ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x)
1207{
1208 unsigned int s = (x & 0x8000) << (31 - 15);
1209 int e = (x >> 10) & 0x001f;
1210 unsigned int m = x & 0x03ff;
1211
1212 if (ecb_expect_false (e == 31))
1213 /* infinity or NaN */
1214 e = 255 - (127 - 15);
1215 else if (ecb_expect_false (!e))
1216 {
1217 if (ecb_expect_true (!m))
1218 /* zero, handled by code below by forcing e to 0 */
1219 e = 0 - (127 - 15);
1220 else
1221 {
1222 /* subnormal, renormalise */
1223 unsigned int s = 10 - ecb_ld32 (m);
1224
1225 m = (m << s) & 0x3ff; /* mask implicit bit */
1226 e -= s - 1;
1227 }
1228 }
1229
1230 /* e and m now are normalised, or zero, (or inf or nan) */
1231 e += 127 - 15;
1232
1233 return s | (e << 23) | (m << (23 - 10));
1234}
1235
1236ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1237ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x)
1238{
1239 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1240 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1241 unsigned int m = x & 0x007fffff;
1242
1243 x &= 0x7fffffff;
1244
1245 /* if it's within range of binary16 normals, use fast path */
1246 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1247 {
1248 /* mantissa round-to-even */
1249 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1250
1251 /* handle overflow */
1252 if (ecb_expect_false (m >= 0x00800000))
1253 {
1254 m >>= 1;
1255 e += 1;
1256 }
1257
1258 return s | (e << 10) | (m >> (23 - 10));
1259 }
1260
1261 /* handle large numbers and infinity */
1262 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1263 return s | 0x7c00;
1264
1265 /* handle zero, subnormals and small numbers */
1266 if (ecb_expect_true (x < 0x38800000))
1267 {
1268 /* zero */
1269 if (ecb_expect_true (!x))
1270 return s;
1271
1272 /* handle subnormals */
1273
1274 /* too small, will be zero */
1275 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1276 return s;
1277
1278 m |= 0x00800000; /* make implicit bit explicit */
1279
1280 /* very tricky - we need to round to the nearest e (+10) bit value */
1281 {
1282 unsigned int bits = 14 - e;
1283 unsigned int half = (1 << (bits - 1)) - 1;
1284 unsigned int even = (m >> bits) & 1;
1285
1286 /* if this overflows, we will end up with a normalised number */
1287 m = (m + half + even) >> bits;
1288 }
1289
1290 return s | m;
1291 }
1292
1293 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1294 m >>= 13;
1295
1296 return s | 0x7c00 | m | !m;
1297}
1298
1299/*******************************************************************************/
1300/* fast integer to ascii */
1301
1302/*
1303 * This code is pretty complicated because it is general. The idea behind it,
1304 * however, is pretty simple: first, the number is multiplied with a scaling
1305 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1306 * number with the first digit in the upper bits.
1307 * Then this digit is converted to text and masked out. The resulting number
1308 * is then multiplied by 10, by multiplying the fixed point representation
1309 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1310 * format becomes 5.27, 6.26 and so on.
1311 * The rest involves only advancing the pointer if we already generated a
1312 * non-zero digit, so leading zeroes are overwritten.
1313 */
1314
1315/* simply return a mask with "bits" bits set */
1316#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1317
1318/* oputput a single digit. maskvalue is 10**digitidx */
1319#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1320 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1321 { \
1322 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1323 *ptr = digit + '0'; /* output it */ \
1324 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1325 ptr += nz; /* output digit only if non-zero digit seen */ \
1326 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1327 }
1328
1329/* convert integer to fixed point format and multiply out digits, highest first */
1330/* requires magic constants: max. digits and number of bits after the decimal point */
1331#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1332ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1333{ \
1334 char nz = lz; /* non-zero digit seen? */ \
1335 /* convert to x.bits fixed-point */ \
1336 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1337 /* output up to 10 digits */ \
1338 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1339 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1340 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1341 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1342 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1343 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1344 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1345 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1346 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1347 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1348 return ptr; \
1349}
1350
1351/* predefined versions of the above, for various digits */
1352/* ecb_i2a_xN = almost N digits, limit defined by macro */
1353/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1354/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1355
1356/* non-leading-zero versions, limited range */
1357#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1358#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1359ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1360ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1361
1362/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1363ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1364ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1365ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1366ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1367ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1368ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1369ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1370ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1371
1372/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1373ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1374ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1375ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1376ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1377ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1378ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1379ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1380ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1381
1382#define ECB_I2A_I32_DIGITS 11
1383#define ECB_I2A_U32_DIGITS 10
1384#define ECB_I2A_I64_DIGITS 20
1385#define ECB_I2A_U64_DIGITS 21
1386#define ECB_I2A_MAX_DIGITS 21
1387
1388ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u);
1389ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u)
1390{
1391 #if ECB_64BIT_NATIVE
1392 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1393 ptr = ecb_i2a_x10 (ptr, u);
1394 else /* x10 almost, but not fully, covers 32 bit */
1395 {
1396 uint32_t u1 = u % 1000000000;
1397 uint32_t u2 = u / 1000000000;
1398
1399 *ptr++ = u2 + '0';
1400 ptr = ecb_i2a_09 (ptr, u1);
1401 }
1402 #else
1403 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1404 ecb_i2a_x5 (ptr, u);
1405 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1406 {
1407 uint32_t u1 = u % 10000;
1408 uint32_t u2 = u / 10000;
1409
1410 ptr = ecb_i2a_x5 (ptr, u2);
1411 ptr = ecb_i2a_04 (ptr, u1);
1412 }
1413 else
1414 {
1415 uint32_t u1 = u % 10000;
1416 uint32_t ua = u / 10000;
1417 uint32_t u2 = ua % 10000;
1418 uint32_t u3 = ua / 10000;
1419
1420 ptr = ecb_i2a_2 (ptr, u3);
1421 ptr = ecb_i2a_04 (ptr, u2);
1422 ptr = ecb_i2a_04 (ptr, u1);
1423 }
1424 #endif
1425
1426 return ptr;
1427}
1428
1429ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v);
1430ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v)
1431{
1432 *ptr = '-'; ptr += v < 0;
1433 uint32_t u = v < 0 ? -(uint32_t)v : v;
1434
1435 #if ECB_64BIT_NATIVE
1436 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1437 #else
1438 ptr = ecb_i2a_u32 (ptr, u);
1439 #endif
1440
1441 return ptr;
1442}
1443
1444ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u);
1445ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u)
1446{
1447 #if ECB_64BIT_NATIVE
1448 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1449 ptr = ecb_i2a_x10 (ptr, u);
1450 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1451 {
1452 uint64_t u1 = u % 1000000000;
1453 uint64_t u2 = u / 1000000000;
1454
1455 ptr = ecb_i2a_x10 (ptr, u2);
1456 ptr = ecb_i2a_09 (ptr, u1);
1457 }
1458 else
1459 {
1460 uint64_t u1 = u % 1000000000;
1461 uint64_t ua = u / 1000000000;
1462 uint64_t u2 = ua % 1000000000;
1463 uint64_t u3 = ua / 1000000000;
1464
1465 ptr = ecb_i2a_2 (ptr, u3);
1466 ptr = ecb_i2a_09 (ptr, u2);
1467 ptr = ecb_i2a_09 (ptr, u1);
1468 }
1469 #else
1470 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1471 ptr = ecb_i2a_x5 (ptr, u);
1472 else
1473 {
1474 uint64_t u1 = u % 10000;
1475 uint64_t u2 = u / 10000;
1476
1477 ptr = ecb_i2a_u64 (ptr, u2);
1478 ptr = ecb_i2a_04 (ptr, u1);
1479 }
1480 #endif
1481
1482 return ptr;
1483}
1484
1485ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v);
1486ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v)
1487{
1488 *ptr = '-'; ptr += v < 0;
1489 uint64_t u = v < 0 ? -(uint64_t)v : v;
1490
1491 #if ECB_64BIT_NATIVE
1492 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1493 ptr = ecb_i2a_x10 (ptr, u);
1494 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1495 {
1496 uint64_t u1 = u % 1000000000;
1497 uint64_t u2 = u / 1000000000;
1498
1499 ptr = ecb_i2a_x10 (ptr, u2);
1500 ptr = ecb_i2a_09 (ptr, u1);
1501 }
1502 else
1503 {
1504 uint64_t u1 = u % 1000000000;
1505 uint64_t ua = u / 1000000000;
1506 uint64_t u2 = ua % 1000000000;
1507 uint64_t u3 = ua / 1000000000;
1508
1509 /* 2**31 is 19 digits, so the top is exactly one digit */
1510 *ptr++ = u3 + '0';
1511 ptr = ecb_i2a_09 (ptr, u2);
1512 ptr = ecb_i2a_09 (ptr, u1);
1513 }
1514 #else
1515 ptr = ecb_i2a_u64 (ptr, u);
1516 #endif
1517
1518 return ptr;
1519}
1520
629/*******************************************************************************/ 1521/*******************************************************************************/
630/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1522/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
631 1523
632/* basically, everything uses "ieee pure-endian" floating point numbers */ 1524/* basically, everything uses "ieee pure-endian" floating point numbers */
633/* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1525/* the only noteworthy exception is ancient armle, which uses order 43218765 */
634#if 0 \ 1526#if 0 \
635 || __i386 || __i386__ \ 1527 || __i386 || __i386__ \
636 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \ 1528 || ECB_GCC_AMD64 \
637 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ 1529 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
638 || defined __s390__ || defined __s390x__ \ 1530 || defined __s390__ || defined __s390x__ \
639 || defined __mips__ \ 1531 || defined __mips__ \
640 || defined __alpha__ \ 1532 || defined __alpha__ \
641 || defined __hppa__ \ 1533 || defined __hppa__ \
642 || defined __ia64__ \ 1534 || defined __ia64__ \
643 || defined __m68k__ \ 1535 || defined __m68k__ \
644 || defined __m88k__ \ 1536 || defined __m88k__ \
645 || defined __sh__ \ 1537 || defined __sh__ \
646 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \ 1538 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
647 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1539 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
648 || defined __aarch64__ 1540 || defined __aarch64__
649 #define ECB_STDFP 1 1541 #define ECB_STDFP 1
650 #include <string.h> /* for memcpy */
651#else 1542#else
652 #define ECB_STDFP 0 1543 #define ECB_STDFP 0
653#endif 1544#endif
654 1545
655#ifndef ECB_NO_LIBM 1546#ifndef ECB_NO_LIBM
667 #define ECB_NAN NAN 1558 #define ECB_NAN NAN
668 #else 1559 #else
669 #define ECB_NAN ECB_INFINITY 1560 #define ECB_NAN ECB_INFINITY
670 #endif 1561 #endif
671 1562
672 /* converts an ieee half/binary16 to a float */ 1563 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
673 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const; 1564 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
674 ecb_function_ float 1565 #define ecb_frexpf(x,e) frexpf ((x), (e))
675 ecb_binary16_to_float (uint16_t x) 1566 #else
676 { 1567 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
677 int e = (x >> 10) & 0x1f; 1568 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
678 int m = x & 0x3ff; 1569 #endif
679 float r;
680
681 if (!e ) r = ldexpf (m , -24);
682 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
683 else if (m ) r = ECB_NAN;
684 else r = ECB_INFINITY;
685
686 return x & 0x8000 ? -r : r;
687 }
688 1570
689 /* convert a float to ieee single/binary32 */ 1571 /* convert a float to ieee single/binary32 */
690 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const; 1572 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
691 ecb_function_ uint32_t 1573 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x)
692 ecb_float_to_binary32 (float x)
693 { 1574 {
694 uint32_t r; 1575 uint32_t r;
695 1576
696 #if ECB_STDFP 1577 #if ECB_STDFP
697 memcpy (&r, &x, 4); 1578 memcpy (&r, &x, 4);
703 if (x == 0e0f ) return 0x00000000U; 1584 if (x == 0e0f ) return 0x00000000U;
704 if (x > +3.40282346638528860e+38f) return 0x7f800000U; 1585 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
705 if (x < -3.40282346638528860e+38f) return 0xff800000U; 1586 if (x < -3.40282346638528860e+38f) return 0xff800000U;
706 if (x != x ) return 0x7fbfffffU; 1587 if (x != x ) return 0x7fbfffffU;
707 1588
708 m = frexpf (x, &e) * 0x1000000U; 1589 m = ecb_frexpf (x, &e) * 0x1000000U;
709 1590
710 r = m & 0x80000000U; 1591 r = m & 0x80000000U;
711 1592
712 if (r) 1593 if (r)
713 m = -m; 1594 m = -m;
725 1606
726 return r; 1607 return r;
727 } 1608 }
728 1609
729 /* converts an ieee single/binary32 to a float */ 1610 /* converts an ieee single/binary32 to a float */
730 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const; 1611 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
731 ecb_function_ float 1612 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x)
732 ecb_binary32_to_float (uint32_t x)
733 { 1613 {
734 float r; 1614 float r;
735 1615
736 #if ECB_STDFP 1616 #if ECB_STDFP
737 memcpy (&r, &x, 4); 1617 memcpy (&r, &x, 4);
746 x |= 0x800000U; 1626 x |= 0x800000U;
747 else 1627 else
748 e = 1; 1628 e = 1;
749 1629
750 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ 1630 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
751 r = ldexpf (x * (0.5f / 0x800000U), e - 126); 1631 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
752 1632
753 r = neg ? -r : r; 1633 r = neg ? -r : r;
754 #endif 1634 #endif
755 1635
756 return r; 1636 return r;
757 } 1637 }
758 1638
759 /* convert a double to ieee double/binary64 */ 1639 /* convert a double to ieee double/binary64 */
760 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const; 1640 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
761 ecb_function_ uint64_t 1641 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x)
762 ecb_double_to_binary64 (double x)
763 { 1642 {
764 uint64_t r; 1643 uint64_t r;
765 1644
766 #if ECB_STDFP 1645 #if ECB_STDFP
767 memcpy (&r, &x, 8); 1646 memcpy (&r, &x, 8);
795 1674
796 return r; 1675 return r;
797 } 1676 }
798 1677
799 /* converts an ieee double/binary64 to a double */ 1678 /* converts an ieee double/binary64 to a double */
800 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const; 1679 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
801 ecb_function_ double 1680 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x)
802 ecb_binary64_to_double (uint64_t x)
803 { 1681 {
804 double r; 1682 double r;
805 1683
806 #if ECB_STDFP 1684 #if ECB_STDFP
807 memcpy (&r, &x, 8); 1685 memcpy (&r, &x, 8);
824 #endif 1702 #endif
825 1703
826 return r; 1704 return r;
827 } 1705 }
828 1706
829#endif 1707 /* convert a float to ieee half/binary16 */
1708 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1709 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x)
1710 {
1711 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1712 }
830 1713
831#endif 1714 /* convert an ieee half/binary16 to float */
1715 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1716 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x)
1717 {
1718 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1719 }
832 1720
1721#endif
1722
1723#endif
1724

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines