ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.166 by root, Sun Aug 9 00:10:21 2015 UTC vs.
Revision 1.205 by root, Fri Mar 25 14:21:14 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010004 45#define ECB_VERSION 0x0001000c
46 46
47#ifdef _WIN32 47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
48 typedef signed char int8_t; 50 typedef signed char int8_t;
49 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
50 typedef signed short int16_t; 54 typedef signed short int16_t;
51 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
52 typedef signed int int32_t; 58 typedef signed int int32_t;
53 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
54 #if __GNUC__ 62 #if __GNUC__
55 typedef signed long long int64_t; 63 typedef signed long long int64_t;
56 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
57 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
58 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
59 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
60 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
61 #ifdef _WIN64 71 #ifdef _WIN64
62 #define ECB_PTRSIZE 8 72 #define ECB_PTRSIZE 8
63 typedef uint64_t uintptr_t; 73 typedef uint64_t uintptr_t;
64 typedef int64_t intptr_t; 74 typedef int64_t intptr_t;
65 #else 75 #else
67 typedef uint32_t uintptr_t; 77 typedef uint32_t uintptr_t;
68 typedef int32_t intptr_t; 78 typedef int32_t intptr_t;
69 #endif 79 #endif
70#else 80#else
71 #include <inttypes.h> 81 #include <inttypes.h>
72 #if UINTMAX_MAX > 0xffffffffU 82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
73 #define ECB_PTRSIZE 8 83 #define ECB_PTRSIZE 8
74 #else 84 #else
75 #define ECB_PTRSIZE 4 85 #define ECB_PTRSIZE 4
76 #endif 86 #endif
77#endif 87#endif
78 88
79#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) 89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
80#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) 90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
81 99
82/* work around x32 idiocy by defining proper macros */ 100/* work around x32 idiocy by defining proper macros */
83#if ECB_GCC_AMD64 || ECB_MSVC_AMD64 101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
84 #if _ILP32 102 #if _ILP32
85 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
86 #else 104 #else
87 #define ECB_AMD64 1 105 #define ECB_AMD64 1
88 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
89#endif 113#endif
90 114
91/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
92 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
93 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
115 #define ECB_CLANG_EXTENSION(x) 0 139 #define ECB_CLANG_EXTENSION(x) 0
116#endif 140#endif
117 141
118#define ECB_CPP (__cplusplus+0) 142#define ECB_CPP (__cplusplus+0)
119#define ECB_CPP11 (__cplusplus >= 201103L) 143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
120 146
121#if ECB_CPP 147#if ECB_CPP
122 #define ECB_C 0 148 #define ECB_C 0
123 #define ECB_STDC_VERSION 0 149 #define ECB_STDC_VERSION 0
124#else 150#else
126 #define ECB_STDC_VERSION __STDC_VERSION__ 152 #define ECB_STDC_VERSION __STDC_VERSION__
127#endif 153#endif
128 154
129#define ECB_C99 (ECB_STDC_VERSION >= 199901L) 155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
130#define ECB_C11 (ECB_STDC_VERSION >= 201112L) 156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
131 158
132#if ECB_CPP 159#if ECB_CPP
133 #define ECB_EXTERN_C extern "C" 160 #define ECB_EXTERN_C extern "C"
134 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
135 #define ECB_EXTERN_C_END } 162 #define ECB_EXTERN_C_END }
155/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ 182/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
156#if __xlC__ && ECB_CPP 183#if __xlC__ && ECB_CPP
157 #include <builtins.h> 184 #include <builtins.h>
158#endif 185#endif
159 186
187#if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189#endif
190
160#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
161 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
162 #if __i386 || __i386__ 194 #if __i386 || __i386__
163 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
164 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
165 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
166 #elif ECB_GCC_AMD64 198 #elif ECB_GCC_AMD64
167 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
168 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
169 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
170 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
171 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
172 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
173 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
174 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
175 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
176 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
177 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
178 #elif __aarch64__ 218 #elif __aarch64__
179 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
180 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) 220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
181 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
208 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
209 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
210 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
211 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
212 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
213 255
214 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
215 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
216 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
217 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
218 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
219 263
220 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
221 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
222 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
223 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
233 #elif defined _WIN32 277 #elif defined _WIN32
234 #include <WinNT.h> 278 #include <WinNT.h>
235 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
236 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
237 #include <mbarrier.h> 281 #include <mbarrier.h>
238 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
239 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
240 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
241 #elif __xlC__ 286 #elif __xlC__
242 #define ECB_MEMORY_FENCE __sync () 287 #define ECB_MEMORY_FENCE __sync ()
243 #endif 288 #endif
244#endif 289#endif
245 290
246#ifndef ECB_MEMORY_FENCE 291#ifndef ECB_MEMORY_FENCE
247 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
248 /* we assume that these memory fences work on all variables/all memory accesses, */ 293 /* we assume that these memory fences work on all variables/all memory accesses, */
249 /* not just C11 atomics and atomic accesses */ 294 /* not just C11 atomics and atomic accesses */
250 #include <stdatomic.h> 295 #include <stdatomic.h>
251 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
252 /* any fence other than seq_cst, which isn't very efficient for us. */
253 /* Why that is, we don't know - either the C11 memory model is quite useless */
254 /* for most usages, or gcc and clang have a bug */
255 /* I *currently* lean towards the latter, and inefficiently implement */
256 /* all three of ecb's fences as a seq_cst fence */
257 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
258 /* for all __atomic_thread_fence's except seq_cst */
259 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
260 #endif 299 #endif
261#endif 300#endif
262 301
263#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
264 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
284 323
285#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
286 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
287#endif 326#endif
288 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
289/*****************************************************************************/ 332/*****************************************************************************/
290 333
291#if ECB_CPP 334#if ECB_CPP
292 #define ecb_inline static inline 335 #define ecb_inline static inline
293#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
423#else 466#else
424 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); 467 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
425 ecb_function_ ecb_const int 468 ecb_function_ ecb_const int
426 ecb_ctz32 (uint32_t x) 469 ecb_ctz32 (uint32_t x)
427 { 470 {
471#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
472 unsigned long r;
473 _BitScanForward (&r, x);
474 return (int)r;
475#else
428 int r = 0; 476 int r = 0;
477
478 /* todo: use david seal's algorithm */
429 479
430 x &= ~x + 1; /* this isolates the lowest bit */ 480 x &= ~x + 1; /* this isolates the lowest bit */
431 481
432#if ECB_branchless_on_i386 482#if ECB_branchless_on_i386
433 r += !!(x & 0xaaaaaaaa) << 0; 483 r += !!(x & 0xaaaaaaaa) << 0;
442 if (x & 0xff00ff00) r += 8; 492 if (x & 0xff00ff00) r += 8;
443 if (x & 0xffff0000) r += 16; 493 if (x & 0xffff0000) r += 16;
444#endif 494#endif
445 495
446 return r; 496 return r;
497#endif
447 } 498 }
448 499
449 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); 500 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
450 ecb_function_ ecb_const int 501 ecb_function_ ecb_const int
451 ecb_ctz64 (uint64_t x) 502 ecb_ctz64 (uint64_t x)
452 { 503 {
504#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
505 unsigned long r;
506 _BitScanForward64 (&r, x);
507 return (int)r;
508#else
453 int shift = x & 0xffffffffU ? 0 : 32; 509 int shift = x & 0xffffffff ? 0 : 32;
454 return ecb_ctz32 (x >> shift) + shift; 510 return ecb_ctz32 (x >> shift) + shift;
511#endif
455 } 512 }
456 513
457 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); 514 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
458 ecb_function_ ecb_const int 515 ecb_function_ ecb_const int
459 ecb_popcount32 (uint32_t x) 516 ecb_popcount32 (uint32_t x)
467 } 524 }
468 525
469 ecb_function_ ecb_const int ecb_ld32 (uint32_t x); 526 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
470 ecb_function_ ecb_const int ecb_ld32 (uint32_t x) 527 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
471 { 528 {
529#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
530 unsigned long r;
531 _BitScanReverse (&r, x);
532 return (int)r;
533#else
472 int r = 0; 534 int r = 0;
473 535
474 if (x >> 16) { x >>= 16; r += 16; } 536 if (x >> 16) { x >>= 16; r += 16; }
475 if (x >> 8) { x >>= 8; r += 8; } 537 if (x >> 8) { x >>= 8; r += 8; }
476 if (x >> 4) { x >>= 4; r += 4; } 538 if (x >> 4) { x >>= 4; r += 4; }
477 if (x >> 2) { x >>= 2; r += 2; } 539 if (x >> 2) { x >>= 2; r += 2; }
478 if (x >> 1) { r += 1; } 540 if (x >> 1) { r += 1; }
479 541
480 return r; 542 return r;
543#endif
481 } 544 }
482 545
483 ecb_function_ ecb_const int ecb_ld64 (uint64_t x); 546 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
484 ecb_function_ ecb_const int ecb_ld64 (uint64_t x) 547 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
485 { 548 {
549#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
550 unsigned long r;
551 _BitScanReverse64 (&r, x);
552 return (int)r;
553#else
486 int r = 0; 554 int r = 0;
487 555
488 if (x >> 32) { x >>= 32; r += 32; } 556 if (x >> 32) { x >>= 32; r += 32; }
489 557
490 return r + ecb_ld32 (x); 558 return r + ecb_ld32 (x);
559#endif
491 } 560 }
492#endif 561#endif
493 562
494ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); 563ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
495ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } 564ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
524 x = ( x >> 16 ) | ( x << 16); 593 x = ( x >> 16 ) | ( x << 16);
525 594
526 return x; 595 return x;
527} 596}
528 597
529/* popcount64 is only available on 64 bit cpus as gcc builtin */
530/* so for this version we are lazy */
531ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); 598ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
532ecb_function_ ecb_const int 599ecb_function_ ecb_const int
533ecb_popcount64 (uint64_t x) 600ecb_popcount64 (uint64_t x)
534{ 601{
602 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
603 /* also, gcc/clang make this surprisingly difficult to use */
604#if __LP64__ && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
605 return __builtin_popcountl (x);
606#else
535 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 607 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
608#endif
536} 609}
537 610
538ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); 611ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
539ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); 612ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
540ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); 613ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
542ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); 615ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
543ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); 616ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
544ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); 617ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
545ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); 618ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
546 619
547ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 620ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
548ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 621ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
549ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 622ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
550ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 623ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
551ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 624ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
552ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 625ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
553ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 626ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
554ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 627ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
628
629#if ECB_CPP
630
631inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
632inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
633inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
634inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
635
636inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
637inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
638inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
639inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
640
641inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
642inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
643inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
644inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
645
646inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
647inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
648inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
649inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
650
651inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
652inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
653inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
654
655inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
656inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
657inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
658inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
659
660inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
661inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
662inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
663inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
664
665#endif
555 666
556#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 667#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
557 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) 668 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
558 #define ecb_bswap16(x) __builtin_bswap16 (x) 669 #define ecb_bswap16(x) __builtin_bswap16 (x)
559 #else 670 #else
598#endif 709#endif
599 710
600/* try to tell the compiler that some condition is definitely true */ 711/* try to tell the compiler that some condition is definitely true */
601#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 712#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
602 713
603ecb_inline ecb_const unsigned char ecb_byteorder_helper (void); 714ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
604ecb_inline ecb_const unsigned char 715ecb_inline ecb_const uint32_t
605ecb_byteorder_helper (void) 716ecb_byteorder_helper (void)
606{ 717{
607 /* the union code still generates code under pressure in gcc, */ 718 /* the union code still generates code under pressure in gcc, */
608 /* but less than using pointers, and always seems to */ 719 /* but less than using pointers, and always seems to */
609 /* successfully return a constant. */ 720 /* successfully return a constant. */
610 /* the reason why we have this horrible preprocessor mess */ 721 /* the reason why we have this horrible preprocessor mess */
611 /* is to avoid it in all cases, at least on common architectures */ 722 /* is to avoid it in all cases, at least on common architectures */
612 /* or when using a recent enough gcc version (>= 4.6) */ 723 /* or when using a recent enough gcc version (>= 4.6) */
613#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
614 return 0x44;
615#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 724#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
725 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
726 #define ECB_LITTLE_ENDIAN 1
616 return 0x44; 727 return 0x44332211;
617#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 728#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
729 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
730 #define ECB_BIG_ENDIAN 1
618 return 0x11; 731 return 0x11223344;
619#else 732#else
620 union 733 union
621 { 734 {
735 uint8_t c[4];
622 uint32_t i; 736 uint32_t u;
623 uint8_t c;
624 } u = { 0x11223344 }; 737 } u = { 0x11, 0x22, 0x33, 0x44 };
625 return u.c; 738 return u.u;
626#endif 739#endif
627} 740}
628 741
629ecb_inline ecb_const ecb_bool ecb_big_endian (void); 742ecb_inline ecb_const ecb_bool ecb_big_endian (void);
630ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 743ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
631ecb_inline ecb_const ecb_bool ecb_little_endian (void); 744ecb_inline ecb_const ecb_bool ecb_little_endian (void);
632ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 745ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
746
747/*****************************************************************************/
748/* unaligned load/store */
749
750ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
751ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
752ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
753
754ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
755ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
756ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
757
758ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
759ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
760ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
761
762ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
763ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
764ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
765
766ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
767ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
768ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
769
770ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
771ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
772ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
773
774ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
775ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
776ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
777
778ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
779ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
780ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
781
782ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
783ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
784ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
785
786ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
787ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
788ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
789
790#if ECB_CPP
791
792inline uint8_t ecb_bswap (uint8_t v) { return v; }
793inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
794inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
795inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
796
797template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
798template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
799template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
800template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
801template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
802template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
803template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
804template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
805
806template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
807template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
808template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
809template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
810template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
811template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
812template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
813template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
814
815#endif
816
817/*****************************************************************************/
818/* pointer/integer hashing */
819
820/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
821ecb_function_ uint32_t ecb_mix32 (uint32_t v);
822ecb_function_ uint32_t ecb_mix32 (uint32_t v)
823{
824 v ^= v >> 16; v *= 0x7feb352dU;
825 v ^= v >> 15; v *= 0x846ca68bU;
826 v ^= v >> 16;
827 return v;
828}
829
830ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
831ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
832{
833 v ^= v >> 16 ; v *= 0x43021123U;
834 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
835 v ^= v >> 16 ;
836 return v;
837}
838
839/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
840ecb_function_ uint64_t ecb_mix64 (uint64_t v);
841ecb_function_ uint64_t ecb_mix64 (uint64_t v)
842{
843 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
844 v ^= v >> 27; v *= 0x94d049bb133111ebU;
845 v ^= v >> 31;
846 return v;
847}
848
849ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
850ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
851{
852 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
853 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
854 v ^= v >> 30 ^ v >> 60;
855 return v;
856}
857
858ecb_function_ uintptr_t ecb_ptrmix (void *p);
859ecb_function_ uintptr_t ecb_ptrmix (void *p)
860{
861 #if ECB_PTRSIZE <= 4
862 return ecb_mix32 ((uint32_t)p);
863 #else
864 return ecb_mix64 ((uint64_t)p);
865 #endif
866}
867
868ecb_function_ void *ecb_ptrunmix (uintptr_t v);
869ecb_function_ void *ecb_ptrunmix (uintptr_t v)
870{
871 #if ECB_PTRSIZE <= 4
872 return (void *)ecb_unmix32 (v);
873 #else
874 return (void *)ecb_unmix64 (v);
875 #endif
876}
877
878#if ECB_CPP
879
880template<typename T>
881inline uintptr_t ecb_ptrmix (T *p)
882{
883 return ecb_ptrmix (static_cast<void *>(p));
884}
885
886template<typename T>
887inline T *ecb_ptrunmix (uintptr_t v)
888{
889 return static_cast<T *>(ecb_ptrunmix (v));
890}
891
892#endif
893
894/*****************************************************************************/
895/* gray code */
896
897ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
898ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
899ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
900ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
901
902ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
903{
904 g ^= g >> 1;
905 g ^= g >> 2;
906 g ^= g >> 4;
907
908 return g;
909}
910
911ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
912{
913 g ^= g >> 1;
914 g ^= g >> 2;
915 g ^= g >> 4;
916 g ^= g >> 8;
917
918 return g;
919}
920
921ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
922{
923 g ^= g >> 1;
924 g ^= g >> 2;
925 g ^= g >> 4;
926 g ^= g >> 8;
927 g ^= g >> 16;
928
929 return g;
930}
931
932ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
933{
934 g ^= g >> 1;
935 g ^= g >> 2;
936 g ^= g >> 4;
937 g ^= g >> 8;
938 g ^= g >> 16;
939 g ^= g >> 32;
940
941 return g;
942}
943
944#if ECB_CPP
945
946ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
947ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
948ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
949ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
950
951ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
952ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
953ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
954ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
955
956#endif
957
958/*****************************************************************************/
959/* 2d hilbert curves */
960
961/* algorithm from the book Hacker's Delight, modified to not */
962/* run into undefined behaviour for n==16 */
963static uint32_t
964ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
965{
966 uint32_t comp, swap, cs, t, sr;
967
968 /* pad s on the left (unused) bits with 01 (no change groups) */
969 s |= 0x55555555U << n << n;
970 /* "s shift right" */
971 sr = (s >> 1) & 0x55555555U;
972 /* compute complement and swap info in two-bit groups */
973 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
974
975 /* parallel prefix xor op to propagate both complement
976 * and swap info together from left to right (there is
977 * no step "cs ^= cs >> 1", so in effect it computes
978 * two independent parallel prefix operations on two
979 * interleaved sets of sixteen bits).
980 */
981 cs ^= cs >> 2;
982 cs ^= cs >> 4;
983 cs ^= cs >> 8;
984 cs ^= cs >> 16;
985
986 /* separate swap and complement bits */
987 swap = cs & 0x55555555U;
988 comp = (cs >> 1) & 0x55555555U;
989
990 /* calculate coordinates in odd and even bit positions */
991 t = (s & swap) ^ comp;
992 s = s ^ sr ^ t ^ (t << 1);
993
994 /* unpad/clear out any junk on the left */
995 s = s & ((1 << n << n) - 1);
996
997 /* Now "unshuffle" to separate the x and y bits. */
998 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
999 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1000 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1001 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1002
1003 /* now s contains two 16-bit coordinates */
1004 return s;
1005}
1006
1007/* 64 bit, a straightforward extension to the 32 bit case */
1008static uint64_t
1009ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1010{
1011 uint64_t comp, swap, cs, t, sr;
1012
1013 /* pad s on the left (unused) bits with 01 (no change groups) */
1014 s |= 0x5555555555555555U << n << n;
1015 /* "s shift right" */
1016 sr = (s >> 1) & 0x5555555555555555U;
1017 /* compute complement and swap info in two-bit groups */
1018 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1019
1020 /* parallel prefix xor op to propagate both complement
1021 * and swap info together from left to right (there is
1022 * no step "cs ^= cs >> 1", so in effect it computes
1023 * two independent parallel prefix operations on two
1024 * interleaved sets of thirty-two bits).
1025 */
1026 cs ^= cs >> 2;
1027 cs ^= cs >> 4;
1028 cs ^= cs >> 8;
1029 cs ^= cs >> 16;
1030 cs ^= cs >> 32;
1031
1032 /* separate swap and complement bits */
1033 swap = cs & 0x5555555555555555U;
1034 comp = (cs >> 1) & 0x5555555555555555U;
1035
1036 /* calculate coordinates in odd and even bit positions */
1037 t = (s & swap) ^ comp;
1038 s = s ^ sr ^ t ^ (t << 1);
1039
1040 /* unpad/clear out any junk on the left */
1041 s = s & ((1 << n << n) - 1);
1042
1043 /* Now "unshuffle" to separate the x and y bits. */
1044 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1045 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1046 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1047 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1048 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1049
1050 /* now s contains two 32-bit coordinates */
1051 return s;
1052}
1053
1054/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1055/* is given in https://doi.org/10.1002/spe.4380160103 */
1056/* this has been slightly improved over the original version */
1057ecb_function_ uint32_t
1058ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1059{
1060 uint32_t row;
1061 uint32_t state = 0;
1062 uint32_t s = 0;
1063
1064 do
1065 {
1066 --n;
1067
1068 row = 4 * state
1069 | (2 & (xy >> n >> 15))
1070 | (1 & (xy >> n ));
1071
1072 /* these funky constants are lookup tables for two-bit values */
1073 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1074 state = (0x8fe65831U >> 2 * row) & 3;
1075 }
1076 while (n > 0);
1077
1078 return s;
1079}
1080
1081/* 64 bit, essentially the same as 32 bit */
1082ecb_function_ uint64_t
1083ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1084{
1085 uint32_t row;
1086 uint32_t state = 0;
1087 uint64_t s = 0;
1088
1089 do
1090 {
1091 --n;
1092
1093 row = 4 * state
1094 | (2 & (xy >> n >> 31))
1095 | (1 & (xy >> n ));
1096
1097 /* these funky constants are lookup tables for two-bit values */
1098 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1099 state = (0x8fe65831U >> 2 * row) & 3;
1100 }
1101 while (n > 0);
1102
1103 return s;
1104}
1105
1106/*****************************************************************************/
1107/* division */
633 1108
634#if ECB_GCC_VERSION(3,0) || ECB_C99 1109#if ECB_GCC_VERSION(3,0) || ECB_C99
1110 /* C99 tightened the definition of %, so we can use a more efficient version */
635 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1111 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
636#else 1112#else
637 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1113 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
638#endif 1114#endif
639 1115
651#else 1127#else
652 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1128 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
653 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1129 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
654#endif 1130#endif
655 1131
1132/*****************************************************************************/
1133/* array length */
1134
656#if ecb_cplusplus_does_not_suck 1135#if ecb_cplusplus_does_not_suck
657 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1136 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
658 template<typename T, int N> 1137 template<typename T, int N>
659 static inline int ecb_array_length (const T (&arr)[N]) 1138 static inline int ecb_array_length (const T (&arr)[N])
660 { 1139 {
661 return N; 1140 return N;
662 } 1141 }
663#else 1142#else
664 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1143 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
665#endif 1144#endif
1145
1146/*****************************************************************************/
1147/* IEEE 754-2008 half float conversions */
1148
1149ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1150ecb_function_ ecb_const uint32_t
1151ecb_binary16_to_binary32 (uint32_t x)
1152{
1153 unsigned int s = (x & 0x8000) << (31 - 15);
1154 int e = (x >> 10) & 0x001f;
1155 unsigned int m = x & 0x03ff;
1156
1157 if (ecb_expect_false (e == 31))
1158 /* infinity or NaN */
1159 e = 255 - (127 - 15);
1160 else if (ecb_expect_false (!e))
1161 {
1162 if (ecb_expect_true (!m))
1163 /* zero, handled by code below by forcing e to 0 */
1164 e = 0 - (127 - 15);
1165 else
1166 {
1167 /* subnormal, renormalise */
1168 unsigned int s = 10 - ecb_ld32 (m);
1169
1170 m = (m << s) & 0x3ff; /* mask implicit bit */
1171 e -= s - 1;
1172 }
1173 }
1174
1175 /* e and m now are normalised, or zero, (or inf or nan) */
1176 e += 127 - 15;
1177
1178 return s | (e << 23) | (m << (23 - 10));
1179}
1180
1181ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1182ecb_function_ ecb_const uint16_t
1183ecb_binary32_to_binary16 (uint32_t x)
1184{
1185 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1186 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1187 unsigned int m = x & 0x007fffff;
1188
1189 x &= 0x7fffffff;
1190
1191 /* if it's within range of binary16 normals, use fast path */
1192 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1193 {
1194 /* mantissa round-to-even */
1195 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1196
1197 /* handle overflow */
1198 if (ecb_expect_false (m >= 0x00800000))
1199 {
1200 m >>= 1;
1201 e += 1;
1202 }
1203
1204 return s | (e << 10) | (m >> (23 - 10));
1205 }
1206
1207 /* handle large numbers and infinity */
1208 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1209 return s | 0x7c00;
1210
1211 /* handle zero, subnormals and small numbers */
1212 if (ecb_expect_true (x < 0x38800000))
1213 {
1214 /* zero */
1215 if (ecb_expect_true (!x))
1216 return s;
1217
1218 /* handle subnormals */
1219
1220 /* too small, will be zero */
1221 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1222 return s;
1223
1224 m |= 0x00800000; /* make implicit bit explicit */
1225
1226 /* very tricky - we need to round to the nearest e (+10) bit value */
1227 {
1228 unsigned int bits = 14 - e;
1229 unsigned int half = (1 << (bits - 1)) - 1;
1230 unsigned int even = (m >> bits) & 1;
1231
1232 /* if this overflows, we will end up with a normalised number */
1233 m = (m + half + even) >> bits;
1234 }
1235
1236 return s | m;
1237 }
1238
1239 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1240 m >>= 13;
1241
1242 return s | 0x7c00 | m | !m;
1243}
1244
1245/*******************************************************************************/
1246/* fast integer to ascii */
1247
1248/*
1249 * This code is pretty complicated because it is general. The idea behind it,
1250 * however, is pretty simple: first, the number is multiplied with a scaling
1251 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1252 * number with the first digit in the upper bits.
1253 * Then this digit is converted to text and masked out. The resulting number
1254 * is then multiplied by 10, by multiplying the fixed point representation
1255 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1256 * format becomes 5.27, 6.26 and so on.
1257 * The rest involves only advancing the pointer if we already generated a
1258 * non-zero digit, so leading zeroes are overwritten.
1259 */
1260
1261/* simply return a mask with "bits" bits set */
1262#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1263
1264/* oputput a single digit. maskvalue is 10**digitidx */
1265#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1266 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1267 { \
1268 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1269 *ptr = digit + '0'; /* output it */ \
1270 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1271 ptr += nz; /* output digit only if non-zero digit seen */ \
1272 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1273 }
1274
1275/* convert integer to fixed point format and multiply out digits, highest first */
1276/* requires magic constants: max. digits and number of bits after the decimal point */
1277#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1278ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1279{ \
1280 char nz = lz; /* non-zero digit seen? */ \
1281 /* convert to x.bits fixed-point */ \
1282 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1283 /* output up to 10 digits */ \
1284 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1285 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1286 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1287 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1288 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1289 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1290 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1291 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1292 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1293 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1294 return ptr; \
1295}
1296
1297/* predefined versions of the above, for various digits */
1298/* ecb_i2a_xN = almost N digits, limit defined by macro */
1299/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1300/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1301
1302/* non-leading-zero versions, limited range */
1303#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1304#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1305ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1306ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1307
1308/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1309ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1310ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1311ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1312ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1313ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1314ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1315ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1316ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1317
1318/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1319ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1320ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1321ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1322ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1323ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1324ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1325ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1326ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1327
1328#define ECB_I2A_I32_DIGITS 11
1329#define ECB_I2A_U32_DIGITS 10
1330#define ECB_I2A_I64_DIGITS 20
1331#define ECB_I2A_U64_DIGITS 21
1332#define ECB_I2A_MAX_DIGITS 21
1333
1334ecb_inline char *
1335ecb_i2a_u32 (char *ptr, uint32_t u)
1336{
1337 #if ECB_64BIT_NATIVE
1338 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1339 ptr = ecb_i2a_x10 (ptr, u);
1340 else /* x10 almost, but not fully, covers 32 bit */
1341 {
1342 uint32_t u1 = u % 1000000000;
1343 uint32_t u2 = u / 1000000000;
1344
1345 *ptr++ = u2 + '0';
1346 ptr = ecb_i2a_09 (ptr, u1);
1347 }
1348 #else
1349 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1350 ecb_i2a_x5 (ptr, u);
1351 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1352 {
1353 uint32_t u1 = u % 10000;
1354 uint32_t u2 = u / 10000;
1355
1356 ptr = ecb_i2a_x5 (ptr, u2);
1357 ptr = ecb_i2a_04 (ptr, u1);
1358 }
1359 else
1360 {
1361 uint32_t u1 = u % 10000;
1362 uint32_t ua = u / 10000;
1363 uint32_t u2 = ua % 10000;
1364 uint32_t u3 = ua / 10000;
1365
1366 ptr = ecb_i2a_2 (ptr, u3);
1367 ptr = ecb_i2a_04 (ptr, u2);
1368 ptr = ecb_i2a_04 (ptr, u1);
1369 }
1370 #endif
1371
1372 return ptr;
1373}
1374
1375ecb_inline char *
1376ecb_i2a_i32 (char *ptr, int32_t v)
1377{
1378 *ptr = '-'; ptr += v < 0;
1379 uint32_t u = v < 0 ? -(uint32_t)v : v;
1380
1381 #if ECB_64BIT_NATIVE
1382 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1383 #else
1384 ptr = ecb_i2a_u32 (ptr, u);
1385 #endif
1386
1387 return ptr;
1388}
1389
1390ecb_inline char *
1391ecb_i2a_u64 (char *ptr, uint64_t u)
1392{
1393 #if ECB_64BIT_NATIVE
1394 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1395 ptr = ecb_i2a_x10 (ptr, u);
1396 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1397 {
1398 uint64_t u1 = u % 1000000000;
1399 uint64_t u2 = u / 1000000000;
1400
1401 ptr = ecb_i2a_x10 (ptr, u2);
1402 ptr = ecb_i2a_09 (ptr, u1);
1403 }
1404 else
1405 {
1406 uint64_t u1 = u % 1000000000;
1407 uint64_t ua = u / 1000000000;
1408 uint64_t u2 = ua % 1000000000;
1409 uint64_t u3 = ua / 1000000000;
1410
1411 ptr = ecb_i2a_2 (ptr, u3);
1412 ptr = ecb_i2a_09 (ptr, u2);
1413 ptr = ecb_i2a_09 (ptr, u1);
1414 }
1415 #else
1416 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1417 ptr = ecb_i2a_x5 (ptr, u);
1418 else
1419 {
1420 uint64_t u1 = u % 10000;
1421 uint64_t u2 = u / 10000;
1422
1423 ptr = ecb_i2a_u64 (ptr, u2);
1424 ptr = ecb_i2a_04 (ptr, u1);
1425 }
1426 #endif
1427
1428 return ptr;
1429}
1430
1431ecb_inline char *
1432ecb_i2a_i64 (char *ptr, int64_t v)
1433{
1434 *ptr = '-'; ptr += v < 0;
1435 uint64_t u = v < 0 ? -(uint64_t)v : v;
1436
1437 #if ECB_64BIT_NATIVE
1438 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1439 ptr = ecb_i2a_x10 (ptr, u);
1440 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1441 {
1442 uint64_t u1 = u % 1000000000;
1443 uint64_t u2 = u / 1000000000;
1444
1445 ptr = ecb_i2a_x10 (ptr, u2);
1446 ptr = ecb_i2a_09 (ptr, u1);
1447 }
1448 else
1449 {
1450 uint64_t u1 = u % 1000000000;
1451 uint64_t ua = u / 1000000000;
1452 uint64_t u2 = ua % 1000000000;
1453 uint64_t u3 = ua / 1000000000;
1454
1455 /* 2**31 is 19 digits, so the top is exactly one digit */
1456 *ptr++ = u3 + '0';
1457 ptr = ecb_i2a_09 (ptr, u2);
1458 ptr = ecb_i2a_09 (ptr, u1);
1459 }
1460 #else
1461 ptr = ecb_i2a_u64 (ptr, u);
1462 #endif
1463
1464 return ptr;
1465}
666 1466
667/*******************************************************************************/ 1467/*******************************************************************************/
668/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1468/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
669 1469
670/* basically, everything uses "ieee pure-endian" floating point numbers */ 1470/* basically, everything uses "ieee pure-endian" floating point numbers */
683 || defined __sh__ \ 1483 || defined __sh__ \
684 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ 1484 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
685 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1485 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
686 || defined __aarch64__ 1486 || defined __aarch64__
687 #define ECB_STDFP 1 1487 #define ECB_STDFP 1
688 #include <string.h> /* for memcpy */
689#else 1488#else
690 #define ECB_STDFP 0 1489 #define ECB_STDFP 0
691#endif 1490#endif
692 1491
693#ifndef ECB_NO_LIBM 1492#ifndef ECB_NO_LIBM
713 #else 1512 #else
714 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) 1513 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
715 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) 1514 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
716 #endif 1515 #endif
717 1516
718 /* converts an ieee half/binary16 to a float */
719 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
720 ecb_function_ ecb_const float
721 ecb_binary16_to_float (uint16_t x)
722 {
723 int e = (x >> 10) & 0x1f;
724 int m = x & 0x3ff;
725 float r;
726
727 if (!e ) r = ecb_ldexpf (m , -24);
728 else if (e != 31) r = ecb_ldexpf (m + 0x400, e - 25);
729 else if (m ) r = ECB_NAN;
730 else r = ECB_INFINITY;
731
732 return x & 0x8000 ? -r : r;
733 }
734
735 /* convert a float to ieee single/binary32 */ 1517 /* convert a float to ieee single/binary32 */
736 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); 1518 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
737 ecb_function_ ecb_const uint32_t 1519 ecb_function_ ecb_const uint32_t
738 ecb_float_to_binary32 (float x) 1520 ecb_float_to_binary32 (float x)
739 { 1521 {
870 #endif 1652 #endif
871 1653
872 return r; 1654 return r;
873 } 1655 }
874 1656
875#endif 1657 /* convert a float to ieee half/binary16 */
1658 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1659 ecb_function_ ecb_const uint16_t
1660 ecb_float_to_binary16 (float x)
1661 {
1662 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1663 }
876 1664
877#endif 1665 /* convert an ieee half/binary16 to float */
1666 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1667 ecb_function_ ecb_const float
1668 ecb_binary16_to_float (uint16_t x)
1669 {
1670 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1671 }
878 1672
1673#endif
1674
1675#endif
1676

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines