ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.186 by root, Tue Jan 21 23:51:21 2020 UTC vs.
Revision 1.202 by root, Wed Mar 23 09:58:06 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010008 45#define ECB_VERSION 0x0001000b
46 46
47#include <string.h> /* for memcpy */ 47#include <string.h> /* for memcpy */
48 48
49#ifdef _WIN32 49#if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t; 50 typedef signed char int8_t;
51 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t; 52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t; 53 typedef unsigned char uint_fast8_t;
54 typedef signed short int16_t; 54 typedef signed short int16_t;
102 #if _ILP32 102 #if _ILP32
103 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
104 #else 104 #else
105 #define ECB_AMD64 1 105 #define ECB_AMD64 1
106 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
107#endif 113#endif
108 114
109/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
110 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
111 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
242 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
243 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
244 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
245 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
246 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
247 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) 254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
248 255
249 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
250 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
251 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
252 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
253 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) 262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
255 263
256 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
257 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
258 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
601ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); 609ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
602ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); 610ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
603ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); 611ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
604ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); 612ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
605 613
606ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 614ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
607ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 615ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
608ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 616ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
609ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 617ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
610ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 618ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
611ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 619ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
612ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 620ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
613ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 621ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
614 622
615#if ECB_CPP 623#if ECB_CPP
616 624
617inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } 625inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
618inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } 626inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
766ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } 774ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
767 775
768ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } 776ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
769ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } 777ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
770ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } 778ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
771 779
772ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } 780ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
773ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } 781ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
774ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } 782ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
775 783
776#if ECB_CPP 784#if ECB_CPP
799template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } 807template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
800 808
801#endif 809#endif
802 810
803/*****************************************************************************/ 811/*****************************************************************************/
812/* pointer/integer hashing */
813
814/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
815ecb_function_ uint32_t ecb_mix32 (uint32_t v);
816ecb_function_ uint32_t ecb_mix32 (uint32_t v)
817{
818 v ^= v >> 16; v *= 0x7feb352dU;
819 v ^= v >> 15; v *= 0x846ca68bU;
820 v ^= v >> 16;
821 return v;
822}
823
824ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
825ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
826{
827 v ^= v >> 16 ; v *= 0x43021123U;
828 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
829 v ^= v >> 16 ;
830 return v;
831}
832
833/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
834ecb_function_ uint64_t ecb_mix64 (uint64_t v);
835ecb_function_ uint64_t ecb_mix64 (uint64_t v)
836{
837 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
838 v ^= v >> 27; v *= 0x94d049bb133111ebU;
839 v ^= v >> 31;
840 return v;
841}
842
843ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
844ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
845{
846 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
847 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
848 v ^= v >> 30 ^ v >> 60;
849 return v;
850}
851
852ecb_function_ uintptr_t ecb_ptrmix (void *p);
853ecb_function_ uintptr_t ecb_ptrmix (void *p)
854{
855 #if ECB_PTRSIZE <= 4
856 return ecb_mix32 ((uint32_t)p);
857 #else
858 return ecb_mix64 ((uint64_t)p);
859 #endif
860}
861
862ecb_function_ void *ecb_ptrunmix (uintptr_t v);
863ecb_function_ void *ecb_ptrunmix (uintptr_t v)
864{
865 #if ECB_PTRSIZE <= 4
866 return (void *)ecb_unmix32 (v);
867 #else
868 return (void *)ecb_unmix64 (v);
869 #endif
870}
871
872#if ECB_CPP
873
874template<typename T>
875inline uintptr_t ecb_ptrmix (T *p)
876{
877 return ecb_ptrmix (static_cast<void *>(p));
878}
879
880template<typename T>
881inline T *ecb_ptrunmix (uintptr_t v)
882{
883 return static_cast<T *>(ecb_ptrunmix (v));
884}
885
886#endif
887
888/*****************************************************************************/
889/* gray code */
890
891ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
892ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
893ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
894ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
895
896ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
897{
898 g = g ^ (g >> 1);
899 g = g ^ (g >> 2);
900 g = g ^ (g >> 4);
901 return g;
902}
903
904ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
905{
906 g = g ^ (g >> 1);
907 g = g ^ (g >> 2);
908 g = g ^ (g >> 4);
909 g = g ^ (g >> 8);
910 return g;
911}
912
913ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
914{
915 g = g ^ (g >> 1);
916 g = g ^ (g >> 2);
917 g = g ^ (g >> 4);
918 g = g ^ (g >> 8);
919 g = g ^ (g >> 16);
920 return g;
921}
922
923ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
924{
925 g = g ^ (g >> 1);
926 g = g ^ (g >> 2);
927 g = g ^ (g >> 4);
928 g = g ^ (g >> 8);
929 g = g ^ (g >> 16);
930 g = g ^ (g >> 32);
931 return g;
932}
933
934#if ECB_CPP
935
936ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
937ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
938ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
939ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
940
941ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
942ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
943ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
944ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
945
946#endif
947
948/*****************************************************************************/
949/* division */
804 950
805#if ECB_GCC_VERSION(3,0) || ECB_C99 951#if ECB_GCC_VERSION(3,0) || ECB_C99
952 /* C99 tightened the definition of %, so we can use a more efficient version */
806 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
807#else 954#else
808 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
809#endif 956#endif
810 957
821 } 968 }
822#else 969#else
823 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
824 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
825#endif 972#endif
973
974/*****************************************************************************/
975/* array length */
826 976
827#if ecb_cplusplus_does_not_suck 977#if ecb_cplusplus_does_not_suck
828 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
829 template<typename T, int N> 979 template<typename T, int N>
830 static inline int ecb_array_length (const T (&arr)[N]) 980 static inline int ecb_array_length (const T (&arr)[N])
834#else 984#else
835 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
836#endif 986#endif
837 987
838/*****************************************************************************/ 988/*****************************************************************************/
989/* IEEE 754-2008 half float conversions */
839 990
840ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); 991ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
841ecb_function_ ecb_const uint32_t 992ecb_function_ ecb_const uint32_t
842ecb_binary16_to_binary32 (uint32_t x) 993ecb_binary16_to_binary32 (uint32_t x)
843{ 994{
872ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); 1023ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
873ecb_function_ ecb_const uint16_t 1024ecb_function_ ecb_const uint16_t
874ecb_binary32_to_binary16 (uint32_t x) 1025ecb_binary32_to_binary16 (uint32_t x)
875{ 1026{
876 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ 1027 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
877 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ 1028 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
878 unsigned int m = x & 0x007fffff; 1029 unsigned int m = x & 0x007fffff;
879 1030
880 x &= 0x7fffffff; 1031 x &= 0x7fffffff;
881 1032
882 /* if it's within range of binary16 normals, use fast path */ 1033 /* if it's within range of binary16 normals, use fast path */
929 1080
930 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ 1081 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
931 m >>= 13; 1082 m >>= 13;
932 1083
933 return s | 0x7c00 | m | !m; 1084 return s | 0x7c00 | m | !m;
1085}
1086
1087/*******************************************************************************/
1088/* fast integer to ascii */
1089
1090/*
1091 * This code is pretty complicated because it is general. The idea behind it,
1092 * however, is pretty simple: first, the number is multiplied with a scaling
1093 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1094 * number with the first digit in the upper bits.
1095 * Then this digit is converted to text and masked out. The resulting number
1096 * is then multiplied by 10, by multiplying the fixed point representation
1097 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1098 * format becomes 5.27, 6.26 and so on.
1099 * The rest involves only advancing the pointer if we already generated a
1100 * non-zero digit, so leading zeroes are overwritten.
1101 */
1102
1103/* simply return a mask with "bits" bits set */
1104#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1105
1106/* oputput a single digit. maskvalue is 10**digitidx */
1107#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1108 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1109 { \
1110 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1111 *ptr = digit + '0'; /* output it */ \
1112 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1113 ptr += nz; /* output digit only if non-zero digit seen */ \
1114 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1115 }
1116
1117/* convert integer to fixed point format and multiply out digits, highest first */
1118/* requires magic constants: max. digits and number of bits after the decimal point */
1119#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1120ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1121{ \
1122 char nz = lz; /* non-zero digit seen? */ \
1123 /* convert to x.bits fixed-point */ \
1124 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1125 /* output up to 10 digits */ \
1126 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1127 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1128 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1129 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1130 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1131 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1132 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1133 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1134 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1135 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1136 return ptr; \
1137}
1138
1139/* predefined versions of the above, for various digits */
1140/* ecb_i2a_xN = almost N digits, limit defined by macro */
1141/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1142/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1143
1144/* non-leading-zero versions, limited range */
1145#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1146#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1147ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1148ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1149
1150/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1151ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1152ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1153ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1154ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1155ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1156ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1157ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1158ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1159
1160/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1161ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1162ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1163ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1164ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1165ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1166ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1167ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1168ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1169
1170#define ECB_I2A_I32_DIGITS 11
1171#define ECB_I2A_U32_DIGITS 10
1172#define ECB_I2A_I64_DIGITS 20
1173#define ECB_I2A_U64_DIGITS 21
1174#define ECB_I2A_MAX_DIGITS 21
1175
1176ecb_inline char *
1177ecb_i2a_u32 (char *ptr, uint32_t u)
1178{
1179 #if ECB_64BIT_NATIVE
1180 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1181 ptr = ecb_i2a_x10 (ptr, u);
1182 else /* x10 almost, but not fully, covers 32 bit */
1183 {
1184 uint32_t u1 = u % 1000000000;
1185 uint32_t u2 = u / 1000000000;
1186
1187 *ptr++ = u2 + '0';
1188 ptr = ecb_i2a_09 (ptr, u1);
1189 }
1190 #else
1191 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1192 ecb_i2a_x5 (ptr, u);
1193 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1194 {
1195 uint32_t u1 = u % 10000;
1196 uint32_t u2 = u / 10000;
1197
1198 ptr = ecb_i2a_x5 (ptr, u2);
1199 ptr = ecb_i2a_04 (ptr, u1);
1200 }
1201 else
1202 {
1203 uint32_t u1 = u % 10000;
1204 uint32_t ua = u / 10000;
1205 uint32_t u2 = ua % 10000;
1206 uint32_t u3 = ua / 10000;
1207
1208 ptr = ecb_i2a_2 (ptr, u3);
1209 ptr = ecb_i2a_04 (ptr, u2);
1210 ptr = ecb_i2a_04 (ptr, u1);
1211 }
1212 #endif
1213
1214 return ptr;
1215}
1216
1217ecb_inline char *
1218ecb_i2a_i32 (char *ptr, int32_t v)
1219{
1220 *ptr = '-'; ptr += v < 0;
1221 uint32_t u = v < 0 ? -(uint32_t)v : v;
1222
1223 #if ECB_64BIT_NATIVE
1224 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1225 #else
1226 ptr = ecb_i2a_u32 (ptr, u);
1227 #endif
1228
1229 return ptr;
1230}
1231
1232ecb_inline char *
1233ecb_i2a_u64 (char *ptr, uint64_t u)
1234{
1235 #if ECB_64BIT_NATIVE
1236 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1237 ptr = ecb_i2a_x10 (ptr, u);
1238 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1239 {
1240 uint64_t u1 = u % 1000000000;
1241 uint64_t u2 = u / 1000000000;
1242
1243 ptr = ecb_i2a_x10 (ptr, u2);
1244 ptr = ecb_i2a_09 (ptr, u1);
1245 }
1246 else
1247 {
1248 uint64_t u1 = u % 1000000000;
1249 uint64_t ua = u / 1000000000;
1250 uint64_t u2 = ua % 1000000000;
1251 uint64_t u3 = ua / 1000000000;
1252
1253 ptr = ecb_i2a_2 (ptr, u3);
1254 ptr = ecb_i2a_09 (ptr, u2);
1255 ptr = ecb_i2a_09 (ptr, u1);
1256 }
1257 #else
1258 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1259 ptr = ecb_i2a_x5 (ptr, u);
1260 else
1261 {
1262 uint64_t u1 = u % 10000;
1263 uint64_t u2 = u / 10000;
1264
1265 ptr = ecb_i2a_u64 (ptr, u2);
1266 ptr = ecb_i2a_04 (ptr, u1);
1267 }
1268 #endif
1269
1270 return ptr;
1271}
1272
1273ecb_inline char *
1274ecb_i2a_i64 (char *ptr, int64_t v)
1275{
1276 *ptr = '-'; ptr += v < 0;
1277 uint64_t u = v < 0 ? -(uint64_t)v : v;
1278
1279 #if ECB_64BIT_NATIVE
1280 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1281 ptr = ecb_i2a_x10 (ptr, u);
1282 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1283 {
1284 uint64_t u1 = u % 1000000000;
1285 uint64_t u2 = u / 1000000000;
1286
1287 ptr = ecb_i2a_x10 (ptr, u2);
1288 ptr = ecb_i2a_09 (ptr, u1);
1289 }
1290 else
1291 {
1292 uint64_t u1 = u % 1000000000;
1293 uint64_t ua = u / 1000000000;
1294 uint64_t u2 = ua % 1000000000;
1295 uint64_t u3 = ua / 1000000000;
1296
1297 /* 2**31 is 19 digits, so the top is exactly one digit */
1298 *ptr++ = u3 + '0';
1299 ptr = ecb_i2a_09 (ptr, u2);
1300 ptr = ecb_i2a_09 (ptr, u1);
1301 }
1302 #else
1303 ptr = ecb_i2a_u64 (ptr, u);
1304 #endif
1305
1306 return ptr;
934} 1307}
935 1308
936/*******************************************************************************/ 1309/*******************************************************************************/
937/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1310/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
938 1311

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines