ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.190 by root, Mon Jun 21 21:36:13 2021 UTC vs.
Revision 1.191 by root, Mon Jun 21 21:49:51 2021 UTC

946 946
947 return s | 0x7c00 | m | !m; 947 return s | 0x7c00 | m | !m;
948} 948}
949 949
950/*******************************************************************************/ 950/*******************************************************************************/
951/* fast integer to ascii */
952
953// simply return a mask with "bits" bits set
954#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
955
956// oputput a single digit. maskvalue is 10**digitidx
957#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
958 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
959 { \
960 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
961 *ptr = digit + '0'; /* output it */ \
962 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
963 ptr += nz; /* output digit only if non-zero digit seen */ \
964 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
965 }
966
967// convert integer to fixed point format and multiply out digits, highest first
968// requires magic constants: max. digits and number of bits after the decimal point
969#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
970ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
971{ \
972 char nz = lz; /* non-zero digit seen? */ \
973 /* convert to x.bits fixed-point */ \
974 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
975 /* output up to 10 digits */ \
976 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
977 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
978 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
979 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
980 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
981 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
982 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
983 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
984 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
985 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
986 return ptr; \
987}
988
989// predefined versions of the above, for various digits
990// ecb_i2a_xN = almost N digits, limit defined by macro
991// ecb_i2a_N = up to N digits, leading zeroes suppressed
992// ecb_i2a_0N = exactly N digits, including leading zeroes
993
994// non-leading-zero versions, limited range
995#define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5
996#define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10
997ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
998ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
999
1000// non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit
1001ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1002ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1003ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1004ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1005ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1006ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1007ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1008ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1009
1010// leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit
1011ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1012ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1013ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1014ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1015ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1016ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1017ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1018ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1019
1020ecb_inline char *
1021ecb_i2a_u32 (char *ptr, uint32_t u)
1022{
1023 #if ECB_64BIT_NATIVE
1024 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1025 ptr = ecb_i2a_x10 (ptr, u);
1026 else // x10 almost, but not fully, covers 32 bit
1027 {
1028 uint32_t u1 = u % 1000000000;
1029 uint32_t u2 = u / 1000000000;
1030
1031 *ptr++ = u2 + '0';
1032 ptr = ecb_i2a_09 (ptr, u1);
1033 }
1034 #else
1035 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1036 ecb_i2a_x5 (ptr, u);
1037 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1038 {
1039 uint32_t u1 = u % 10000;
1040 uint32_t u2 = u / 10000;
1041
1042 ptr = ecb_i2a_x5 (ptr, u2);
1043 ptr = ecb_i2a_04 (ptr, u1);
1044 }
1045 else
1046 {
1047 uint32_t u1 = u % 10000;
1048 uint32_t ua = u / 10000;
1049 uint32_t u2 = ua % 10000;
1050 uint32_t u3 = ua / 10000;
1051
1052 ptr = ecb_i2a_2 (ptr, u3);
1053 ptr = ecb_i2a_04 (ptr, u2);
1054 ptr = ecb_i2a_04 (ptr, u1);
1055 }
1056 #endif
1057
1058 return ptr;
1059}
1060
1061ecb_inline char *
1062ecb_i2a_i32 (char *ptr, int32_t v)
1063{
1064 *ptr = '-'; ptr += v < 0;
1065 uint32_t u = v < 0 ? -(uint32_t)v : v;
1066
1067 #if ECB_64BIT_NATIVE
1068 ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit
1069 #else
1070 ptr = ecb_i2a_u32 (ptr, u);
1071 #endif
1072
1073 return ptr;
1074}
1075
1076ecb_inline char *
1077ecb_i2a_u64 (char *ptr, uint64_t u)
1078{
1079 #if ECB_64BIT_NATIVE
1080 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1081 ptr = ecb_i2a_x10 (ptr, u);
1082 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1083 {
1084 uint64_t u1 = u % 1000000000;
1085 uint64_t u2 = u / 1000000000;
1086
1087 ptr = ecb_i2a_x10 (ptr, u2);
1088 ptr = ecb_i2a_09 (ptr, u1);
1089 }
1090 else
1091 {
1092 uint64_t u1 = u % 1000000000;
1093 uint64_t ua = u / 1000000000;
1094 uint64_t u2 = ua % 1000000000;
1095 uint64_t u3 = ua / 1000000000;
1096
1097 ptr = ecb_i2a_2 (ptr, u3);
1098 ptr = ecb_i2a_09 (ptr, u2);
1099 ptr = ecb_i2a_09 (ptr, u1);
1100 }
1101 #else
1102 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1103 ptr = ecb_i2a_x5 (ptr, u);
1104 else
1105 {
1106 uint64_t u1 = u % 10000;
1107 uint64_t u2 = u / 10000;
1108
1109 ptr = ecb_i2a_u64 (ptr, u2);
1110 ptr = ecb_i2a_04 (ptr, u1);
1111 }
1112 #endif
1113
1114 return ptr;
1115}
1116
1117ecb_inline char *
1118ecb_i2a_i64 (char *ptr, int64_t v)
1119{
1120 *ptr = '-'; ptr += v < 0;
1121 uint64_t u = v < 0 ? -(uint64_t)v : v;
1122
1123 #if ECB_64BIT_NATIVE
1124 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1125 ptr = ecb_i2a_x10 (ptr, u);
1126 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1127 {
1128 uint64_t u1 = u % 1000000000;
1129 uint64_t u2 = u / 1000000000;
1130
1131 ptr = ecb_i2a_x10 (ptr, u2);
1132 ptr = ecb_i2a_09 (ptr, u1);
1133 }
1134 else
1135 {
1136 uint64_t u1 = u % 1000000000;
1137 uint64_t ua = u / 1000000000;
1138 uint64_t u2 = ua % 1000000000;
1139 uint64_t u3 = ua / 1000000000;
1140
1141 // 2**31 is 19 digits, so the top is exactly one digit
1142 *ptr++ = u3 + '0';
1143 ptr = ecb_i2a_09 (ptr, u2);
1144 ptr = ecb_i2a_09 (ptr, u1);
1145 }
1146 #else
1147 ptr = ecb_i2a_u64 (ptr, u);
1148 #endif
1149
1150 return ptr;
1151}
1152
1153/*******************************************************************************/
951/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1154/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
952 1155
953/* basically, everything uses "ieee pure-endian" floating point numbers */ 1156/* basically, everything uses "ieee pure-endian" floating point numbers */
954/* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1157/* the only noteworthy exception is ancient armle, which uses order 43218765 */
955#if 0 \ 1158#if 0 \

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines