ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.189 by root, Mon Jun 21 21:26:48 2021 UTC vs.
Revision 1.192 by root, Mon Jun 21 23:59:58 2021 UTC

248 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
249 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
253 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) 254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
254 255
255 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
256 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
257 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
258 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
259 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
260 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) 262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
261 263
262 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
263 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
264 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
944 946
945 return s | 0x7c00 | m | !m; 947 return s | 0x7c00 | m | !m;
946} 948}
947 949
948/*******************************************************************************/ 950/*******************************************************************************/
951/* fast integer to ascii */
952
953// simply return a mask with "bits" bits set
954#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
955
956// oputput a single digit. maskvalue is 10**digitidx
957#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
958 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
959 { \
960 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
961 *ptr = digit + '0'; /* output it */ \
962 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
963 ptr += nz; /* output digit only if non-zero digit seen */ \
964 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
965 }
966
967// convert integer to fixed point format and multiply out digits, highest first
968// requires magic constants: max. digits and number of bits after the decimal point
969#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
970ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
971{ \
972 char nz = lz; /* non-zero digit seen? */ \
973 /* convert to x.bits fixed-point */ \
974 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
975 /* output up to 10 digits */ \
976 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
977 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
978 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
979 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
980 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
981 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
982 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
983 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
984 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
985 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
986 return ptr; \
987}
988
989// predefined versions of the above, for various digits
990// ecb_i2a_xN = almost N digits, limit defined by macro
991// ecb_i2a_N = up to N digits, leading zeroes suppressed
992// ecb_i2a_0N = exactly N digits, including leading zeroes
993
994// non-leading-zero versions, limited range
995#define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5
996#define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10
997ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
998ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
999
1000// non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit
1001ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1002ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1003ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1004ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1005ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1006ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1007ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1008ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1009
1010// leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit
1011ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1012ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1013ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1014ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1015ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1016ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1017ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1018ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1019
1020#define ECB_I2A_I32_DIGITS 11
1021#define ECB_I2A_U32_DIGITS 10
1022#define ECB_I2A_I64_DIGITS 20
1023#define ECB_I2A_U32_DIGITS 21
1024#define ECB_I2A_DIGITS 21
1025
1026ecb_inline char *
1027ecb_i2a_u32 (char *ptr, uint32_t u)
1028{
1029 #if ECB_64BIT_NATIVE
1030 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1031 ptr = ecb_i2a_x10 (ptr, u);
1032 else // x10 almost, but not fully, covers 32 bit
1033 {
1034 uint32_t u1 = u % 1000000000;
1035 uint32_t u2 = u / 1000000000;
1036
1037 *ptr++ = u2 + '0';
1038 ptr = ecb_i2a_09 (ptr, u1);
1039 }
1040 #else
1041 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1042 ecb_i2a_x5 (ptr, u);
1043 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1044 {
1045 uint32_t u1 = u % 10000;
1046 uint32_t u2 = u / 10000;
1047
1048 ptr = ecb_i2a_x5 (ptr, u2);
1049 ptr = ecb_i2a_04 (ptr, u1);
1050 }
1051 else
1052 {
1053 uint32_t u1 = u % 10000;
1054 uint32_t ua = u / 10000;
1055 uint32_t u2 = ua % 10000;
1056 uint32_t u3 = ua / 10000;
1057
1058 ptr = ecb_i2a_2 (ptr, u3);
1059 ptr = ecb_i2a_04 (ptr, u2);
1060 ptr = ecb_i2a_04 (ptr, u1);
1061 }
1062 #endif
1063
1064 return ptr;
1065}
1066
1067ecb_inline char *
1068ecb_i2a_i32 (char *ptr, int32_t v)
1069{
1070 *ptr = '-'; ptr += v < 0;
1071 uint32_t u = v < 0 ? -(uint32_t)v : v;
1072
1073 #if ECB_64BIT_NATIVE
1074 ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit
1075 #else
1076 ptr = ecb_i2a_u32 (ptr, u);
1077 #endif
1078
1079 return ptr;
1080}
1081
1082ecb_inline char *
1083ecb_i2a_u64 (char *ptr, uint64_t u)
1084{
1085 #if ECB_64BIT_NATIVE
1086 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1087 ptr = ecb_i2a_x10 (ptr, u);
1088 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1089 {
1090 uint64_t u1 = u % 1000000000;
1091 uint64_t u2 = u / 1000000000;
1092
1093 ptr = ecb_i2a_x10 (ptr, u2);
1094 ptr = ecb_i2a_09 (ptr, u1);
1095 }
1096 else
1097 {
1098 uint64_t u1 = u % 1000000000;
1099 uint64_t ua = u / 1000000000;
1100 uint64_t u2 = ua % 1000000000;
1101 uint64_t u3 = ua / 1000000000;
1102
1103 ptr = ecb_i2a_2 (ptr, u3);
1104 ptr = ecb_i2a_09 (ptr, u2);
1105 ptr = ecb_i2a_09 (ptr, u1);
1106 }
1107 #else
1108 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1109 ptr = ecb_i2a_x5 (ptr, u);
1110 else
1111 {
1112 uint64_t u1 = u % 10000;
1113 uint64_t u2 = u / 10000;
1114
1115 ptr = ecb_i2a_u64 (ptr, u2);
1116 ptr = ecb_i2a_04 (ptr, u1);
1117 }
1118 #endif
1119
1120 return ptr;
1121}
1122
1123ecb_inline char *
1124ecb_i2a_i64 (char *ptr, int64_t v)
1125{
1126 *ptr = '-'; ptr += v < 0;
1127 uint64_t u = v < 0 ? -(uint64_t)v : v;
1128
1129 #if ECB_64BIT_NATIVE
1130 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1131 ptr = ecb_i2a_x10 (ptr, u);
1132 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1133 {
1134 uint64_t u1 = u % 1000000000;
1135 uint64_t u2 = u / 1000000000;
1136
1137 ptr = ecb_i2a_x10 (ptr, u2);
1138 ptr = ecb_i2a_09 (ptr, u1);
1139 }
1140 else
1141 {
1142 uint64_t u1 = u % 1000000000;
1143 uint64_t ua = u / 1000000000;
1144 uint64_t u2 = ua % 1000000000;
1145 uint64_t u3 = ua / 1000000000;
1146
1147 // 2**31 is 19 digits, so the top is exactly one digit
1148 *ptr++ = u3 + '0';
1149 ptr = ecb_i2a_09 (ptr, u2);
1150 ptr = ecb_i2a_09 (ptr, u1);
1151 }
1152 #else
1153 ptr = ecb_i2a_u64 (ptr, u);
1154 #endif
1155
1156 return ptr;
1157}
1158
1159/*******************************************************************************/
949/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1160/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
950 1161
951/* basically, everything uses "ieee pure-endian" floating point numbers */ 1162/* basically, everything uses "ieee pure-endian" floating point numbers */
952/* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1163/* the only noteworthy exception is ancient armle, which uses order 43218765 */
953#if 0 \ 1164#if 0 \

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines