ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.187 by root, Sat Jan 25 19:34:53 2020 UTC vs.
Revision 1.199 by root, Fri Aug 20 19:39:15 2021 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2015,2018-2020 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010008 45#define ECB_VERSION 0x0001000a
46 46
47#include <string.h> /* for memcpy */ 47#include <string.h> /* for memcpy */
48 48
49#if defined (_WIN32) && !defined (__MINGW32__) 49#if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t; 50 typedef signed char int8_t;
102 #if _ILP32 102 #if _ILP32
103 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
104 #else 104 #else
105 #define ECB_AMD64 1 105 #define ECB_AMD64 1
106 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
107#endif 113#endif
108 114
109/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
110 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
111 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
242 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
243 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
244 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
245 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
246 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
247 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) 254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
248 255
249 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
250 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
251 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
252 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
253 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) 262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
255 263
256 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
257 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
258 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
601ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); 609ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
602ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); 610ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
603ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); 611ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
604ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); 612ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
605 613
606ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 614ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
607ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 615ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
608ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 616ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
609ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 617ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
610ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 618ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
611ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 619ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
612ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 620ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
613ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 621ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
614 622
615#if ECB_CPP 623#if ECB_CPP
616 624
617inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } 625inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
618inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } 626inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
766ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } 774ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
767 775
768ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } 776ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
769ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } 777ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
770ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } 778ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
771 779
772ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } 780ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
773ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } 781ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
774ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } 782ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
775 783
776#if ECB_CPP 784#if ECB_CPP
799template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } 807template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
800 808
801#endif 809#endif
802 810
803/*****************************************************************************/ 811/*****************************************************************************/
812/* pointer/integer hashing */
813
814/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
815ecb_function_ uint32_t ecb_mix32 (uint32_t v);
816ecb_function_ uint32_t ecb_mix32 (uint32_t v)
817{
818 v ^= v >> 16; v *= 0x7feb352dU;
819 v ^= v >> 15; v *= 0x846ca68bU;
820 v ^= v >> 16;
821 return v;
822}
823
824ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
825ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
826{
827 v ^= v >> 16 ; v *= 0x43021123U;
828 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
829 v ^= v >> 16 ;
830 return v;
831}
832
833/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
834ecb_function_ uint64_t ecb_mix64 (uint64_t v);
835ecb_function_ uint64_t ecb_mix64 (uint64_t v)
836{
837 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
838 v ^= v >> 27; v *= 0x94d049bb133111ebU;
839 v ^= v >> 31;
840 return v;
841}
842
843ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
844ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
845{
846 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
847 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
848 v ^= v >> 30 ^ v >> 60;
849 return v;
850}
851
852ecb_function_ uintptr_t ecb_ptrmix (void *p);
853ecb_function_ uintptr_t ecb_ptrmix (void *p)
854{
855 #if ECB_PTRSIZE <= 4
856 return ecb_mix32 ((uint32_t)p);
857 #else
858 return ecb_mix64 ((uint64_t)p);
859 #endif
860}
861
862ecb_function_ void *ecb_ptrunmix (uintptr_t v);
863ecb_function_ void *ecb_ptrunmix (uintptr_t v)
864{
865 #if ECB_PTRSIZE <= 4
866 return (void *)ecb_unmix32 (v);
867 #else
868 return (void *)ecb_unmix64 (v);
869 #endif
870}
871
872#if ECB_CPP
873
874template<typename T>
875inline uintptr_t ecb_ptrmix (T *p)
876{
877 return ecb_ptrmix (static_cast<void *>(p));
878}
879
880template<typename T>
881inline T *ecb_ptrunmix (uintptr_t v)
882{
883 return static_cast<T *>(ecb_ptrunmix (v));
884}
885
886#endif
887
888/*****************************************************************************/
889/* division */
804 890
805#if ECB_GCC_VERSION(3,0) || ECB_C99 891#if ECB_GCC_VERSION(3,0) || ECB_C99
892 /* C99 tightened the definition of %, so we can use a more efficient version */
806 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 893 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
807#else 894#else
808 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 895 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
809#endif 896#endif
810 897
821 } 908 }
822#else 909#else
823 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 910 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
824 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 911 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
825#endif 912#endif
913
914/*****************************************************************************/
915/* array length */
826 916
827#if ecb_cplusplus_does_not_suck 917#if ecb_cplusplus_does_not_suck
828 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 918 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
829 template<typename T, int N> 919 template<typename T, int N>
830 static inline int ecb_array_length (const T (&arr)[N]) 920 static inline int ecb_array_length (const T (&arr)[N])
834#else 924#else
835 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 925 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
836#endif 926#endif
837 927
838/*****************************************************************************/ 928/*****************************************************************************/
929/* IEEE 754-2008 half float conversions */
839 930
840ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); 931ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
841ecb_function_ ecb_const uint32_t 932ecb_function_ ecb_const uint32_t
842ecb_binary16_to_binary32 (uint32_t x) 933ecb_binary16_to_binary32 (uint32_t x)
843{ 934{
872ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); 963ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
873ecb_function_ ecb_const uint16_t 964ecb_function_ ecb_const uint16_t
874ecb_binary32_to_binary16 (uint32_t x) 965ecb_binary32_to_binary16 (uint32_t x)
875{ 966{
876 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ 967 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
877 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ 968 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
878 unsigned int m = x & 0x007fffff; 969 unsigned int m = x & 0x007fffff;
879 970
880 x &= 0x7fffffff; 971 x &= 0x7fffffff;
881 972
882 /* if it's within range of binary16 normals, use fast path */ 973 /* if it's within range of binary16 normals, use fast path */
929 1020
930 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ 1021 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
931 m >>= 13; 1022 m >>= 13;
932 1023
933 return s | 0x7c00 | m | !m; 1024 return s | 0x7c00 | m | !m;
1025}
1026
1027/*******************************************************************************/
1028/* fast integer to ascii */
1029
1030/*
1031 * This code is pretty complicated because it is general. The idea behind it,
1032 * however, is pretty simple: first, the number is multiplied with a scaling
1033 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1034 * number with the first digit in the upper bits.
1035 * Then this digit is converted to text and masked out. The resulting number
1036 * is then multiplied by 10, by multiplying the fixed point representation
1037 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1038 * format becomes 5.27, 6.26 and so on.
1039 * The rest involves only advancing the pointer if we already generated a
1040 * non-zero digit, so leading zeroes are overwritten.
1041 */
1042
1043// simply return a mask with "bits" bits set
1044#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1045
1046// oputput a single digit. maskvalue is 10**digitidx
1047#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1048 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1049 { \
1050 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1051 *ptr = digit + '0'; /* output it */ \
1052 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1053 ptr += nz; /* output digit only if non-zero digit seen */ \
1054 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1055 }
1056
1057// convert integer to fixed point format and multiply out digits, highest first
1058// requires magic constants: max. digits and number of bits after the decimal point
1059#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1060ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1061{ \
1062 char nz = lz; /* non-zero digit seen? */ \
1063 /* convert to x.bits fixed-point */ \
1064 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1065 /* output up to 10 digits */ \
1066 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1067 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1068 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1069 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1070 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1071 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1072 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1073 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1074 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1075 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1076 return ptr; \
1077}
1078
1079// predefined versions of the above, for various digits
1080// ecb_i2a_xN = almost N digits, limit defined by macro
1081// ecb_i2a_N = up to N digits, leading zeroes suppressed
1082// ecb_i2a_0N = exactly N digits, including leading zeroes
1083
1084// non-leading-zero versions, limited range
1085#define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5
1086#define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10
1087ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1088ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1089
1090// non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit
1091ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1092ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1093ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1094ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1095ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1096ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1097ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1098ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1099
1100// leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit
1101ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1102ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1103ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1104ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1105ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1106ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1107ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1108ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1109
1110#define ECB_I2A_I32_DIGITS 11
1111#define ECB_I2A_U32_DIGITS 10
1112#define ECB_I2A_I64_DIGITS 20
1113#define ECB_I2A_U64_DIGITS 21
1114#define ECB_I2A_MAX_DIGITS 21
1115
1116ecb_inline char *
1117ecb_i2a_u32 (char *ptr, uint32_t u)
1118{
1119 #if ECB_64BIT_NATIVE
1120 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1121 ptr = ecb_i2a_x10 (ptr, u);
1122 else // x10 almost, but not fully, covers 32 bit
1123 {
1124 uint32_t u1 = u % 1000000000;
1125 uint32_t u2 = u / 1000000000;
1126
1127 *ptr++ = u2 + '0';
1128 ptr = ecb_i2a_09 (ptr, u1);
1129 }
1130 #else
1131 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1132 ecb_i2a_x5 (ptr, u);
1133 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1134 {
1135 uint32_t u1 = u % 10000;
1136 uint32_t u2 = u / 10000;
1137
1138 ptr = ecb_i2a_x5 (ptr, u2);
1139 ptr = ecb_i2a_04 (ptr, u1);
1140 }
1141 else
1142 {
1143 uint32_t u1 = u % 10000;
1144 uint32_t ua = u / 10000;
1145 uint32_t u2 = ua % 10000;
1146 uint32_t u3 = ua / 10000;
1147
1148 ptr = ecb_i2a_2 (ptr, u3);
1149 ptr = ecb_i2a_04 (ptr, u2);
1150 ptr = ecb_i2a_04 (ptr, u1);
1151 }
1152 #endif
1153
1154 return ptr;
1155}
1156
1157ecb_inline char *
1158ecb_i2a_i32 (char *ptr, int32_t v)
1159{
1160 *ptr = '-'; ptr += v < 0;
1161 uint32_t u = v < 0 ? -(uint32_t)v : v;
1162
1163 #if ECB_64BIT_NATIVE
1164 ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit
1165 #else
1166 ptr = ecb_i2a_u32 (ptr, u);
1167 #endif
1168
1169 return ptr;
1170}
1171
1172ecb_inline char *
1173ecb_i2a_u64 (char *ptr, uint64_t u)
1174{
1175 #if ECB_64BIT_NATIVE
1176 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1177 ptr = ecb_i2a_x10 (ptr, u);
1178 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1179 {
1180 uint64_t u1 = u % 1000000000;
1181 uint64_t u2 = u / 1000000000;
1182
1183 ptr = ecb_i2a_x10 (ptr, u2);
1184 ptr = ecb_i2a_09 (ptr, u1);
1185 }
1186 else
1187 {
1188 uint64_t u1 = u % 1000000000;
1189 uint64_t ua = u / 1000000000;
1190 uint64_t u2 = ua % 1000000000;
1191 uint64_t u3 = ua / 1000000000;
1192
1193 ptr = ecb_i2a_2 (ptr, u3);
1194 ptr = ecb_i2a_09 (ptr, u2);
1195 ptr = ecb_i2a_09 (ptr, u1);
1196 }
1197 #else
1198 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1199 ptr = ecb_i2a_x5 (ptr, u);
1200 else
1201 {
1202 uint64_t u1 = u % 10000;
1203 uint64_t u2 = u / 10000;
1204
1205 ptr = ecb_i2a_u64 (ptr, u2);
1206 ptr = ecb_i2a_04 (ptr, u1);
1207 }
1208 #endif
1209
1210 return ptr;
1211}
1212
1213ecb_inline char *
1214ecb_i2a_i64 (char *ptr, int64_t v)
1215{
1216 *ptr = '-'; ptr += v < 0;
1217 uint64_t u = v < 0 ? -(uint64_t)v : v;
1218
1219 #if ECB_64BIT_NATIVE
1220 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1221 ptr = ecb_i2a_x10 (ptr, u);
1222 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1223 {
1224 uint64_t u1 = u % 1000000000;
1225 uint64_t u2 = u / 1000000000;
1226
1227 ptr = ecb_i2a_x10 (ptr, u2);
1228 ptr = ecb_i2a_09 (ptr, u1);
1229 }
1230 else
1231 {
1232 uint64_t u1 = u % 1000000000;
1233 uint64_t ua = u / 1000000000;
1234 uint64_t u2 = ua % 1000000000;
1235 uint64_t u3 = ua / 1000000000;
1236
1237 // 2**31 is 19 digits, so the top is exactly one digit
1238 *ptr++ = u3 + '0';
1239 ptr = ecb_i2a_09 (ptr, u2);
1240 ptr = ecb_i2a_09 (ptr, u1);
1241 }
1242 #else
1243 ptr = ecb_i2a_u64 (ptr, u);
1244 #endif
1245
1246 return ptr;
934} 1247}
935 1248
936/*******************************************************************************/ 1249/*******************************************************************************/
937/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1250/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
938 1251

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines