ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.199 by root, Fri Aug 20 19:39:15 2021 UTC vs.
Revision 1.216 by root, Wed Apr 13 15:43:28 2022 UTC

40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x0001000a 45#define ECB_VERSION 0x0001000c
46 46
47#include <string.h> /* for memcpy */ 47#include <string.h> /* for memcpy */
48 48
49#if defined (_WIN32) && !defined (__MINGW32__) 49#if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t; 50 typedef signed char int8_t;
355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356#define ECB_STRINGIFY_(a) # a 356#define ECB_STRINGIFY_(a) # a
357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) 358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359 359
360/* This marks larger functions that do not neccessarily need to be inlined */
361/* The idea is to possibly compile the header twice, */
362/* once exposing only the declarations, another time to define external functions */
363/* TODO: possibly static would be best for these at the moment? */
360#define ecb_function_ ecb_inline 364#define ecb_function_ ecb_inline
361 365
362#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) 366#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
363 #define ecb_attribute(attrlist) __attribute__ (attrlist) 367 #define ecb_attribute(attrlist) __attribute__ (attrlist)
364#else 368#else
454/* count trailing zero bits and count # of one bits */ 458/* count trailing zero bits and count # of one bits */
455#if ECB_GCC_VERSION(3,4) \ 459#if ECB_GCC_VERSION(3,4) \
456 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 460 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
457 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 461 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
458 && ECB_CLANG_BUILTIN(__builtin_popcount)) 462 && ECB_CLANG_BUILTIN(__builtin_popcount))
459 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
460 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
461 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
462 #define ecb_ctz32(x) __builtin_ctz (x) 463 #define ecb_ctz32(x) __builtin_ctz (x)
464 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
463 #define ecb_ctz64(x) __builtin_ctzll (x) 465 #define ecb_clz32(x) __builtin_clz (x)
466 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
467 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
468 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
464 #define ecb_popcount32(x) __builtin_popcount (x) 469 #define ecb_popcount32(x) __builtin_popcount (x)
465 /* no popcountll */ 470 /* ecb_popcount64 is more difficult, see below */
466#else 471#else
467 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); 472 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
468 ecb_function_ ecb_const int 473 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x)
469 ecb_ctz32 (uint32_t x)
470 { 474 {
471#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) 475#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
472 unsigned long r; 476 unsigned long r;
473 _BitScanForward (&r, x); 477 _BitScanForward (&r, x);
474 return (int)r; 478 return (int)r;
475#else 479#else
476 int r = 0; 480 int r;
477 481
478 x &= ~x + 1; /* this isolates the lowest bit */ 482 x &= ~x + 1; /* this isolates the lowest bit */
479 483
480#if ECB_branchless_on_i386 484 #if 1
485 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
486 /* This happens to return 32 for x == 0, but the API does not support this */
487
488 /* -0 marks unused entries */
489 static unsigned char table[64] =
490 {
491 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
492 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
493 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
494 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
495 };
496
497 /* magic constant results in 33 unique values in the upper 6 bits */
498 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
499
500 r = table [x >> 26];
501 #elif 0 /* branchless on i386, typically */
502 r = 0;
481 r += !!(x & 0xaaaaaaaa) << 0; 503 r += !!(x & 0xaaaaaaaa) << 0;
482 r += !!(x & 0xcccccccc) << 1; 504 r += !!(x & 0xcccccccc) << 1;
483 r += !!(x & 0xf0f0f0f0) << 2; 505 r += !!(x & 0xf0f0f0f0) << 2;
484 r += !!(x & 0xff00ff00) << 3; 506 r += !!(x & 0xff00ff00) << 3;
485 r += !!(x & 0xffff0000) << 4; 507 r += !!(x & 0xffff0000) << 4;
486#else 508 #else /* branchless on modern compilers, typically */
509 r = 0;
487 if (x & 0xaaaaaaaa) r += 1; 510 if (x & 0xaaaaaaaa) r += 1;
488 if (x & 0xcccccccc) r += 2; 511 if (x & 0xcccccccc) r += 2;
489 if (x & 0xf0f0f0f0) r += 4; 512 if (x & 0xf0f0f0f0) r += 4;
490 if (x & 0xff00ff00) r += 8; 513 if (x & 0xff00ff00) r += 8;
491 if (x & 0xffff0000) r += 16; 514 if (x & 0xffff0000) r += 16;
494 return r; 517 return r;
495#endif 518#endif
496 } 519 }
497 520
498 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); 521 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
499 ecb_function_ ecb_const int 522 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x)
500 ecb_ctz64 (uint64_t x)
501 { 523 {
502#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) 524#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
503 unsigned long r; 525 unsigned long r;
504 _BitScanForward64 (&r, x); 526 _BitScanForward64 (&r, x);
505 return (int)r; 527 return (int)r;
507 int shift = x & 0xffffffff ? 0 : 32; 529 int shift = x & 0xffffffff ? 0 : 32;
508 return ecb_ctz32 (x >> shift) + shift; 530 return ecb_ctz32 (x >> shift) + shift;
509#endif 531#endif
510 } 532 }
511 533
534 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
535 ecb_function_ ecb_const int ecb_clz32 (uint32_t x)
536 {
537#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
538 unsigned long r;
539 _BitScanReverse (&r, x);
540 return 31 - (int)r;
541#else
542
543 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
544 /* This happens to return 32 for x == 0, but the API does not support this */
545
546 /* -0 marks unused table elements */
547 static unsigned char table[64] =
548 {
549 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
550 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
551 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
552 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
553 };
554
555 /* propagate leftmost 1 bit to the right */
556 x |= x >> 1;
557 x |= x >> 2;
558 x |= x >> 4;
559 x |= x >> 8;
560 x |= x >> 16;
561
562 /* magic constant results in 33 unique values in the upper 6 bits */
563 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
564
565 return table [x >> 26];
566#endif
567 }
568
569 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
570 ecb_function_ ecb_const int ecb_clz64 (uint64_t x)
571 {
572#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573 unsigned long r;
574 _BitScanReverse64 (&r, x);
575 return 63 - (int)r;
576#else
577 uint32_t l = x >> 32;
578 int shift = l ? 0 : 32;
579 return ecb_clz32 (l ? l : x) + shift;
580#endif
581 }
582
512 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); 583 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
513 ecb_function_ ecb_const int 584 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x)
514 ecb_popcount32 (uint32_t x)
515 { 585 {
516 x -= (x >> 1) & 0x55555555; 586 x -= (x >> 1) & 0x55555555;
517 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 587 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
518 x = ((x >> 4) + x) & 0x0f0f0f0f; 588 x = ((x >> 4) + x) & 0x0f0f0f0f;
519 x *= 0x01010101; 589 x *= 0x01010101;
591 x = ( x >> 16 ) | ( x << 16); 661 x = ( x >> 16 ) | ( x << 16);
592 662
593 return x; 663 return x;
594} 664}
595 665
596/* popcount64 is only available on 64 bit cpus as gcc builtin */
597/* so for this version we are lazy */
598ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); 666ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
599ecb_function_ ecb_const int 667ecb_function_ ecb_const int ecb_popcount64 (uint64_t x)
600ecb_popcount64 (uint64_t x)
601{ 668{
669 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
670 /* also, gcc/clang make this surprisingly difficult to use */
671#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
672 return __builtin_popcountl (x);
673#else
602 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 674 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
675#endif
603} 676}
604 677
605ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
606ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
607ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
608ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
609ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
610ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
611ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
612ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
613
614ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } 678ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
615ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } 679ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
616ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } 680ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
617ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } 681ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
618ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } 682ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
619ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } 683ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
620ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } 684ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
621ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } 685ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
622 686
623#if ECB_CPP 687#if ECB_CPP
624 688
625inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } 689inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
626inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } 690inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
671 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) 735 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
672 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) 736 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
673 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) 737 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
674#else 738#else
675 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); 739 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
676 ecb_function_ ecb_const uint16_t 740 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x)
677 ecb_bswap16 (uint16_t x)
678 { 741 {
679 return ecb_rotl16 (x, 8); 742 return ecb_rotl16 (x, 8);
680 } 743 }
681 744
682 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); 745 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
683 ecb_function_ ecb_const uint32_t 746 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x)
684 ecb_bswap32 (uint32_t x)
685 { 747 {
686 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 748 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
687 } 749 }
688 750
689 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); 751 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
690 ecb_function_ ecb_const uint64_t 752 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x)
691 ecb_bswap64 (uint64_t x)
692 { 753 {
693 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 754 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
694 } 755 }
695#endif 756#endif
696 757
703#endif 764#endif
704 765
705/* try to tell the compiler that some condition is definitely true */ 766/* try to tell the compiler that some condition is definitely true */
706#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 767#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
707 768
708ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); 769ecb_inline uint32_t ecb_byteorder_helper (void);
709ecb_inline ecb_const uint32_t 770ecb_inline uint32_t ecb_byteorder_helper (void)
710ecb_byteorder_helper (void)
711{ 771{
712 /* the union code still generates code under pressure in gcc, */ 772 /* the union code still generates code under pressure in gcc, */
713 /* but less than using pointers, and always seems to */ 773 /* but less than using pointers, and always seems to */
714 /* successfully return a constant. */ 774 /* successfully return a constant. */
715 /* the reason why we have this horrible preprocessor mess */ 775 /* the reason why we have this horrible preprocessor mess */
731 } u = { 0x11, 0x22, 0x33, 0x44 }; 791 } u = { 0x11, 0x22, 0x33, 0x44 };
732 return u.u; 792 return u.u;
733#endif 793#endif
734} 794}
735 795
736ecb_inline ecb_const ecb_bool ecb_big_endian (void);
737ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } 796ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
738ecb_inline ecb_const ecb_bool ecb_little_endian (void);
739ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } 797ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
740 798
741/*****************************************************************************/ 799/*****************************************************************************/
742/* unaligned load/store */ 800/* unaligned load/store */
743 801
810 868
811/*****************************************************************************/ 869/*****************************************************************************/
812/* pointer/integer hashing */ 870/* pointer/integer hashing */
813 871
814/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ 872/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
815ecb_function_ uint32_t ecb_mix32 (uint32_t v); 873ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v);
816ecb_function_ uint32_t ecb_mix32 (uint32_t v) 874ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v)
817{ 875{
818 v ^= v >> 16; v *= 0x7feb352dU; 876 v ^= v >> 16; v *= 0x7feb352dU;
819 v ^= v >> 15; v *= 0x846ca68bU; 877 v ^= v >> 15; v *= 0x846ca68bU;
820 v ^= v >> 16; 878 v ^= v >> 16;
821 return v; 879 return v;
822} 880}
823 881
824ecb_function_ uint32_t ecb_unmix32 (uint32_t v); 882ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v);
825ecb_function_ uint32_t ecb_unmix32 (uint32_t v) 883ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v)
826{ 884{
827 v ^= v >> 16 ; v *= 0x43021123U; 885 v ^= v >> 16 ; v *= 0x43021123U;
828 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; 886 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
829 v ^= v >> 16 ; 887 v ^= v >> 16 ;
830 return v; 888 return v;
831} 889}
832 890
833/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ 891/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
834ecb_function_ uint64_t ecb_mix64 (uint64_t v); 892ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v);
835ecb_function_ uint64_t ecb_mix64 (uint64_t v) 893ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v)
836{ 894{
837 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; 895 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
838 v ^= v >> 27; v *= 0x94d049bb133111ebU; 896 v ^= v >> 27; v *= 0x94d049bb133111ebU;
839 v ^= v >> 31; 897 v ^= v >> 31;
840 return v; 898 return v;
841} 899}
842 900
843ecb_function_ uint64_t ecb_unmix64 (uint64_t v); 901ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v);
844ecb_function_ uint64_t ecb_unmix64 (uint64_t v) 902ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v)
845{ 903{
846 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; 904 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
847 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; 905 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
848 v ^= v >> 30 ^ v >> 60; 906 v ^= v >> 30 ^ v >> 60;
849 return v; 907 return v;
850} 908}
851 909
852ecb_function_ uintptr_t ecb_ptrmix (void *p); 910ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p);
853ecb_function_ uintptr_t ecb_ptrmix (void *p) 911ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p)
854{ 912{
855 #if ECB_PTRSIZE <= 4 913 #if ECB_PTRSIZE <= 4
856 return ecb_mix32 ((uint32_t)p); 914 return ecb_mix32 ((uint32_t)p);
857 #else 915 #else
858 return ecb_mix64 ((uint64_t)p); 916 return ecb_mix64 ((uint64_t)p);
859 #endif 917 #endif
860} 918}
861 919
862ecb_function_ void *ecb_ptrunmix (uintptr_t v); 920ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v);
863ecb_function_ void *ecb_ptrunmix (uintptr_t v) 921ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v)
864{ 922{
865 #if ECB_PTRSIZE <= 4 923 #if ECB_PTRSIZE <= 4
866 return (void *)ecb_unmix32 (v); 924 return (void *)ecb_unmix32 (v);
867 #else 925 #else
868 return (void *)ecb_unmix64 (v); 926 return (void *)ecb_unmix64 (v);
884} 942}
885 943
886#endif 944#endif
887 945
888/*****************************************************************************/ 946/*****************************************************************************/
947/* gray code */
948
949ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
950ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
951ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
952ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
953
954ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g);
955ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g)
956{
957 g ^= g >> 1;
958 g ^= g >> 2;
959 g ^= g >> 4;
960
961 return g;
962}
963
964ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g);
965ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g)
966{
967 g ^= g >> 1;
968 g ^= g >> 2;
969 g ^= g >> 4;
970 g ^= g >> 8;
971
972 return g;
973}
974
975ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g);
976ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g)
977{
978 g ^= g >> 1;
979 g ^= g >> 2;
980 g ^= g >> 4;
981 g ^= g >> 8;
982 g ^= g >> 16;
983
984 return g;
985}
986
987ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g);
988ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g)
989{
990 g ^= g >> 1;
991 g ^= g >> 2;
992 g ^= g >> 4;
993 g ^= g >> 8;
994 g ^= g >> 16;
995 g ^= g >> 32;
996
997 return g;
998}
999
1000#if ECB_CPP
1001
1002ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1003ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1004ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1005ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1006
1007ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1008ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1009ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1010ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1011
1012#endif
1013
1014/*****************************************************************************/
1015/* 2d hilbert curves */
1016
1017/* algorithm from the book Hacker's Delight, modified to not */
1018/* run into undefined behaviour for n==16 */
1019ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s);
1020ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1021{
1022 uint32_t comp, swap, cs, t, sr;
1023
1024 /* pad s on the left (unused) bits with 01 (no change groups) */
1025 s |= 0x55555555U << n << n;
1026 /* "s shift right" */
1027 sr = (s >> 1) & 0x55555555U;
1028 /* compute complement and swap info in two-bit groups */
1029 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1030
1031 /* parallel prefix xor op to propagate both complement
1032 * and swap info together from left to right (there is
1033 * no step "cs ^= cs >> 1", so in effect it computes
1034 * two independent parallel prefix operations on two
1035 * interleaved sets of sixteen bits).
1036 */
1037 cs ^= cs >> 2;
1038 cs ^= cs >> 4;
1039 cs ^= cs >> 8;
1040 cs ^= cs >> 16;
1041
1042 /* separate swap and complement bits */
1043 swap = cs & 0x55555555U;
1044 comp = (cs >> 1) & 0x55555555U;
1045
1046 /* calculate coordinates in odd and even bit positions */
1047 t = (s & swap) ^ comp;
1048 s = s ^ sr ^ t ^ (t << 1);
1049
1050 /* unpad/clear out any junk on the left */
1051 s = s & ((1 << n << n) - 1);
1052
1053 /* Now "unshuffle" to separate the x and y bits. */
1054 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1055 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1056 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1057 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1058
1059 /* now s contains two 16-bit coordinates */
1060 return s;
1061}
1062
1063/* 64 bit, a straightforward extension to the 32 bit case */
1064ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s);
1065ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1066{
1067 uint64_t comp, swap, cs, t, sr;
1068
1069 /* pad s on the left (unused) bits with 01 (no change groups) */
1070 s |= 0x5555555555555555U << n << n;
1071 /* "s shift right" */
1072 sr = (s >> 1) & 0x5555555555555555U;
1073 /* compute complement and swap info in two-bit groups */
1074 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1075
1076 /* parallel prefix xor op to propagate both complement
1077 * and swap info together from left to right (there is
1078 * no step "cs ^= cs >> 1", so in effect it computes
1079 * two independent parallel prefix operations on two
1080 * interleaved sets of thirty-two bits).
1081 */
1082 cs ^= cs >> 2;
1083 cs ^= cs >> 4;
1084 cs ^= cs >> 8;
1085 cs ^= cs >> 16;
1086 cs ^= cs >> 32;
1087
1088 /* separate swap and complement bits */
1089 swap = cs & 0x5555555555555555U;
1090 comp = (cs >> 1) & 0x5555555555555555U;
1091
1092 /* calculate coordinates in odd and even bit positions */
1093 t = (s & swap) ^ comp;
1094 s = s ^ sr ^ t ^ (t << 1);
1095
1096 /* unpad/clear out any junk on the left */
1097 s = s & ((1 << n << n) - 1);
1098
1099 /* Now "unshuffle" to separate the x and y bits. */
1100 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1101 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1102 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1103 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1104 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1105
1106 /* now s contains two 32-bit coordinates */
1107 return s;
1108}
1109
1110/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1111/* is given in https://doi.org/10.1002/spe.4380160103 */
1112/* this has been slightly improved over the original version */
1113ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy);
1114ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1115{
1116 uint32_t row;
1117 uint32_t state = 0;
1118 uint32_t s = 0;
1119
1120 do
1121 {
1122 --n;
1123
1124 row = 4 * state
1125 | (2 & (xy >> n >> 15))
1126 | (1 & (xy >> n ));
1127
1128 /* these funky constants are lookup tables for two-bit values */
1129 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1130 state = (0x8fe65831U >> 2 * row) & 3;
1131 }
1132 while (n > 0);
1133
1134 return s;
1135}
1136
1137/* 64 bit, essentially the same as 32 bit */
1138ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy);
1139ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1140{
1141 uint32_t row;
1142 uint32_t state = 0;
1143 uint64_t s = 0;
1144
1145 do
1146 {
1147 --n;
1148
1149 row = 4 * state
1150 | (2 & (xy >> n >> 31))
1151 | (1 & (xy >> n ));
1152
1153 /* these funky constants are lookup tables for two-bit values */
1154 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1155 state = (0x8fe65831U >> 2 * row) & 3;
1156 }
1157 while (n > 0);
1158
1159 return s;
1160}
1161
1162/*****************************************************************************/
889/* division */ 1163/* division */
890 1164
891#if ECB_GCC_VERSION(3,0) || ECB_C99 1165#if ECB_GCC_VERSION(3,0) || ECB_C99
892 /* C99 tightened the definition of %, so we can use a more efficient version */ 1166 /* C99 tightened the definition of %, so we can use a more efficient version */
893 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1167 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
927 1201
928/*****************************************************************************/ 1202/*****************************************************************************/
929/* IEEE 754-2008 half float conversions */ 1203/* IEEE 754-2008 half float conversions */
930 1204
931ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); 1205ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
932ecb_function_ ecb_const uint32_t 1206ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x)
933ecb_binary16_to_binary32 (uint32_t x)
934{ 1207{
935 unsigned int s = (x & 0x8000) << (31 - 15); 1208 unsigned int s = (x & 0x8000) << (31 - 15);
936 int e = (x >> 10) & 0x001f; 1209 int e = (x >> 10) & 0x001f;
937 unsigned int m = x & 0x03ff; 1210 unsigned int m = x & 0x03ff;
938 1211
959 1232
960 return s | (e << 23) | (m << (23 - 10)); 1233 return s | (e << 23) | (m << (23 - 10));
961} 1234}
962 1235
963ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); 1236ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
964ecb_function_ ecb_const uint16_t 1237ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x)
965ecb_binary32_to_binary16 (uint32_t x)
966{ 1238{
967 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ 1239 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
968 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ 1240 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
969 unsigned int m = x & 0x007fffff; 1241 unsigned int m = x & 0x007fffff;
970 1242
1038 * format becomes 5.27, 6.26 and so on. 1310 * format becomes 5.27, 6.26 and so on.
1039 * The rest involves only advancing the pointer if we already generated a 1311 * The rest involves only advancing the pointer if we already generated a
1040 * non-zero digit, so leading zeroes are overwritten. 1312 * non-zero digit, so leading zeroes are overwritten.
1041 */ 1313 */
1042 1314
1043// simply return a mask with "bits" bits set 1315/* simply return a mask with "bits" bits set */
1044#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) 1316#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1045 1317
1046// oputput a single digit. maskvalue is 10**digitidx 1318/* oputput a single digit. maskvalue is 10**digitidx */
1047#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ 1319#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1048 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ 1320 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1049 { \ 1321 { \
1050 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ 1322 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1051 *ptr = digit + '0'; /* output it */ \ 1323 *ptr = digit + '0'; /* output it */ \
1052 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ 1324 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1053 ptr += nz; /* output digit only if non-zero digit seen */ \ 1325 ptr += nz; /* output digit only if non-zero digit seen */ \
1054 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ 1326 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1055 } 1327 }
1056 1328
1057// convert integer to fixed point format and multiply out digits, highest first 1329/* convert integer to fixed point format and multiply out digits, highest first */
1058// requires magic constants: max. digits and number of bits after the decimal point 1330/* requires magic constants: max. digits and number of bits after the decimal point */
1059#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ 1331#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1060ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ 1332ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1061{ \ 1333{ \
1062 char nz = lz; /* non-zero digit seen? */ \ 1334 char nz = lz; /* non-zero digit seen? */ \
1063 /* convert to x.bits fixed-point */ \ 1335 /* convert to x.bits fixed-point */ \
1074 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ 1346 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1075 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ 1347 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1076 return ptr; \ 1348 return ptr; \
1077} 1349}
1078 1350
1079// predefined versions of the above, for various digits 1351/* predefined versions of the above, for various digits */
1080// ecb_i2a_xN = almost N digits, limit defined by macro 1352/* ecb_i2a_xN = almost N digits, limit defined by macro */
1081// ecb_i2a_N = up to N digits, leading zeroes suppressed 1353/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1082// ecb_i2a_0N = exactly N digits, including leading zeroes 1354/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1083 1355
1084// non-leading-zero versions, limited range 1356/* non-leading-zero versions, limited range */
1085#define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5 1357#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1086#define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10 1358#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1087ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) 1359ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1088ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) 1360ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1089 1361
1090// non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit 1362/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1091ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) 1363ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1092ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) 1364ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1093ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) 1365ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1094ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) 1366ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1095ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) 1367ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1096ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) 1368ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1097ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) 1369ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1098ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) 1370ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1099 1371
1100// leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit 1372/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1101ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) 1373ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1102ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) 1374ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1103ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) 1375ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1104ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) 1376ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1105ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) 1377ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1111#define ECB_I2A_U32_DIGITS 10 1383#define ECB_I2A_U32_DIGITS 10
1112#define ECB_I2A_I64_DIGITS 20 1384#define ECB_I2A_I64_DIGITS 20
1113#define ECB_I2A_U64_DIGITS 21 1385#define ECB_I2A_U64_DIGITS 21
1114#define ECB_I2A_MAX_DIGITS 21 1386#define ECB_I2A_MAX_DIGITS 21
1115 1387
1116ecb_inline char * 1388ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u);
1117ecb_i2a_u32 (char *ptr, uint32_t u) 1389ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u)
1118{ 1390{
1119 #if ECB_64BIT_NATIVE 1391 #if ECB_64BIT_NATIVE
1120 if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) 1392 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1121 ptr = ecb_i2a_x10 (ptr, u); 1393 ptr = ecb_i2a_x10 (ptr, u);
1122 else // x10 almost, but not fully, covers 32 bit 1394 else /* x10 almost, but not fully, covers 32 bit */
1123 { 1395 {
1124 uint32_t u1 = u % 1000000000; 1396 uint32_t u1 = u % 1000000000;
1125 uint32_t u2 = u / 1000000000; 1397 uint32_t u2 = u / 1000000000;
1126 1398
1127 *ptr++ = u2 + '0'; 1399 *ptr++ = u2 + '0';
1152 #endif 1424 #endif
1153 1425
1154 return ptr; 1426 return ptr;
1155} 1427}
1156 1428
1157ecb_inline char * 1429ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v);
1158ecb_i2a_i32 (char *ptr, int32_t v) 1430ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v)
1159{ 1431{
1160 *ptr = '-'; ptr += v < 0; 1432 *ptr = '-'; ptr += v < 0;
1161 uint32_t u = v < 0 ? -(uint32_t)v : v; 1433 uint32_t u = v < 0 ? -(uint32_t)v : v;
1162 1434
1163 #if ECB_64BIT_NATIVE 1435 #if ECB_64BIT_NATIVE
1164 ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit 1436 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1165 #else 1437 #else
1166 ptr = ecb_i2a_u32 (ptr, u); 1438 ptr = ecb_i2a_u32 (ptr, u);
1167 #endif 1439 #endif
1168 1440
1169 return ptr; 1441 return ptr;
1170} 1442}
1171 1443
1172ecb_inline char * 1444ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u);
1173ecb_i2a_u64 (char *ptr, uint64_t u) 1445ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u)
1174{ 1446{
1175 #if ECB_64BIT_NATIVE 1447 #if ECB_64BIT_NATIVE
1176 if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) 1448 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1177 ptr = ecb_i2a_x10 (ptr, u); 1449 ptr = ecb_i2a_x10 (ptr, u);
1178 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) 1450 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1208 #endif 1480 #endif
1209 1481
1210 return ptr; 1482 return ptr;
1211} 1483}
1212 1484
1213ecb_inline char * 1485ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v);
1214ecb_i2a_i64 (char *ptr, int64_t v) 1486ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v)
1215{ 1487{
1216 *ptr = '-'; ptr += v < 0; 1488 *ptr = '-'; ptr += v < 0;
1217 uint64_t u = v < 0 ? -(uint64_t)v : v; 1489 uint64_t u = v < 0 ? -(uint64_t)v : v;
1218 1490
1219 #if ECB_64BIT_NATIVE 1491 #if ECB_64BIT_NATIVE
1232 uint64_t u1 = u % 1000000000; 1504 uint64_t u1 = u % 1000000000;
1233 uint64_t ua = u / 1000000000; 1505 uint64_t ua = u / 1000000000;
1234 uint64_t u2 = ua % 1000000000; 1506 uint64_t u2 = ua % 1000000000;
1235 uint64_t u3 = ua / 1000000000; 1507 uint64_t u3 = ua / 1000000000;
1236 1508
1237 // 2**31 is 19 digits, so the top is exactly one digit 1509 /* 2**31 is 19 digits, so the top is exactly one digit */
1238 *ptr++ = u3 + '0'; 1510 *ptr++ = u3 + '0';
1239 ptr = ecb_i2a_09 (ptr, u2); 1511 ptr = ecb_i2a_09 (ptr, u2);
1240 ptr = ecb_i2a_09 (ptr, u1); 1512 ptr = ecb_i2a_09 (ptr, u1);
1241 } 1513 }
1242 #else 1514 #else
1296 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) 1568 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1297 #endif 1569 #endif
1298 1570
1299 /* convert a float to ieee single/binary32 */ 1571 /* convert a float to ieee single/binary32 */
1300 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); 1572 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1301 ecb_function_ ecb_const uint32_t 1573 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x)
1302 ecb_float_to_binary32 (float x)
1303 { 1574 {
1304 uint32_t r; 1575 uint32_t r;
1305 1576
1306 #if ECB_STDFP 1577 #if ECB_STDFP
1307 memcpy (&r, &x, 4); 1578 memcpy (&r, &x, 4);
1336 return r; 1607 return r;
1337 } 1608 }
1338 1609
1339 /* converts an ieee single/binary32 to a float */ 1610 /* converts an ieee single/binary32 to a float */
1340 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); 1611 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1341 ecb_function_ ecb_const float 1612 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x)
1342 ecb_binary32_to_float (uint32_t x)
1343 { 1613 {
1344 float r; 1614 float r;
1345 1615
1346 #if ECB_STDFP 1616 #if ECB_STDFP
1347 memcpy (&r, &x, 4); 1617 memcpy (&r, &x, 4);
1366 return r; 1636 return r;
1367 } 1637 }
1368 1638
1369 /* convert a double to ieee double/binary64 */ 1639 /* convert a double to ieee double/binary64 */
1370 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); 1640 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1371 ecb_function_ ecb_const uint64_t 1641 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x)
1372 ecb_double_to_binary64 (double x)
1373 { 1642 {
1374 uint64_t r; 1643 uint64_t r;
1375 1644
1376 #if ECB_STDFP 1645 #if ECB_STDFP
1377 memcpy (&r, &x, 8); 1646 memcpy (&r, &x, 8);
1406 return r; 1675 return r;
1407 } 1676 }
1408 1677
1409 /* converts an ieee double/binary64 to a double */ 1678 /* converts an ieee double/binary64 to a double */
1410 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); 1679 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1411 ecb_function_ ecb_const double 1680 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x)
1412 ecb_binary64_to_double (uint64_t x)
1413 { 1681 {
1414 double r; 1682 double r;
1415 1683
1416 #if ECB_STDFP 1684 #if ECB_STDFP
1417 memcpy (&r, &x, 8); 1685 memcpy (&r, &x, 8);
1436 return r; 1704 return r;
1437 } 1705 }
1438 1706
1439 /* convert a float to ieee half/binary16 */ 1707 /* convert a float to ieee half/binary16 */
1440 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); 1708 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1441 ecb_function_ ecb_const uint16_t 1709 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x)
1442 ecb_float_to_binary16 (float x)
1443 { 1710 {
1444 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); 1711 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1445 } 1712 }
1446 1713
1447 /* convert an ieee half/binary16 to float */ 1714 /* convert an ieee half/binary16 to float */
1448 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); 1715 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1449 ecb_function_ ecb_const float 1716 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x)
1450 ecb_binary16_to_float (uint16_t x)
1451 { 1717 {
1452 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); 1718 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1453 } 1719 }
1454 1720
1455#endif 1721#endif

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines