Revision 1.168 by

Revision 1.204 by

1 | /* | 1 | /* |
---|---|---|---|

2 | * libecb - http://software.schmorp.de/pkg/libecb | 2 | * libecb - http://software.schmorp.de/pkg/libecb |

3 | * | 3 | * |

4 | * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> | 4 | * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de> |

5 | * Copyright (©) 2011 Emanuele Giaquinta | 5 | * Copyright (©) 2011 Emanuele Giaquinta |

6 | * All rights reserved. | 6 | * All rights reserved. |

7 | * | 7 | * |

8 | * Redistribution and use in source and binary forms, with or without modifica- | 8 | * Redistribution and use in source and binary forms, with or without modifica- |

9 | * tion, are permitted provided that the following conditions are met: | 9 | * tion, are permitted provided that the following conditions are met: |

… | … | ||

40 | 40 | ||

41 | #ifndef ECB_H | 41 | #ifndef ECB_H |

42 | #define ECB_H | 42 | #define ECB_H |

43 | 43 | ||

44 | /* 16 bits major, 16 bits minor */ | 44 | /* 16 bits major, 16 bits minor */ |

45 | #define ECB_VERSION 0x00010005 | 45 | #define ECB_VERSION 0x0001000c |

46 | 46 | ||

47 | #ifdef _WIN32 | 47 | #include <string.h> /* for memcpy */ |

48 | |||

49 | #if defined (_WIN32) && !defined (__MINGW32__) | ||

48 | typedef signed char int8_t; | 50 | typedef signed char int8_t; |

49 | typedef unsigned char uint8_t; | 51 | typedef unsigned char uint8_t; |

52 | typedef signed char int_fast8_t; | ||

53 | typedef unsigned char uint_fast8_t; | ||

50 | typedef signed short int16_t; | 54 | typedef signed short int16_t; |

51 | typedef unsigned short uint16_t; | 55 | typedef unsigned short uint16_t; |

56 | typedef signed int int_fast16_t; | ||

57 | typedef unsigned int uint_fast16_t; | ||

52 | typedef signed int int32_t; | 58 | typedef signed int int32_t; |

53 | typedef unsigned int uint32_t; | 59 | typedef unsigned int uint32_t; |

60 | typedef signed int int_fast32_t; | ||

61 | typedef unsigned int uint_fast32_t; | ||

54 | #if __GNUC__ | 62 | #if __GNUC__ |

55 | typedef signed long long int64_t; | 63 | typedef signed long long int64_t; |

56 | typedef unsigned long long uint64_t; | 64 | typedef unsigned long long uint64_t; |

57 | #else /* _MSC_VER || __BORLANDC__ */ | 65 | #else /* _MSC_VER || __BORLANDC__ */ |

58 | typedef signed __int64 int64_t; | 66 | typedef signed __int64 int64_t; |

59 | typedef unsigned __int64 uint64_t; | 67 | typedef unsigned __int64 uint64_t; |

60 | #endif | 68 | #endif |

69 | typedef int64_t int_fast64_t; | ||

70 | typedef uint64_t uint_fast64_t; | ||

61 | #ifdef _WIN64 | 71 | #ifdef _WIN64 |

62 | #define ECB_PTRSIZE 8 | 72 | #define ECB_PTRSIZE 8 |

63 | typedef uint64_t uintptr_t; | 73 | typedef uint64_t uintptr_t; |

64 | typedef int64_t intptr_t; | 74 | typedef int64_t intptr_t; |

65 | #else | 75 | #else |

… | … | ||

67 | typedef uint32_t uintptr_t; | 77 | typedef uint32_t uintptr_t; |

68 | typedef int32_t intptr_t; | 78 | typedef int32_t intptr_t; |

69 | #endif | 79 | #endif |

70 | #else | 80 | #else |

71 | #include <inttypes.h> | 81 | #include <inttypes.h> |

72 | #if UINTMAX_MAX > 0xffffffffU | 82 | #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU |

73 | #define ECB_PTRSIZE 8 | 83 | #define ECB_PTRSIZE 8 |

74 | #else | 84 | #else |

75 | #define ECB_PTRSIZE 4 | 85 | #define ECB_PTRSIZE 4 |

76 | #endif | 86 | #endif |

77 | #endif | 87 | #endif |

78 | 88 | ||

79 | #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) | 89 | #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) |

80 | #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) | 90 | #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) |

91 | |||

92 | #ifndef ECB_OPTIMIZE_SIZE | ||

93 | #if __OPTIMIZE_SIZE__ | ||

94 | #define ECB_OPTIMIZE_SIZE 1 | ||

95 | #else | ||

96 | #define ECB_OPTIMIZE_SIZE 0 | ||

97 | #endif | ||

98 | #endif | ||

81 | 99 | ||

82 | /* work around x32 idiocy by defining proper macros */ | 100 | /* work around x32 idiocy by defining proper macros */ |

83 | #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 | 101 | #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 |

84 | #if _ILP32 | 102 | #if _ILP32 |

85 | #define ECB_AMD64_X32 1 | 103 | #define ECB_AMD64_X32 1 |

86 | #else | 104 | #else |

87 | #define ECB_AMD64 1 | 105 | #define ECB_AMD64 1 |

88 | #endif | 106 | #endif |

107 | #endif | ||

108 | |||

109 | #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32 | ||

110 | #define ECB_64BIT_NATIVE 1 | ||

111 | #else | ||

112 | #define ECB_64BIT_NATIVE 0 | ||

89 | #endif | 113 | #endif |

90 | 114 | ||

91 | /* many compilers define _GNUC_ to some versions but then only implement | 115 | /* many compilers define _GNUC_ to some versions but then only implement |

92 | * what their idiot authors think are the "more important" extensions, | 116 | * what their idiot authors think are the "more important" extensions, |

93 | * causing enormous grief in return for some better fake benchmark numbers. | 117 | * causing enormous grief in return for some better fake benchmark numbers. |

… | … | ||

115 | #define ECB_CLANG_EXTENSION(x) 0 | 139 | #define ECB_CLANG_EXTENSION(x) 0 |

116 | #endif | 140 | #endif |

117 | 141 | ||

118 | #define ECB_CPP (__cplusplus+0) | 142 | #define ECB_CPP (__cplusplus+0) |

119 | #define ECB_CPP11 (__cplusplus >= 201103L) | 143 | #define ECB_CPP11 (__cplusplus >= 201103L) |

144 | #define ECB_CPP14 (__cplusplus >= 201402L) | ||

145 | #define ECB_CPP17 (__cplusplus >= 201703L) | ||

120 | 146 | ||

121 | #if ECB_CPP | 147 | #if ECB_CPP |

122 | #define ECB_C 0 | 148 | #define ECB_C 0 |

123 | #define ECB_STDC_VERSION 0 | 149 | #define ECB_STDC_VERSION 0 |

124 | #else | 150 | #else |

… | … | ||

126 | #define ECB_STDC_VERSION __STDC_VERSION__ | 152 | #define ECB_STDC_VERSION __STDC_VERSION__ |

127 | #endif | 153 | #endif |

128 | 154 | ||

129 | #define ECB_C99 (ECB_STDC_VERSION >= 199901L) | 155 | #define ECB_C99 (ECB_STDC_VERSION >= 199901L) |

130 | #define ECB_C11 (ECB_STDC_VERSION >= 201112L) | 156 | #define ECB_C11 (ECB_STDC_VERSION >= 201112L) |

157 | #define ECB_C17 (ECB_STDC_VERSION >= 201710L) | ||

131 | 158 | ||

132 | #if ECB_CPP | 159 | #if ECB_CPP |

133 | #define ECB_EXTERN_C extern "C" | 160 | #define ECB_EXTERN_C extern "C" |

134 | #define ECB_EXTERN_C_BEG ECB_EXTERN_C { | 161 | #define ECB_EXTERN_C_BEG ECB_EXTERN_C { |

135 | #define ECB_EXTERN_C_END } | 162 | #define ECB_EXTERN_C_END } |

… | … | ||

155 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ | 182 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ |

156 | #if __xlC__ && ECB_CPP | 183 | #if __xlC__ && ECB_CPP |

157 | #include <builtins.h> | 184 | #include <builtins.h> |

158 | #endif | 185 | #endif |

159 | 186 | ||

187 | #if 1400 <= _MSC_VER | ||

188 | #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ | ||

189 | #endif | ||

190 | |||

160 | #ifndef ECB_MEMORY_FENCE | 191 | #ifndef ECB_MEMORY_FENCE |

161 | #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 | 192 | #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |

193 | #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory") | ||

162 | #if __i386 || __i386__ | 194 | #if __i386 || __i386__ |

163 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") | 195 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |

164 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") | 196 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |

165 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") | 197 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |

166 | #elif ECB_GCC_AMD64 | 198 | #elif ECB_GCC_AMD64 |

167 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") | 199 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |

168 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") | 200 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |

169 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") | 201 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |

170 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ | 202 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |

171 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") | 203 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |

204 | #elif defined __ARM_ARCH_2__ \ | ||

205 | || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ | ||

206 | || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ | ||

207 | || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ | ||

208 | || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ | ||

209 | || defined __ARM_ARCH_5TEJ__ | ||

210 | /* should not need any, unless running old code on newer cpu - arm doesn't support that */ | ||

172 | #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ | 211 | #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ |

173 | || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ | 212 | || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ |

213 | || defined __ARM_ARCH_6T2__ | ||

174 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") | 214 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") |

175 | #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ | 215 | #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ |

176 | || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ | 216 | || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ |

177 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") | 217 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") |

178 | #elif __aarch64__ | 218 | #elif __aarch64__ |

179 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") | 219 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") |

180 | #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) | 220 | #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) |

181 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") | 221 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") |

… | … | ||

208 | #if ECB_GCC_VERSION(4,7) | 248 | #if ECB_GCC_VERSION(4,7) |

209 | /* see comment below (stdatomic.h) about the C11 memory model. */ | 249 | /* see comment below (stdatomic.h) about the C11 memory model. */ |

210 | #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) | 250 | #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) |

211 | #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) | 251 | #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) |

212 | #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) | 252 | #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) |

253 | #undef ECB_MEMORY_FENCE_RELAXED | ||

254 | #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) | ||

213 | 255 | ||

214 | #elif ECB_CLANG_EXTENSION(c_atomic) | 256 | #elif ECB_CLANG_EXTENSION(c_atomic) |

215 | /* see comment below (stdatomic.h) about the C11 memory model. */ | 257 | /* see comment below (stdatomic.h) about the C11 memory model. */ |

216 | #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) | 258 | #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) |

217 | #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) | 259 | #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) |

218 | #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) | 260 | #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) |

261 | #undef ECB_MEMORY_FENCE_RELAXED | ||

262 | #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) | ||

219 | 263 | ||

220 | #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ | 264 | #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ |

221 | #define ECB_MEMORY_FENCE __sync_synchronize () | 265 | #define ECB_MEMORY_FENCE __sync_synchronize () |

222 | #elif _MSC_VER >= 1500 /* VC++ 2008 */ | 266 | #elif _MSC_VER >= 1500 /* VC++ 2008 */ |

223 | /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ | 267 | /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ |

… | … | ||

233 | #elif defined _WIN32 | 277 | #elif defined _WIN32 |

234 | #include <WinNT.h> | 278 | #include <WinNT.h> |

235 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ | 279 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |

236 | #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 | 280 | #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |

237 | #include <mbarrier.h> | 281 | #include <mbarrier.h> |

238 | #define ECB_MEMORY_FENCE __machine_rw_barrier () | 282 | #define ECB_MEMORY_FENCE __machine_rw_barrier () |

239 | #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () | 283 | #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier () |

240 | #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () | 284 | #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier () |

285 | #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier () | ||

241 | #elif __xlC__ | 286 | #elif __xlC__ |

242 | #define ECB_MEMORY_FENCE __sync () | 287 | #define ECB_MEMORY_FENCE __sync () |

243 | #endif | 288 | #endif |

244 | #endif | 289 | #endif |

245 | 290 | ||

246 | #ifndef ECB_MEMORY_FENCE | 291 | #ifndef ECB_MEMORY_FENCE |

247 | #if ECB_C11 && !defined __STDC_NO_ATOMICS__ | 292 | #if ECB_C11 && !defined __STDC_NO_ATOMICS__ |

248 | /* we assume that these memory fences work on all variables/all memory accesses, */ | 293 | /* we assume that these memory fences work on all variables/all memory accesses, */ |

249 | /* not just C11 atomics and atomic accesses */ | 294 | /* not just C11 atomics and atomic accesses */ |

250 | #include <stdatomic.h> | 295 | #include <stdatomic.h> |

251 | /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ | ||

252 | /* any fence other than seq_cst, which isn't very efficient for us. */ | ||

253 | /* Why that is, we don't know - either the C11 memory model is quite useless */ | ||

254 | /* for most usages, or gcc and clang have a bug */ | ||

255 | /* I *currently* lean towards the latter, and inefficiently implement */ | ||

256 | /* all three of ecb's fences as a seq_cst fence */ | ||

257 | /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ | ||

258 | /* for all __atomic_thread_fence's except seq_cst */ | ||

259 | #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) | 296 | #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) |

297 | #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire) | ||

298 | #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release) | ||

260 | #endif | 299 | #endif |

261 | #endif | 300 | #endif |

262 | 301 | ||

263 | #ifndef ECB_MEMORY_FENCE | 302 | #ifndef ECB_MEMORY_FENCE |

264 | #if !ECB_AVOID_PTHREADS | 303 | #if !ECB_AVOID_PTHREADS |

… | … | ||

284 | 323 | ||

285 | #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE | 324 | #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE |

286 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE | 325 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |

287 | #endif | 326 | #endif |

288 | 327 | ||

328 | #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE | ||

329 | #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */ | ||

330 | #endif | ||

331 | |||

289 | /*****************************************************************************/ | 332 | /*****************************************************************************/ |

290 | 333 | ||

291 | #if ECB_CPP | 334 | #if ECB_CPP |

292 | #define ecb_inline static inline | 335 | #define ecb_inline static inline |

293 | #elif ECB_GCC_VERSION(2,5) | 336 | #elif ECB_GCC_VERSION(2,5) |

… | … | ||

423 | #else | 466 | #else |

424 | ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); | 467 | ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); |

425 | ecb_function_ ecb_const int | 468 | ecb_function_ ecb_const int |

426 | ecb_ctz32 (uint32_t x) | 469 | ecb_ctz32 (uint32_t x) |

427 | { | 470 | { |

471 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) | ||

472 | unsigned long r; | ||

473 | _BitScanForward (&r, x); | ||

474 | return (int)r; | ||

475 | #else | ||

428 | int r = 0; | 476 | int r = 0; |

429 | 477 | ||

430 | x &= ~x + 1; /* this isolates the lowest bit */ | 478 | x &= ~x + 1; /* this isolates the lowest bit */ |

431 | 479 | ||

432 | #if ECB_branchless_on_i386 | 480 | #if ECB_branchless_on_i386 |

… | … | ||

442 | if (x & 0xff00ff00) r += 8; | 490 | if (x & 0xff00ff00) r += 8; |

443 | if (x & 0xffff0000) r += 16; | 491 | if (x & 0xffff0000) r += 16; |

444 | #endif | 492 | #endif |

445 | 493 | ||

446 | return r; | 494 | return r; |

495 | #endif | ||

447 | } | 496 | } |

448 | 497 | ||

449 | ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); | 498 | ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); |

450 | ecb_function_ ecb_const int | 499 | ecb_function_ ecb_const int |

451 | ecb_ctz64 (uint64_t x) | 500 | ecb_ctz64 (uint64_t x) |

452 | { | 501 | { |

502 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) | ||

503 | unsigned long r; | ||

504 | _BitScanForward64 (&r, x); | ||

505 | return (int)r; | ||

506 | #else | ||

453 | int shift = x & 0xffffffff ? 0 : 32; | 507 | int shift = x & 0xffffffff ? 0 : 32; |

454 | return ecb_ctz32 (x >> shift) + shift; | 508 | return ecb_ctz32 (x >> shift) + shift; |

509 | #endif | ||

455 | } | 510 | } |

456 | 511 | ||

457 | ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); | 512 | ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); |

458 | ecb_function_ ecb_const int | 513 | ecb_function_ ecb_const int |

459 | ecb_popcount32 (uint32_t x) | 514 | ecb_popcount32 (uint32_t x) |

… | … | ||

467 | } | 522 | } |

468 | 523 | ||

469 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x); | 524 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x); |

470 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x) | 525 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x) |

471 | { | 526 | { |

527 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) | ||

528 | unsigned long r; | ||

529 | _BitScanReverse (&r, x); | ||

530 | return (int)r; | ||

531 | #else | ||

472 | int r = 0; | 532 | int r = 0; |

473 | 533 | ||

474 | if (x >> 16) { x >>= 16; r += 16; } | 534 | if (x >> 16) { x >>= 16; r += 16; } |

475 | if (x >> 8) { x >>= 8; r += 8; } | 535 | if (x >> 8) { x >>= 8; r += 8; } |

476 | if (x >> 4) { x >>= 4; r += 4; } | 536 | if (x >> 4) { x >>= 4; r += 4; } |

477 | if (x >> 2) { x >>= 2; r += 2; } | 537 | if (x >> 2) { x >>= 2; r += 2; } |

478 | if (x >> 1) { r += 1; } | 538 | if (x >> 1) { r += 1; } |

479 | 539 | ||

480 | return r; | 540 | return r; |

541 | #endif | ||

481 | } | 542 | } |

482 | 543 | ||

483 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x); | 544 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x); |

484 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x) | 545 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x) |

485 | { | 546 | { |

547 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) | ||

548 | unsigned long r; | ||

549 | _BitScanReverse64 (&r, x); | ||

550 | return (int)r; | ||

551 | #else | ||

486 | int r = 0; | 552 | int r = 0; |

487 | 553 | ||

488 | if (x >> 32) { x >>= 32; r += 32; } | 554 | if (x >> 32) { x >>= 32; r += 32; } |

489 | 555 | ||

490 | return r + ecb_ld32 (x); | 556 | return r + ecb_ld32 (x); |

557 | #endif | ||

491 | } | 558 | } |

492 | #endif | 559 | #endif |

493 | 560 | ||

494 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); | 561 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); |

495 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } | 562 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } |

… | … | ||

542 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); | 609 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); |

543 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); | 610 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); |

544 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); | 611 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); |

545 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); | 612 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); |

546 | 613 | ||

547 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } | 614 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } |

548 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } | 615 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } |

549 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } | 616 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } |

550 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } | 617 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } |

551 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } | 618 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } |

552 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } | 619 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } |

553 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } | 620 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } |

554 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } | 621 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } |

622 | |||

623 | #if ECB_CPP | ||

624 | |||

625 | inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } | ||

626 | inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } | ||

627 | inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); } | ||

628 | inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); } | ||

629 | |||

630 | inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); } | ||

631 | inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); } | ||

632 | inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); } | ||

633 | inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); } | ||

634 | |||

635 | inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); } | ||

636 | inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); } | ||

637 | inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); } | ||

638 | inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); } | ||

639 | |||

640 | inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); } | ||

641 | inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); } | ||

642 | inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); } | ||

643 | inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); } | ||

644 | |||

645 | inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); } | ||

646 | inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); } | ||

647 | inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); } | ||

648 | |||

649 | inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); } | ||

650 | inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); } | ||

651 | inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); } | ||

652 | inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); } | ||

653 | |||

654 | inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); } | ||

655 | inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); } | ||

656 | inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); } | ||

657 | inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); } | ||

658 | |||

659 | #endif | ||

555 | 660 | ||

556 | #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) | 661 | #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) |

557 | #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) | 662 | #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) |

558 | #define ecb_bswap16(x) __builtin_bswap16 (x) | 663 | #define ecb_bswap16(x) __builtin_bswap16 (x) |

559 | #else | 664 | #else |

… | … | ||

598 | #endif | 703 | #endif |

599 | 704 | ||

600 | /* try to tell the compiler that some condition is definitely true */ | 705 | /* try to tell the compiler that some condition is definitely true */ |

601 | #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 | 706 | #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 |

602 | 707 | ||

603 | ecb_inline ecb_const unsigned char ecb_byteorder_helper (void); | 708 | ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); |

604 | ecb_inline ecb_const unsigned char | 709 | ecb_inline ecb_const uint32_t |

605 | ecb_byteorder_helper (void) | 710 | ecb_byteorder_helper (void) |

606 | { | 711 | { |

607 | /* the union code still generates code under pressure in gcc, */ | 712 | /* the union code still generates code under pressure in gcc, */ |

608 | /* but less than using pointers, and always seems to */ | 713 | /* but less than using pointers, and always seems to */ |

609 | /* successfully return a constant. */ | 714 | /* successfully return a constant. */ |

610 | /* the reason why we have this horrible preprocessor mess */ | 715 | /* the reason why we have this horrible preprocessor mess */ |

611 | /* is to avoid it in all cases, at least on common architectures */ | 716 | /* is to avoid it in all cases, at least on common architectures */ |

612 | /* or when using a recent enough gcc version (>= 4.6) */ | 717 | /* or when using a recent enough gcc version (>= 4.6) */ |

613 | #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64 | ||

614 | return 0x44; | ||

615 | #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ | 718 | #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |

719 | || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) | ||

720 | #define ECB_LITTLE_ENDIAN 1 | ||

616 | return 0x44; | 721 | return 0x44332211; |

617 | #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ | 722 | #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ |

723 | || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) | ||

724 | #define ECB_BIG_ENDIAN 1 | ||

618 | return 0x11; | 725 | return 0x11223344; |

619 | #else | 726 | #else |

620 | union | 727 | union |

621 | { | 728 | { |

729 | uint8_t c[4]; | ||

622 | uint32_t i; | 730 | uint32_t u; |

623 | uint8_t c; | ||

624 | } u = { 0x11223344 }; | 731 | } u = { 0x11, 0x22, 0x33, 0x44 }; |

625 | return u.c; | 732 | return u.u; |

626 | #endif | 733 | #endif |

627 | } | 734 | } |

628 | 735 | ||

629 | ecb_inline ecb_const ecb_bool ecb_big_endian (void); | 736 | ecb_inline ecb_const ecb_bool ecb_big_endian (void); |

630 | ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } | 737 | ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } |

631 | ecb_inline ecb_const ecb_bool ecb_little_endian (void); | 738 | ecb_inline ecb_const ecb_bool ecb_little_endian (void); |

632 | ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } | 739 | ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } |

740 | |||

741 | /*****************************************************************************/ | ||

742 | /* unaligned load/store */ | ||

743 | |||

744 | ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } | ||

745 | ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } | ||

746 | ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } | ||

747 | |||

748 | ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } | ||

749 | ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } | ||

750 | ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } | ||

751 | |||

752 | ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; } | ||

753 | ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; } | ||

754 | ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; } | ||

755 | |||

756 | ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); } | ||

757 | ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); } | ||

758 | ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); } | ||

759 | |||

760 | ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); } | ||

761 | ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); } | ||

762 | ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); } | ||

763 | |||

764 | ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } | ||

765 | ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } | ||

766 | ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } | ||

767 | |||

768 | ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } | ||

769 | ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } | ||

770 | ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } | ||

771 | |||

772 | ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); } | ||

773 | ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); } | ||

774 | ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } | ||

775 | |||

776 | ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } | ||

777 | ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } | ||

778 | ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } | ||

779 | |||

780 | ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } | ||

781 | ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } | ||

782 | ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } | ||

783 | |||

784 | #if ECB_CPP | ||

785 | |||

786 | inline uint8_t ecb_bswap (uint8_t v) { return v; } | ||

787 | inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); } | ||

788 | inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); } | ||

789 | inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); } | ||

790 | |||

791 | template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } | ||

792 | template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } | ||

793 | template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; } | ||

794 | template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); } | ||

795 | template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); } | ||

796 | template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; } | ||

797 | template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); } | ||

798 | template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); } | ||

799 | |||

800 | template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } | ||

801 | template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } | ||

802 | template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; } | ||

803 | template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); } | ||

804 | template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); } | ||

805 | template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); } | ||

806 | template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); } | ||

807 | template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } | ||

808 | |||

809 | #endif | ||

810 | |||

811 | /*****************************************************************************/ | ||

812 | /* pointer/integer hashing */ | ||

813 | |||

814 | /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ | ||

815 | ecb_function_ uint32_t ecb_mix32 (uint32_t v); | ||

816 | ecb_function_ uint32_t ecb_mix32 (uint32_t v) | ||

817 | { | ||

818 | v ^= v >> 16; v *= 0x7feb352dU; | ||

819 | v ^= v >> 15; v *= 0x846ca68bU; | ||

820 | v ^= v >> 16; | ||

821 | return v; | ||

822 | } | ||

823 | |||

824 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v); | ||

825 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v) | ||

826 | { | ||

827 | v ^= v >> 16 ; v *= 0x43021123U; | ||

828 | v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; | ||

829 | v ^= v >> 16 ; | ||

830 | return v; | ||

831 | } | ||

832 | |||

833 | /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ | ||

834 | ecb_function_ uint64_t ecb_mix64 (uint64_t v); | ||

835 | ecb_function_ uint64_t ecb_mix64 (uint64_t v) | ||

836 | { | ||

837 | v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; | ||

838 | v ^= v >> 27; v *= 0x94d049bb133111ebU; | ||

839 | v ^= v >> 31; | ||

840 | return v; | ||

841 | } | ||

842 | |||

843 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v); | ||

844 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v) | ||

845 | { | ||

846 | v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; | ||

847 | v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; | ||

848 | v ^= v >> 30 ^ v >> 60; | ||

849 | return v; | ||

850 | } | ||

851 | |||

852 | ecb_function_ uintptr_t ecb_ptrmix (void *p); | ||

853 | ecb_function_ uintptr_t ecb_ptrmix (void *p) | ||

854 | { | ||

855 | #if ECB_PTRSIZE <= 4 | ||

856 | return ecb_mix32 ((uint32_t)p); | ||

857 | #else | ||

858 | return ecb_mix64 ((uint64_t)p); | ||

859 | #endif | ||

860 | } | ||

861 | |||

862 | ecb_function_ void *ecb_ptrunmix (uintptr_t v); | ||

863 | ecb_function_ void *ecb_ptrunmix (uintptr_t v) | ||

864 | { | ||

865 | #if ECB_PTRSIZE <= 4 | ||

866 | return (void *)ecb_unmix32 (v); | ||

867 | #else | ||

868 | return (void *)ecb_unmix64 (v); | ||

869 | #endif | ||

870 | } | ||

871 | |||

872 | #if ECB_CPP | ||

873 | |||

874 | template<typename T> | ||

875 | inline uintptr_t ecb_ptrmix (T *p) | ||

876 | { | ||

877 | return ecb_ptrmix (static_cast<void *>(p)); | ||

878 | } | ||

879 | |||

880 | template<typename T> | ||

881 | inline T *ecb_ptrunmix (uintptr_t v) | ||

882 | { | ||

883 | return static_cast<T *>(ecb_ptrunmix (v)); | ||

884 | } | ||

885 | |||

886 | #endif | ||

887 | |||

888 | /*****************************************************************************/ | ||

889 | /* gray code */ | ||

890 | |||

891 | ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); } | ||

892 | ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); } | ||

893 | ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); } | ||

894 | ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); } | ||

895 | |||

896 | ecb_function_ uint8_t ecb_gray8_decode (uint8_t g) | ||

897 | { | ||

898 | g ^= g >> 1; | ||

899 | g ^= g >> 2; | ||

900 | g ^= g >> 4; | ||

901 | |||

902 | return g; | ||

903 | } | ||

904 | |||

905 | ecb_function_ uint16_t ecb_gray16_decode (uint16_t g) | ||

906 | { | ||

907 | g ^= g >> 1; | ||

908 | g ^= g >> 2; | ||

909 | g ^= g >> 4; | ||

910 | g ^= g >> 8; | ||

911 | |||

912 | return g; | ||

913 | } | ||

914 | |||

915 | ecb_function_ uint32_t ecb_gray32_decode (uint32_t g) | ||

916 | { | ||

917 | g ^= g >> 1; | ||

918 | g ^= g >> 2; | ||

919 | g ^= g >> 4; | ||

920 | g ^= g >> 8; | ||

921 | g ^= g >> 16; | ||

922 | |||

923 | return g; | ||

924 | } | ||

925 | |||

926 | ecb_function_ uint64_t ecb_gray64_decode (uint64_t g) | ||

927 | { | ||

928 | g ^= g >> 1; | ||

929 | g ^= g >> 2; | ||

930 | g ^= g >> 4; | ||

931 | g ^= g >> 8; | ||

932 | g ^= g >> 16; | ||

933 | g ^= g >> 32; | ||

934 | |||

935 | return g; | ||

936 | } | ||

937 | |||

938 | #if ECB_CPP | ||

939 | |||

940 | ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); } | ||

941 | ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); } | ||

942 | ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); } | ||

943 | ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); } | ||

944 | |||

945 | ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); } | ||

946 | ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); } | ||

947 | ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); } | ||

948 | ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); } | ||

949 | |||

950 | #endif | ||

951 | |||

952 | /*****************************************************************************/ | ||

953 | /* 2d hilbert curves */ | ||

954 | |||

955 | /* algorithm from the book Hacker's Delight, modified to not */ | ||

956 | /* run into undefined behaviour for n==16 */ | ||

957 | static uint32_t | ||

958 | ecb_hilbert2d_index_to_coord32 (int n, uint32_t s) | ||

959 | { | ||

960 | uint32_t comp, swap, cs, t, sr; | ||

961 | |||

962 | /* pad s on the left (unused) bits with 01 (no change groups) */ | ||

963 | s |= 0x55555555U << n << n; | ||

964 | /* "s shift right" */ | ||

965 | sr = (s >> 1) & 0x55555555U; | ||

966 | /* compute complement and swap info in two-bit groups */ | ||

967 | cs = ((s & 0x55555555U) + sr) ^ 0x55555555U; | ||

968 | |||

969 | /* parallel prefix xor op to propagate both complement | ||

970 | * and swap info together from left to right (there is | ||

971 | * no step "cs ^= cs >> 1", so in effect it computes | ||

972 | * two independent parallel prefix operations on two | ||

973 | * interleaved sets of sixteen bits). | ||

974 | */ | ||

975 | cs ^= cs >> 2; | ||

976 | cs ^= cs >> 4; | ||

977 | cs ^= cs >> 8; | ||

978 | cs ^= cs >> 16; | ||

979 | |||

980 | /* separate swap and complement bits */ | ||

981 | swap = cs & 0x55555555U; | ||

982 | comp = (cs >> 1) & 0x55555555U; | ||

983 | |||

984 | /* calculate coordinates in odd and even bit positions */ | ||

985 | t = (s & swap) ^ comp; | ||

986 | s = s ^ sr ^ t ^ (t << 1); | ||

987 | |||

988 | /* unpad/clear out any junk on the left */ | ||

989 | s = s & ((1 << n << n) - 1); | ||

990 | |||

991 | /* Now "unshuffle" to separate the x and y bits. */ | ||

992 | t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1); | ||

993 | t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2); | ||

994 | t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4); | ||

995 | t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8); | ||

996 | |||

997 | /* now s contains two 16-bit coordinates */ | ||

998 | return s; | ||

999 | } | ||

1000 | |||

1001 | /* 64 bit, a straightforward extension to the 32 bit case */ | ||

1002 | static uint64_t | ||

1003 | ecb_hilbert2d_index_to_coord64 (int n, uint64_t s) | ||

1004 | { | ||

1005 | uint64_t comp, swap, cs, t, sr; | ||

1006 | |||

1007 | /* pad s on the left (unused) bits with 01 (no change groups) */ | ||

1008 | s |= 0x5555555555555555U << n << n; | ||

1009 | /* "s shift right" */ | ||

1010 | sr = (s >> 1) & 0x5555555555555555U; | ||

1011 | /* compute complement and swap info in two-bit groups */ | ||

1012 | cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U; | ||

1013 | |||

1014 | /* parallel prefix xor op to propagate both complement | ||

1015 | * and swap info together from left to right (there is | ||

1016 | * no step "cs ^= cs >> 1", so in effect it computes | ||

1017 | * two independent parallel prefix operations on two | ||

1018 | * interleaved sets of thirty-two bits). | ||

1019 | */ | ||

1020 | cs ^= cs >> 2; | ||

1021 | cs ^= cs >> 4; | ||

1022 | cs ^= cs >> 8; | ||

1023 | cs ^= cs >> 16; | ||

1024 | cs ^= cs >> 32; | ||

1025 | |||

1026 | /* separate swap and complement bits */ | ||

1027 | swap = cs & 0x5555555555555555U; | ||

1028 | comp = (cs >> 1) & 0x5555555555555555U; | ||

1029 | |||

1030 | /* calculate coordinates in odd and even bit positions */ | ||

1031 | t = (s & swap) ^ comp; | ||

1032 | s = s ^ sr ^ t ^ (t << 1); | ||

1033 | |||

1034 | /* unpad/clear out any junk on the left */ | ||

1035 | s = s & ((1 << n << n) - 1); | ||

1036 | |||

1037 | /* Now "unshuffle" to separate the x and y bits. */ | ||

1038 | t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1); | ||

1039 | t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2); | ||

1040 | t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4); | ||

1041 | t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8); | ||

1042 | t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16); | ||

1043 | |||

1044 | /* now s contains two 32-bit coordinates */ | ||

1045 | return s; | ||

1046 | } | ||

1047 | |||

1048 | /* algorithm from the book Hacker's Delight, but a similar algorithm*/ | ||

1049 | /* is given in https://doi.org/10.1002/spe.4380160103 */ | ||

1050 | /* this has been slightly improved over the original version */ | ||

1051 | ecb_function_ uint32_t | ||

1052 | ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy) | ||

1053 | { | ||

1054 | uint32_t row; | ||

1055 | uint32_t state = 0; | ||

1056 | uint32_t s = 0; | ||

1057 | |||

1058 | do | ||

1059 | { | ||

1060 | --n; | ||

1061 | |||

1062 | row = 4 * state | ||

1063 | | (2 & (xy >> n >> 15)) | ||

1064 | | (1 & (xy >> n )); | ||

1065 | |||

1066 | /* these funky constants are lookup tables for two-bit values */ | ||

1067 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; | ||

1068 | state = (0x8fe65831U >> 2 * row) & 3; | ||

1069 | } | ||

1070 | while (n > 0); | ||

1071 | |||

1072 | return s; | ||

1073 | } | ||

1074 | |||

1075 | /* 64 bit, essentially the same as 32 bit */ | ||

1076 | ecb_function_ uint64_t | ||

1077 | ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy) | ||

1078 | { | ||

1079 | uint32_t row; | ||

1080 | uint32_t state = 0; | ||

1081 | uint64_t s = 0; | ||

1082 | |||

1083 | do | ||

1084 | { | ||

1085 | --n; | ||

1086 | |||

1087 | row = 4 * state | ||

1088 | | (2 & (xy >> n >> 31)) | ||

1089 | | (1 & (xy >> n )); | ||

1090 | |||

1091 | /* these funky constants are lookup tables for two-bit values */ | ||

1092 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; | ||

1093 | state = (0x8fe65831U >> 2 * row) & 3; | ||

1094 | } | ||

1095 | while (n > 0); | ||

1096 | |||

1097 | return s; | ||

1098 | } | ||

1099 | |||

1100 | /*****************************************************************************/ | ||

1101 | /* division */ | ||

633 | 1102 | ||

634 | #if ECB_GCC_VERSION(3,0) || ECB_C99 | 1103 | #if ECB_GCC_VERSION(3,0) || ECB_C99 |

1104 | /* C99 tightened the definition of %, so we can use a more efficient version */ | ||

635 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) | 1105 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |

636 | #else | 1106 | #else |

637 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) | 1107 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |

638 | #endif | 1108 | #endif |

639 | 1109 | ||

… | … | ||

651 | #else | 1121 | #else |

652 | #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) | 1122 | #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) |

653 | #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) | 1123 | #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) |

654 | #endif | 1124 | #endif |

655 | 1125 | ||

1126 | /*****************************************************************************/ | ||

1127 | /* array length */ | ||

1128 | |||

656 | #if ecb_cplusplus_does_not_suck | 1129 | #if ecb_cplusplus_does_not_suck |

657 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ | 1130 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |

658 | template<typename T, int N> | 1131 | template<typename T, int N> |

659 | static inline int ecb_array_length (const T (&arr)[N]) | 1132 | static inline int ecb_array_length (const T (&arr)[N]) |

660 | { | 1133 | { |

… | … | ||

662 | } | 1135 | } |

663 | #else | 1136 | #else |

664 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) | 1137 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |

665 | #endif | 1138 | #endif |

666 | 1139 | ||

1140 | /*****************************************************************************/ | ||

1141 | /* IEEE 754-2008 half float conversions */ | ||

1142 | |||

667 | ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint16_t x); | 1143 | ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); |

668 | ecb_function_ ecb_const uint32_t | 1144 | ecb_function_ ecb_const uint32_t |

669 | ecb_binary16_to_binary32 (uint16_t x) | 1145 | ecb_binary16_to_binary32 (uint32_t x) |

670 | { | 1146 | { |

671 | unsigned int s = (x & 0x8000) << (31 - 15); | 1147 | unsigned int s = (x & 0x8000) << (31 - 15); |

672 | int e = (x >> 10) & 0x001f; | 1148 | int e = (x >> 10) & 0x001f; |

673 | unsigned int m = x & 0x03ff; | 1149 | unsigned int m = x & 0x03ff; |

674 | 1150 | ||

… | … | ||

699 | ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); | 1175 | ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); |

700 | ecb_function_ ecb_const uint16_t | 1176 | ecb_function_ ecb_const uint16_t |

701 | ecb_binary32_to_binary16 (uint32_t x) | 1177 | ecb_binary32_to_binary16 (uint32_t x) |

702 | { | 1178 | { |

703 | unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ | 1179 | unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ |

704 | unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ | 1180 | int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ |

705 | unsigned int m = x & 0x007fffff; | 1181 | unsigned int m = x & 0x007fffff; |

706 | 1182 | ||

707 | x &= 0x7fffffff; | 1183 | x &= 0x7fffffff; |

708 | 1184 | ||

709 | /* if it's within range of binary16 normals, use fast path */ | 1185 | /* if it's within range of binary16 normals, use fast path */ |

… | … | ||

724 | 1200 | ||

725 | /* handle large numbers and infinity */ | 1201 | /* handle large numbers and infinity */ |

726 | if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) | 1202 | if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) |

727 | return s | 0x7c00; | 1203 | return s | 0x7c00; |

728 | 1204 | ||

729 | /* handle zero and subnormals */ | 1205 | /* handle zero, subnormals and small numbers */ |

730 | if (ecb_expect_true (x < 0x38800000)) | 1206 | if (ecb_expect_true (x < 0x38800000)) |

731 | { | 1207 | { |

732 | /* zero */ | 1208 | /* zero */ |

733 | if (ecb_expect_true (!x)) | 1209 | if (ecb_expect_true (!x)) |

734 | return s; | 1210 | return s; |

735 | 1211 | ||

736 | /* handle subnormals */ | 1212 | /* handle subnormals */ |

737 | 1213 | ||

1214 | /* too small, will be zero */ | ||

1215 | if (e < (14 - 24)) /* might not be sharp, but is good enough */ | ||

1216 | return s; | ||

1217 | |||

738 | m |= 0x00800000; /* make implicit bit explicit */ | 1218 | m |= 0x00800000; /* make implicit bit explicit */ |

739 | 1219 | ||

740 | /* very tricky - we need to round to the nearest e (+10) bit value */ | 1220 | /* very tricky - we need to round to the nearest e (+10) bit value */ |

741 | { | 1221 | { |

742 | unsigned int bits = 14 - e; | 1222 | unsigned int bits = 14 - e; |

… | … | ||

752 | 1232 | ||

753 | /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ | 1233 | /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ |

754 | m >>= 13; | 1234 | m >>= 13; |

755 | 1235 | ||

756 | return s | 0x7c00 | m | !m; | 1236 | return s | 0x7c00 | m | !m; |

1237 | } | ||

1238 | |||

1239 | /*******************************************************************************/ | ||

1240 | /* fast integer to ascii */ | ||

1241 | |||

1242 | /* | ||

1243 | * This code is pretty complicated because it is general. The idea behind it, | ||

1244 | * however, is pretty simple: first, the number is multiplied with a scaling | ||

1245 | * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point | ||

1246 | * number with the first digit in the upper bits. | ||

1247 | * Then this digit is converted to text and masked out. The resulting number | ||

1248 | * is then multiplied by 10, by multiplying the fixed point representation | ||

1249 | * by 5 and shifting the (binary) decimal point one to the right, so a 4.28 | ||

1250 | * format becomes 5.27, 6.26 and so on. | ||

1251 | * The rest involves only advancing the pointer if we already generated a | ||

1252 | * non-zero digit, so leading zeroes are overwritten. | ||

1253 | */ | ||

1254 | |||

1255 | /* simply return a mask with "bits" bits set */ | ||

1256 | #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) | ||

1257 | |||

1258 | /* oputput a single digit. maskvalue is 10**digitidx */ | ||

1259 | #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ | ||

1260 | if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ | ||

1261 | { \ | ||

1262 | char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ | ||

1263 | *ptr = digit + '0'; /* output it */ \ | ||

1264 | nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ | ||

1265 | ptr += nz; /* output digit only if non-zero digit seen */ \ | ||

1266 | x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ | ||

1267 | } | ||

1268 | |||

1269 | /* convert integer to fixed point format and multiply out digits, highest first */ | ||

1270 | /* requires magic constants: max. digits and number of bits after the decimal point */ | ||

1271 | #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ | ||

1272 | ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ | ||

1273 | { \ | ||

1274 | char nz = lz; /* non-zero digit seen? */ \ | ||

1275 | /* convert to x.bits fixed-point */ \ | ||

1276 | type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \ | ||

1277 | /* output up to 10 digits */ \ | ||

1278 | ecb_i2a_digit (type,bits,digitmask, 1, 0); \ | ||

1279 | ecb_i2a_digit (type,bits,digitmask, 10, 1); \ | ||

1280 | ecb_i2a_digit (type,bits,digitmask, 100, 2); \ | ||

1281 | ecb_i2a_digit (type,bits,digitmask, 1000, 3); \ | ||

1282 | ecb_i2a_digit (type,bits,digitmask, 10000, 4); \ | ||

1283 | ecb_i2a_digit (type,bits,digitmask, 100000, 5); \ | ||

1284 | ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \ | ||

1285 | ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \ | ||

1286 | ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ | ||

1287 | ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ | ||

1288 | return ptr; \ | ||

1289 | } | ||

1290 | |||

1291 | /* predefined versions of the above, for various digits */ | ||

1292 | /* ecb_i2a_xN = almost N digits, limit defined by macro */ | ||

1293 | /* ecb_i2a_N = up to N digits, leading zeroes suppressed */ | ||

1294 | /* ecb_i2a_0N = exactly N digits, including leading zeroes */ | ||

1295 | |||

1296 | /* non-leading-zero versions, limited range */ | ||

1297 | #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */ | ||

1298 | #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */ | ||

1299 | ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) | ||

1300 | ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) | ||

1301 | |||

1302 | /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */ | ||

1303 | ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) | ||

1304 | ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) | ||

1305 | ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) | ||

1306 | ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) | ||

1307 | ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) | ||

1308 | ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) | ||

1309 | ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) | ||

1310 | ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) | ||

1311 | |||

1312 | /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */ | ||

1313 | ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) | ||

1314 | ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) | ||

1315 | ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) | ||

1316 | ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) | ||

1317 | ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) | ||

1318 | ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1) | ||

1319 | ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1) | ||

1320 | ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1) | ||

1321 | |||

1322 | #define ECB_I2A_I32_DIGITS 11 | ||

1323 | #define ECB_I2A_U32_DIGITS 10 | ||

1324 | #define ECB_I2A_I64_DIGITS 20 | ||

1325 | #define ECB_I2A_U64_DIGITS 21 | ||

1326 | #define ECB_I2A_MAX_DIGITS 21 | ||

1327 | |||

1328 | ecb_inline char * | ||

1329 | ecb_i2a_u32 (char *ptr, uint32_t u) | ||

1330 | { | ||

1331 | #if ECB_64BIT_NATIVE | ||

1332 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) | ||

1333 | ptr = ecb_i2a_x10 (ptr, u); | ||

1334 | else /* x10 almost, but not fully, covers 32 bit */ | ||

1335 | { | ||

1336 | uint32_t u1 = u % 1000000000; | ||

1337 | uint32_t u2 = u / 1000000000; | ||

1338 | |||

1339 | *ptr++ = u2 + '0'; | ||

1340 | ptr = ecb_i2a_09 (ptr, u1); | ||

1341 | } | ||

1342 | #else | ||

1343 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) | ||

1344 | ecb_i2a_x5 (ptr, u); | ||

1345 | else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000)) | ||

1346 | { | ||

1347 | uint32_t u1 = u % 10000; | ||

1348 | uint32_t u2 = u / 10000; | ||

1349 | |||

1350 | ptr = ecb_i2a_x5 (ptr, u2); | ||

1351 | ptr = ecb_i2a_04 (ptr, u1); | ||

1352 | } | ||

1353 | else | ||

1354 | { | ||

1355 | uint32_t u1 = u % 10000; | ||

1356 | uint32_t ua = u / 10000; | ||

1357 | uint32_t u2 = ua % 10000; | ||

1358 | uint32_t u3 = ua / 10000; | ||

1359 | |||

1360 | ptr = ecb_i2a_2 (ptr, u3); | ||

1361 | ptr = ecb_i2a_04 (ptr, u2); | ||

1362 | ptr = ecb_i2a_04 (ptr, u1); | ||

1363 | } | ||

1364 | #endif | ||

1365 | |||

1366 | return ptr; | ||

1367 | } | ||

1368 | |||

1369 | ecb_inline char * | ||

1370 | ecb_i2a_i32 (char *ptr, int32_t v) | ||

1371 | { | ||

1372 | *ptr = '-'; ptr += v < 0; | ||

1373 | uint32_t u = v < 0 ? -(uint32_t)v : v; | ||

1374 | |||

1375 | #if ECB_64BIT_NATIVE | ||

1376 | ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */ | ||

1377 | #else | ||

1378 | ptr = ecb_i2a_u32 (ptr, u); | ||

1379 | #endif | ||

1380 | |||

1381 | return ptr; | ||

1382 | } | ||

1383 | |||

1384 | ecb_inline char * | ||

1385 | ecb_i2a_u64 (char *ptr, uint64_t u) | ||

1386 | { | ||

1387 | #if ECB_64BIT_NATIVE | ||

1388 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) | ||

1389 | ptr = ecb_i2a_x10 (ptr, u); | ||

1390 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) | ||

1391 | { | ||

1392 | uint64_t u1 = u % 1000000000; | ||

1393 | uint64_t u2 = u / 1000000000; | ||

1394 | |||

1395 | ptr = ecb_i2a_x10 (ptr, u2); | ||

1396 | ptr = ecb_i2a_09 (ptr, u1); | ||

1397 | } | ||

1398 | else | ||

1399 | { | ||

1400 | uint64_t u1 = u % 1000000000; | ||

1401 | uint64_t ua = u / 1000000000; | ||

1402 | uint64_t u2 = ua % 1000000000; | ||

1403 | uint64_t u3 = ua / 1000000000; | ||

1404 | |||

1405 | ptr = ecb_i2a_2 (ptr, u3); | ||

1406 | ptr = ecb_i2a_09 (ptr, u2); | ||

1407 | ptr = ecb_i2a_09 (ptr, u1); | ||

1408 | } | ||

1409 | #else | ||

1410 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) | ||

1411 | ptr = ecb_i2a_x5 (ptr, u); | ||

1412 | else | ||

1413 | { | ||

1414 | uint64_t u1 = u % 10000; | ||

1415 | uint64_t u2 = u / 10000; | ||

1416 | |||

1417 | ptr = ecb_i2a_u64 (ptr, u2); | ||

1418 | ptr = ecb_i2a_04 (ptr, u1); | ||

1419 | } | ||

1420 | #endif | ||

1421 | |||

1422 | return ptr; | ||

1423 | } | ||

1424 | |||

1425 | ecb_inline char * | ||

1426 | ecb_i2a_i64 (char *ptr, int64_t v) | ||

1427 | { | ||

1428 | *ptr = '-'; ptr += v < 0; | ||

1429 | uint64_t u = v < 0 ? -(uint64_t)v : v; | ||

1430 | |||

1431 | #if ECB_64BIT_NATIVE | ||

1432 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) | ||

1433 | ptr = ecb_i2a_x10 (ptr, u); | ||

1434 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) | ||

1435 | { | ||

1436 | uint64_t u1 = u % 1000000000; | ||

1437 | uint64_t u2 = u / 1000000000; | ||

1438 | |||

1439 | ptr = ecb_i2a_x10 (ptr, u2); | ||

1440 | ptr = ecb_i2a_09 (ptr, u1); | ||

1441 | } | ||

1442 | else | ||

1443 | { | ||

1444 | uint64_t u1 = u % 1000000000; | ||

1445 | uint64_t ua = u / 1000000000; | ||

1446 | uint64_t u2 = ua % 1000000000; | ||

1447 | uint64_t u3 = ua / 1000000000; | ||

1448 | |||

1449 | /* 2**31 is 19 digits, so the top is exactly one digit */ | ||

1450 | *ptr++ = u3 + '0'; | ||

1451 | ptr = ecb_i2a_09 (ptr, u2); | ||

1452 | ptr = ecb_i2a_09 (ptr, u1); | ||

1453 | } | ||

1454 | #else | ||

1455 | ptr = ecb_i2a_u64 (ptr, u); | ||

1456 | #endif | ||

1457 | |||

1458 | return ptr; | ||

757 | } | 1459 | } |

758 | 1460 | ||

759 | /*******************************************************************************/ | 1461 | /*******************************************************************************/ |

760 | /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ | 1462 | /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ |

761 | 1463 | ||

… | … | ||

775 | || defined __sh__ \ | 1477 | || defined __sh__ \ |

776 | || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ | 1478 | || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ |

777 | || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ | 1479 | || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ |

778 | || defined __aarch64__ | 1480 | || defined __aarch64__ |

779 | #define ECB_STDFP 1 | 1481 | #define ECB_STDFP 1 |

780 | #include <string.h> /* for memcpy */ | ||

781 | #else | 1482 | #else |

782 | #define ECB_STDFP 0 | 1483 | #define ECB_STDFP 0 |

783 | #endif | 1484 | #endif |

784 | 1485 | ||

785 | #ifndef ECB_NO_LIBM | 1486 | #ifndef ECB_NO_LIBM |

– |
Removed lines |

+ |
Added lines |

< |
Changed lines |

> |
Changed lines |