1 | /* |
1 | /* |
2 | * libecb - http://software.schmorp.de/pkg/libecb |
2 | * libecb - http://software.schmorp.de/pkg/libecb |
3 | * |
3 | * |
4 | * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> |
4 | * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de> |
5 | * Copyright (©) 2011 Emanuele Giaquinta |
5 | * Copyright (©) 2011 Emanuele Giaquinta |
6 | * All rights reserved. |
6 | * All rights reserved. |
7 | * |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without modifica- |
8 | * Redistribution and use in source and binary forms, with or without modifica- |
9 | * tion, are permitted provided that the following conditions are met: |
9 | * tion, are permitted provided that the following conditions are met: |
… | |
… | |
40 | |
40 | |
41 | #ifndef ECB_H |
41 | #ifndef ECB_H |
42 | #define ECB_H |
42 | #define ECB_H |
43 | |
43 | |
44 | /* 16 bits major, 16 bits minor */ |
44 | /* 16 bits major, 16 bits minor */ |
45 | #define ECB_VERSION 0x00010005 |
45 | #define ECB_VERSION 0x0001000c |
46 | |
46 | |
47 | #ifdef _WIN32 |
47 | #include <string.h> /* for memcpy */ |
|
|
48 | |
|
|
49 | #if defined (_WIN32) && !defined (__MINGW32__) |
48 | typedef signed char int8_t; |
50 | typedef signed char int8_t; |
49 | typedef unsigned char uint8_t; |
51 | typedef unsigned char uint8_t; |
|
|
52 | typedef signed char int_fast8_t; |
|
|
53 | typedef unsigned char uint_fast8_t; |
50 | typedef signed short int16_t; |
54 | typedef signed short int16_t; |
51 | typedef unsigned short uint16_t; |
55 | typedef unsigned short uint16_t; |
|
|
56 | typedef signed int int_fast16_t; |
|
|
57 | typedef unsigned int uint_fast16_t; |
52 | typedef signed int int32_t; |
58 | typedef signed int int32_t; |
53 | typedef unsigned int uint32_t; |
59 | typedef unsigned int uint32_t; |
|
|
60 | typedef signed int int_fast32_t; |
|
|
61 | typedef unsigned int uint_fast32_t; |
54 | #if __GNUC__ |
62 | #if __GNUC__ |
55 | typedef signed long long int64_t; |
63 | typedef signed long long int64_t; |
56 | typedef unsigned long long uint64_t; |
64 | typedef unsigned long long uint64_t; |
57 | #else /* _MSC_VER || __BORLANDC__ */ |
65 | #else /* _MSC_VER || __BORLANDC__ */ |
58 | typedef signed __int64 int64_t; |
66 | typedef signed __int64 int64_t; |
59 | typedef unsigned __int64 uint64_t; |
67 | typedef unsigned __int64 uint64_t; |
60 | #endif |
68 | #endif |
|
|
69 | typedef int64_t int_fast64_t; |
|
|
70 | typedef uint64_t uint_fast64_t; |
61 | #ifdef _WIN64 |
71 | #ifdef _WIN64 |
62 | #define ECB_PTRSIZE 8 |
72 | #define ECB_PTRSIZE 8 |
63 | typedef uint64_t uintptr_t; |
73 | typedef uint64_t uintptr_t; |
64 | typedef int64_t intptr_t; |
74 | typedef int64_t intptr_t; |
65 | #else |
75 | #else |
… | |
… | |
67 | typedef uint32_t uintptr_t; |
77 | typedef uint32_t uintptr_t; |
68 | typedef int32_t intptr_t; |
78 | typedef int32_t intptr_t; |
69 | #endif |
79 | #endif |
70 | #else |
80 | #else |
71 | #include <inttypes.h> |
81 | #include <inttypes.h> |
72 | #if UINTMAX_MAX > 0xffffffffU |
82 | #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU |
73 | #define ECB_PTRSIZE 8 |
83 | #define ECB_PTRSIZE 8 |
74 | #else |
84 | #else |
75 | #define ECB_PTRSIZE 4 |
85 | #define ECB_PTRSIZE 4 |
76 | #endif |
86 | #endif |
77 | #endif |
87 | #endif |
78 | |
88 | |
79 | #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) |
89 | #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) |
80 | #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) |
90 | #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) |
|
|
91 | |
|
|
92 | #ifndef ECB_OPTIMIZE_SIZE |
|
|
93 | #if __OPTIMIZE_SIZE__ |
|
|
94 | #define ECB_OPTIMIZE_SIZE 1 |
|
|
95 | #else |
|
|
96 | #define ECB_OPTIMIZE_SIZE 0 |
|
|
97 | #endif |
|
|
98 | #endif |
81 | |
99 | |
82 | /* work around x32 idiocy by defining proper macros */ |
100 | /* work around x32 idiocy by defining proper macros */ |
83 | #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 |
101 | #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 |
84 | #if _ILP32 |
102 | #if _ILP32 |
85 | #define ECB_AMD64_X32 1 |
103 | #define ECB_AMD64_X32 1 |
86 | #else |
104 | #else |
87 | #define ECB_AMD64 1 |
105 | #define ECB_AMD64 1 |
88 | #endif |
106 | #endif |
|
|
107 | #endif |
|
|
108 | |
|
|
109 | #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32 |
|
|
110 | #define ECB_64BIT_NATIVE 1 |
|
|
111 | #else |
|
|
112 | #define ECB_64BIT_NATIVE 0 |
89 | #endif |
113 | #endif |
90 | |
114 | |
91 | /* many compilers define _GNUC_ to some versions but then only implement |
115 | /* many compilers define _GNUC_ to some versions but then only implement |
92 | * what their idiot authors think are the "more important" extensions, |
116 | * what their idiot authors think are the "more important" extensions, |
93 | * causing enormous grief in return for some better fake benchmark numbers. |
117 | * causing enormous grief in return for some better fake benchmark numbers. |
… | |
… | |
115 | #define ECB_CLANG_EXTENSION(x) 0 |
139 | #define ECB_CLANG_EXTENSION(x) 0 |
116 | #endif |
140 | #endif |
117 | |
141 | |
118 | #define ECB_CPP (__cplusplus+0) |
142 | #define ECB_CPP (__cplusplus+0) |
119 | #define ECB_CPP11 (__cplusplus >= 201103L) |
143 | #define ECB_CPP11 (__cplusplus >= 201103L) |
|
|
144 | #define ECB_CPP14 (__cplusplus >= 201402L) |
|
|
145 | #define ECB_CPP17 (__cplusplus >= 201703L) |
120 | |
146 | |
121 | #if ECB_CPP |
147 | #if ECB_CPP |
122 | #define ECB_C 0 |
148 | #define ECB_C 0 |
123 | #define ECB_STDC_VERSION 0 |
149 | #define ECB_STDC_VERSION 0 |
124 | #else |
150 | #else |
… | |
… | |
126 | #define ECB_STDC_VERSION __STDC_VERSION__ |
152 | #define ECB_STDC_VERSION __STDC_VERSION__ |
127 | #endif |
153 | #endif |
128 | |
154 | |
129 | #define ECB_C99 (ECB_STDC_VERSION >= 199901L) |
155 | #define ECB_C99 (ECB_STDC_VERSION >= 199901L) |
130 | #define ECB_C11 (ECB_STDC_VERSION >= 201112L) |
156 | #define ECB_C11 (ECB_STDC_VERSION >= 201112L) |
|
|
157 | #define ECB_C17 (ECB_STDC_VERSION >= 201710L) |
131 | |
158 | |
132 | #if ECB_CPP |
159 | #if ECB_CPP |
133 | #define ECB_EXTERN_C extern "C" |
160 | #define ECB_EXTERN_C extern "C" |
134 | #define ECB_EXTERN_C_BEG ECB_EXTERN_C { |
161 | #define ECB_EXTERN_C_BEG ECB_EXTERN_C { |
135 | #define ECB_EXTERN_C_END } |
162 | #define ECB_EXTERN_C_END } |
… | |
… | |
155 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ |
182 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ |
156 | #if __xlC__ && ECB_CPP |
183 | #if __xlC__ && ECB_CPP |
157 | #include <builtins.h> |
184 | #include <builtins.h> |
158 | #endif |
185 | #endif |
159 | |
186 | |
|
|
187 | #if 1400 <= _MSC_VER |
|
|
188 | #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ |
|
|
189 | #endif |
|
|
190 | |
160 | #ifndef ECB_MEMORY_FENCE |
191 | #ifndef ECB_MEMORY_FENCE |
161 | #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
192 | #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
|
|
193 | #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory") |
162 | #if __i386 || __i386__ |
194 | #if __i386 || __i386__ |
163 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |
195 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |
164 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
196 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
165 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") |
197 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
166 | #elif ECB_GCC_AMD64 |
198 | #elif ECB_GCC_AMD64 |
167 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |
199 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |
168 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
200 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
169 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") |
201 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
170 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |
202 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |
171 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |
203 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |
|
|
204 | #elif defined __ARM_ARCH_2__ \ |
|
|
205 | || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ |
|
|
206 | || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ |
|
|
207 | || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ |
|
|
208 | || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ |
|
|
209 | || defined __ARM_ARCH_5TEJ__ |
|
|
210 | /* should not need any, unless running old code on newer cpu - arm doesn't support that */ |
172 | #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ |
211 | #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ |
173 | || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ |
212 | || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ |
|
|
213 | || defined __ARM_ARCH_6T2__ |
174 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") |
214 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") |
175 | #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ |
215 | #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ |
176 | || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ |
216 | || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ |
177 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") |
217 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") |
178 | #elif __aarch64__ |
218 | #elif __aarch64__ |
179 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") |
219 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") |
180 | #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) |
220 | #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) |
181 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") |
221 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") |
… | |
… | |
208 | #if ECB_GCC_VERSION(4,7) |
248 | #if ECB_GCC_VERSION(4,7) |
209 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
249 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
210 | #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) |
250 | #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) |
211 | #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) |
251 | #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) |
212 | #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) |
252 | #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) |
|
|
253 | #undef ECB_MEMORY_FENCE_RELAXED |
|
|
254 | #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) |
213 | |
255 | |
214 | #elif ECB_CLANG_EXTENSION(c_atomic) |
256 | #elif ECB_CLANG_EXTENSION(c_atomic) |
215 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
257 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
216 | #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) |
258 | #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) |
217 | #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) |
259 | #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) |
218 | #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) |
260 | #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) |
|
|
261 | #undef ECB_MEMORY_FENCE_RELAXED |
|
|
262 | #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) |
219 | |
263 | |
220 | #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ |
264 | #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ |
221 | #define ECB_MEMORY_FENCE __sync_synchronize () |
265 | #define ECB_MEMORY_FENCE __sync_synchronize () |
222 | #elif _MSC_VER >= 1500 /* VC++ 2008 */ |
266 | #elif _MSC_VER >= 1500 /* VC++ 2008 */ |
223 | /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ |
267 | /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ |
… | |
… | |
233 | #elif defined _WIN32 |
277 | #elif defined _WIN32 |
234 | #include <WinNT.h> |
278 | #include <WinNT.h> |
235 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |
279 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |
236 | #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
280 | #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
237 | #include <mbarrier.h> |
281 | #include <mbarrier.h> |
238 | #define ECB_MEMORY_FENCE __machine_rw_barrier () |
282 | #define ECB_MEMORY_FENCE __machine_rw_barrier () |
239 | #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () |
283 | #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier () |
240 | #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () |
284 | #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier () |
|
|
285 | #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier () |
241 | #elif __xlC__ |
286 | #elif __xlC__ |
242 | #define ECB_MEMORY_FENCE __sync () |
287 | #define ECB_MEMORY_FENCE __sync () |
243 | #endif |
288 | #endif |
244 | #endif |
289 | #endif |
245 | |
290 | |
246 | #ifndef ECB_MEMORY_FENCE |
291 | #ifndef ECB_MEMORY_FENCE |
247 | #if ECB_C11 && !defined __STDC_NO_ATOMICS__ |
292 | #if ECB_C11 && !defined __STDC_NO_ATOMICS__ |
248 | /* we assume that these memory fences work on all variables/all memory accesses, */ |
293 | /* we assume that these memory fences work on all variables/all memory accesses, */ |
249 | /* not just C11 atomics and atomic accesses */ |
294 | /* not just C11 atomics and atomic accesses */ |
250 | #include <stdatomic.h> |
295 | #include <stdatomic.h> |
251 | /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */ |
|
|
252 | /* any fence other than seq_cst, which isn't very efficient for us. */ |
|
|
253 | /* Why that is, we don't know - either the C11 memory model is quite useless */ |
|
|
254 | /* for most usages, or gcc and clang have a bug */ |
|
|
255 | /* I *currently* lean towards the latter, and inefficiently implement */ |
|
|
256 | /* all three of ecb's fences as a seq_cst fence */ |
|
|
257 | /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */ |
|
|
258 | /* for all __atomic_thread_fence's except seq_cst */ |
|
|
259 | #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) |
296 | #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) |
|
|
297 | #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire) |
|
|
298 | #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release) |
260 | #endif |
299 | #endif |
261 | #endif |
300 | #endif |
262 | |
301 | |
263 | #ifndef ECB_MEMORY_FENCE |
302 | #ifndef ECB_MEMORY_FENCE |
264 | #if !ECB_AVOID_PTHREADS |
303 | #if !ECB_AVOID_PTHREADS |
… | |
… | |
284 | |
323 | |
285 | #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE |
324 | #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE |
286 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |
325 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |
287 | #endif |
326 | #endif |
288 | |
327 | |
|
|
328 | #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE |
|
|
329 | #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */ |
|
|
330 | #endif |
|
|
331 | |
289 | /*****************************************************************************/ |
332 | /*****************************************************************************/ |
290 | |
333 | |
291 | #if ECB_CPP |
334 | #if ECB_CPP |
292 | #define ecb_inline static inline |
335 | #define ecb_inline static inline |
293 | #elif ECB_GCC_VERSION(2,5) |
336 | #elif ECB_GCC_VERSION(2,5) |
… | |
… | |
423 | #else |
466 | #else |
424 | ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); |
467 | ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); |
425 | ecb_function_ ecb_const int |
468 | ecb_function_ ecb_const int |
426 | ecb_ctz32 (uint32_t x) |
469 | ecb_ctz32 (uint32_t x) |
427 | { |
470 | { |
|
|
471 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
|
|
472 | unsigned long r; |
|
|
473 | _BitScanForward (&r, x); |
|
|
474 | return (int)r; |
|
|
475 | #else |
428 | int r = 0; |
476 | int r = 0; |
429 | |
477 | |
430 | x &= ~x + 1; /* this isolates the lowest bit */ |
478 | x &= ~x + 1; /* this isolates the lowest bit */ |
431 | |
479 | |
432 | #if ECB_branchless_on_i386 |
480 | #if ECB_branchless_on_i386 |
… | |
… | |
442 | if (x & 0xff00ff00) r += 8; |
490 | if (x & 0xff00ff00) r += 8; |
443 | if (x & 0xffff0000) r += 16; |
491 | if (x & 0xffff0000) r += 16; |
444 | #endif |
492 | #endif |
445 | |
493 | |
446 | return r; |
494 | return r; |
|
|
495 | #endif |
447 | } |
496 | } |
448 | |
497 | |
449 | ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); |
498 | ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); |
450 | ecb_function_ ecb_const int |
499 | ecb_function_ ecb_const int |
451 | ecb_ctz64 (uint64_t x) |
500 | ecb_ctz64 (uint64_t x) |
452 | { |
501 | { |
|
|
502 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
|
|
503 | unsigned long r; |
|
|
504 | _BitScanForward64 (&r, x); |
|
|
505 | return (int)r; |
|
|
506 | #else |
453 | int shift = x & 0xffffffff ? 0 : 32; |
507 | int shift = x & 0xffffffff ? 0 : 32; |
454 | return ecb_ctz32 (x >> shift) + shift; |
508 | return ecb_ctz32 (x >> shift) + shift; |
|
|
509 | #endif |
455 | } |
510 | } |
456 | |
511 | |
457 | ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); |
512 | ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); |
458 | ecb_function_ ecb_const int |
513 | ecb_function_ ecb_const int |
459 | ecb_popcount32 (uint32_t x) |
514 | ecb_popcount32 (uint32_t x) |
… | |
… | |
467 | } |
522 | } |
468 | |
523 | |
469 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x); |
524 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x); |
470 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x) |
525 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x) |
471 | { |
526 | { |
|
|
527 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
|
|
528 | unsigned long r; |
|
|
529 | _BitScanReverse (&r, x); |
|
|
530 | return (int)r; |
|
|
531 | #else |
472 | int r = 0; |
532 | int r = 0; |
473 | |
533 | |
474 | if (x >> 16) { x >>= 16; r += 16; } |
534 | if (x >> 16) { x >>= 16; r += 16; } |
475 | if (x >> 8) { x >>= 8; r += 8; } |
535 | if (x >> 8) { x >>= 8; r += 8; } |
476 | if (x >> 4) { x >>= 4; r += 4; } |
536 | if (x >> 4) { x >>= 4; r += 4; } |
477 | if (x >> 2) { x >>= 2; r += 2; } |
537 | if (x >> 2) { x >>= 2; r += 2; } |
478 | if (x >> 1) { r += 1; } |
538 | if (x >> 1) { r += 1; } |
479 | |
539 | |
480 | return r; |
540 | return r; |
|
|
541 | #endif |
481 | } |
542 | } |
482 | |
543 | |
483 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x); |
544 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x); |
484 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x) |
545 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x) |
485 | { |
546 | { |
|
|
547 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
|
|
548 | unsigned long r; |
|
|
549 | _BitScanReverse64 (&r, x); |
|
|
550 | return (int)r; |
|
|
551 | #else |
486 | int r = 0; |
552 | int r = 0; |
487 | |
553 | |
488 | if (x >> 32) { x >>= 32; r += 32; } |
554 | if (x >> 32) { x >>= 32; r += 32; } |
489 | |
555 | |
490 | return r + ecb_ld32 (x); |
556 | return r + ecb_ld32 (x); |
|
|
557 | #endif |
491 | } |
558 | } |
492 | #endif |
559 | #endif |
493 | |
560 | |
494 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); |
561 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); |
495 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } |
562 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } |
… | |
… | |
542 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); |
609 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); |
543 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); |
610 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); |
544 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); |
611 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); |
545 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); |
612 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); |
546 | |
613 | |
547 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } |
614 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } |
548 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } |
615 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } |
549 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } |
616 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } |
550 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } |
617 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } |
551 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } |
618 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } |
552 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } |
619 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } |
553 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } |
620 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } |
554 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } |
621 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } |
|
|
622 | |
|
|
623 | #if ECB_CPP |
|
|
624 | |
|
|
625 | inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } |
|
|
626 | inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } |
|
|
627 | inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); } |
|
|
628 | inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); } |
|
|
629 | |
|
|
630 | inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); } |
|
|
631 | inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); } |
|
|
632 | inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); } |
|
|
633 | inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); } |
|
|
634 | |
|
|
635 | inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); } |
|
|
636 | inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); } |
|
|
637 | inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); } |
|
|
638 | inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); } |
|
|
639 | |
|
|
640 | inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); } |
|
|
641 | inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); } |
|
|
642 | inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); } |
|
|
643 | inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); } |
|
|
644 | |
|
|
645 | inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); } |
|
|
646 | inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); } |
|
|
647 | inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); } |
|
|
648 | |
|
|
649 | inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); } |
|
|
650 | inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); } |
|
|
651 | inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); } |
|
|
652 | inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); } |
|
|
653 | |
|
|
654 | inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); } |
|
|
655 | inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); } |
|
|
656 | inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); } |
|
|
657 | inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); } |
|
|
658 | |
|
|
659 | #endif |
555 | |
660 | |
556 | #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) |
661 | #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) |
557 | #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) |
662 | #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) |
558 | #define ecb_bswap16(x) __builtin_bswap16 (x) |
663 | #define ecb_bswap16(x) __builtin_bswap16 (x) |
559 | #else |
664 | #else |
… | |
… | |
598 | #endif |
703 | #endif |
599 | |
704 | |
600 | /* try to tell the compiler that some condition is definitely true */ |
705 | /* try to tell the compiler that some condition is definitely true */ |
601 | #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 |
706 | #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 |
602 | |
707 | |
603 | ecb_inline ecb_const unsigned char ecb_byteorder_helper (void); |
708 | ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); |
604 | ecb_inline ecb_const unsigned char |
709 | ecb_inline ecb_const uint32_t |
605 | ecb_byteorder_helper (void) |
710 | ecb_byteorder_helper (void) |
606 | { |
711 | { |
607 | /* the union code still generates code under pressure in gcc, */ |
712 | /* the union code still generates code under pressure in gcc, */ |
608 | /* but less than using pointers, and always seems to */ |
713 | /* but less than using pointers, and always seems to */ |
609 | /* successfully return a constant. */ |
714 | /* successfully return a constant. */ |
610 | /* the reason why we have this horrible preprocessor mess */ |
715 | /* the reason why we have this horrible preprocessor mess */ |
611 | /* is to avoid it in all cases, at least on common architectures */ |
716 | /* is to avoid it in all cases, at least on common architectures */ |
612 | /* or when using a recent enough gcc version (>= 4.6) */ |
717 | /* or when using a recent enough gcc version (>= 4.6) */ |
613 | #if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64 |
|
|
614 | return 0x44; |
|
|
615 | #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
718 | #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
|
|
719 | || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) |
|
|
720 | #define ECB_LITTLE_ENDIAN 1 |
616 | return 0x44; |
721 | return 0x44332211; |
617 | #elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
722 | #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ |
|
|
723 | || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) |
|
|
724 | #define ECB_BIG_ENDIAN 1 |
618 | return 0x11; |
725 | return 0x11223344; |
619 | #else |
726 | #else |
620 | union |
727 | union |
621 | { |
728 | { |
|
|
729 | uint8_t c[4]; |
622 | uint32_t i; |
730 | uint32_t u; |
623 | uint8_t c; |
|
|
624 | } u = { 0x11223344 }; |
731 | } u = { 0x11, 0x22, 0x33, 0x44 }; |
625 | return u.c; |
732 | return u.u; |
626 | #endif |
733 | #endif |
627 | } |
734 | } |
628 | |
735 | |
629 | ecb_inline ecb_const ecb_bool ecb_big_endian (void); |
736 | ecb_inline ecb_const ecb_bool ecb_big_endian (void); |
630 | ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } |
737 | ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } |
631 | ecb_inline ecb_const ecb_bool ecb_little_endian (void); |
738 | ecb_inline ecb_const ecb_bool ecb_little_endian (void); |
632 | ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } |
739 | ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } |
|
|
740 | |
|
|
741 | /*****************************************************************************/ |
|
|
742 | /* unaligned load/store */ |
|
|
743 | |
|
|
744 | ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
|
|
745 | ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
|
|
746 | ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
|
|
747 | |
|
|
748 | ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
|
|
749 | ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
|
|
750 | ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
|
|
751 | |
|
|
752 | ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
753 | ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
754 | ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
755 | |
|
|
756 | ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); } |
|
|
757 | ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); } |
|
|
758 | ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); } |
|
|
759 | |
|
|
760 | ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); } |
|
|
761 | ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); } |
|
|
762 | ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); } |
|
|
763 | |
|
|
764 | ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
|
|
765 | ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
|
|
766 | ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
|
|
767 | |
|
|
768 | ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
|
|
769 | ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
|
|
770 | ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
|
|
771 | |
|
|
772 | ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
773 | ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
774 | ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
775 | |
|
|
776 | ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } |
|
|
777 | ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } |
|
|
778 | ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } |
|
|
779 | |
|
|
780 | ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } |
|
|
781 | ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } |
|
|
782 | ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } |
|
|
783 | |
|
|
784 | #if ECB_CPP |
|
|
785 | |
|
|
786 | inline uint8_t ecb_bswap (uint8_t v) { return v; } |
|
|
787 | inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); } |
|
|
788 | inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); } |
|
|
789 | inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); } |
|
|
790 | |
|
|
791 | template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
|
|
792 | template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
|
|
793 | template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; } |
|
|
794 | template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); } |
|
|
795 | template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); } |
|
|
796 | template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
797 | template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); } |
|
|
798 | template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); } |
|
|
799 | |
|
|
800 | template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
|
|
801 | template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
|
|
802 | template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; } |
|
|
803 | template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); } |
|
|
804 | template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); } |
|
|
805 | template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
806 | template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); } |
|
|
807 | template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } |
|
|
808 | |
|
|
809 | #endif |
|
|
810 | |
|
|
811 | /*****************************************************************************/ |
|
|
812 | /* pointer/integer hashing */ |
|
|
813 | |
|
|
814 | /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ |
|
|
815 | ecb_function_ uint32_t ecb_mix32 (uint32_t v); |
|
|
816 | ecb_function_ uint32_t ecb_mix32 (uint32_t v) |
|
|
817 | { |
|
|
818 | v ^= v >> 16; v *= 0x7feb352dU; |
|
|
819 | v ^= v >> 15; v *= 0x846ca68bU; |
|
|
820 | v ^= v >> 16; |
|
|
821 | return v; |
|
|
822 | } |
|
|
823 | |
|
|
824 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v); |
|
|
825 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v) |
|
|
826 | { |
|
|
827 | v ^= v >> 16 ; v *= 0x43021123U; |
|
|
828 | v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; |
|
|
829 | v ^= v >> 16 ; |
|
|
830 | return v; |
|
|
831 | } |
|
|
832 | |
|
|
833 | /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ |
|
|
834 | ecb_function_ uint64_t ecb_mix64 (uint64_t v); |
|
|
835 | ecb_function_ uint64_t ecb_mix64 (uint64_t v) |
|
|
836 | { |
|
|
837 | v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; |
|
|
838 | v ^= v >> 27; v *= 0x94d049bb133111ebU; |
|
|
839 | v ^= v >> 31; |
|
|
840 | return v; |
|
|
841 | } |
|
|
842 | |
|
|
843 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v); |
|
|
844 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v) |
|
|
845 | { |
|
|
846 | v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; |
|
|
847 | v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; |
|
|
848 | v ^= v >> 30 ^ v >> 60; |
|
|
849 | return v; |
|
|
850 | } |
|
|
851 | |
|
|
852 | ecb_function_ uintptr_t ecb_ptrmix (void *p); |
|
|
853 | ecb_function_ uintptr_t ecb_ptrmix (void *p) |
|
|
854 | { |
|
|
855 | #if ECB_PTRSIZE <= 4 |
|
|
856 | return ecb_mix32 ((uint32_t)p); |
|
|
857 | #else |
|
|
858 | return ecb_mix64 ((uint64_t)p); |
|
|
859 | #endif |
|
|
860 | } |
|
|
861 | |
|
|
862 | ecb_function_ void *ecb_ptrunmix (uintptr_t v); |
|
|
863 | ecb_function_ void *ecb_ptrunmix (uintptr_t v) |
|
|
864 | { |
|
|
865 | #if ECB_PTRSIZE <= 4 |
|
|
866 | return (void *)ecb_unmix32 (v); |
|
|
867 | #else |
|
|
868 | return (void *)ecb_unmix64 (v); |
|
|
869 | #endif |
|
|
870 | } |
|
|
871 | |
|
|
872 | #if ECB_CPP |
|
|
873 | |
|
|
874 | template<typename T> |
|
|
875 | inline uintptr_t ecb_ptrmix (T *p) |
|
|
876 | { |
|
|
877 | return ecb_ptrmix (static_cast<void *>(p)); |
|
|
878 | } |
|
|
879 | |
|
|
880 | template<typename T> |
|
|
881 | inline T *ecb_ptrunmix (uintptr_t v) |
|
|
882 | { |
|
|
883 | return static_cast<T *>(ecb_ptrunmix (v)); |
|
|
884 | } |
|
|
885 | |
|
|
886 | #endif |
|
|
887 | |
|
|
888 | /*****************************************************************************/ |
|
|
889 | /* gray code */ |
|
|
890 | |
|
|
891 | ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); } |
|
|
892 | ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); } |
|
|
893 | ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); } |
|
|
894 | ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); } |
|
|
895 | |
|
|
896 | ecb_function_ uint8_t ecb_gray8_decode (uint8_t g) |
|
|
897 | { |
|
|
898 | g ^= g >> 1; |
|
|
899 | g ^= g >> 2; |
|
|
900 | g ^= g >> 4; |
|
|
901 | |
|
|
902 | return g; |
|
|
903 | } |
|
|
904 | |
|
|
905 | ecb_function_ uint16_t ecb_gray16_decode (uint16_t g) |
|
|
906 | { |
|
|
907 | g ^= g >> 1; |
|
|
908 | g ^= g >> 2; |
|
|
909 | g ^= g >> 4; |
|
|
910 | g ^= g >> 8; |
|
|
911 | |
|
|
912 | return g; |
|
|
913 | } |
|
|
914 | |
|
|
915 | ecb_function_ uint32_t ecb_gray32_decode (uint32_t g) |
|
|
916 | { |
|
|
917 | g ^= g >> 1; |
|
|
918 | g ^= g >> 2; |
|
|
919 | g ^= g >> 4; |
|
|
920 | g ^= g >> 8; |
|
|
921 | g ^= g >> 16; |
|
|
922 | |
|
|
923 | return g; |
|
|
924 | } |
|
|
925 | |
|
|
926 | ecb_function_ uint64_t ecb_gray64_decode (uint64_t g) |
|
|
927 | { |
|
|
928 | g ^= g >> 1; |
|
|
929 | g ^= g >> 2; |
|
|
930 | g ^= g >> 4; |
|
|
931 | g ^= g >> 8; |
|
|
932 | g ^= g >> 16; |
|
|
933 | g ^= g >> 32; |
|
|
934 | |
|
|
935 | return g; |
|
|
936 | } |
|
|
937 | |
|
|
938 | #if ECB_CPP |
|
|
939 | |
|
|
940 | ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); } |
|
|
941 | ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); } |
|
|
942 | ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); } |
|
|
943 | ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); } |
|
|
944 | |
|
|
945 | ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); } |
|
|
946 | ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); } |
|
|
947 | ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); } |
|
|
948 | ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); } |
|
|
949 | |
|
|
950 | #endif |
|
|
951 | |
|
|
952 | /*****************************************************************************/ |
|
|
953 | /* 2d hilbert curves */ |
|
|
954 | |
|
|
955 | /* algorithm from the book Hacker's Delight, modified to not */ |
|
|
956 | /* run into undefined behaviour for n==16 */ |
|
|
957 | static uint32_t |
|
|
958 | ecb_hilbert2d_index_to_coord32 (int n, uint32_t s) |
|
|
959 | { |
|
|
960 | uint32_t comp, swap, cs, t, sr; |
|
|
961 | |
|
|
962 | /* pad s on the left (unused) bits with 01 (no change groups) */ |
|
|
963 | s |= 0x55555555U << n << n; |
|
|
964 | /* "s shift right" */ |
|
|
965 | sr = (s >> 1) & 0x55555555U; |
|
|
966 | /* compute complement and swap info in two-bit groups */ |
|
|
967 | cs = ((s & 0x55555555U) + sr) ^ 0x55555555U; |
|
|
968 | |
|
|
969 | /* parallel prefix xor op to propagate both complement |
|
|
970 | * and swap info together from left to right (there is |
|
|
971 | * no step "cs ^= cs >> 1", so in effect it computes |
|
|
972 | * two independent parallel prefix operations on two |
|
|
973 | * interleaved sets of sixteen bits). |
|
|
974 | */ |
|
|
975 | cs ^= cs >> 2; |
|
|
976 | cs ^= cs >> 4; |
|
|
977 | cs ^= cs >> 8; |
|
|
978 | cs ^= cs >> 16; |
|
|
979 | |
|
|
980 | /* separate swap and complement bits */ |
|
|
981 | swap = cs & 0x55555555U; |
|
|
982 | comp = (cs >> 1) & 0x55555555U; |
|
|
983 | |
|
|
984 | /* calculate coordinates in odd and even bit positions */ |
|
|
985 | t = (s & swap) ^ comp; |
|
|
986 | s = s ^ sr ^ t ^ (t << 1); |
|
|
987 | |
|
|
988 | /* unpad/clear out any junk on the left */ |
|
|
989 | s = s & ((1 << n << n) - 1); |
|
|
990 | |
|
|
991 | /* Now "unshuffle" to separate the x and y bits. */ |
|
|
992 | t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1); |
|
|
993 | t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2); |
|
|
994 | t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4); |
|
|
995 | t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8); |
|
|
996 | |
|
|
997 | /* now s contains two 16-bit coordinates */ |
|
|
998 | return s; |
|
|
999 | } |
|
|
1000 | |
|
|
1001 | /* 64 bit, a straightforward extension to the 32 bit case */ |
|
|
1002 | static uint64_t |
|
|
1003 | ecb_hilbert2d_index_to_coord64 (int n, uint64_t s) |
|
|
1004 | { |
|
|
1005 | uint64_t comp, swap, cs, t, sr; |
|
|
1006 | |
|
|
1007 | /* pad s on the left (unused) bits with 01 (no change groups) */ |
|
|
1008 | s |= 0x5555555555555555U << n << n; |
|
|
1009 | /* "s shift right" */ |
|
|
1010 | sr = (s >> 1) & 0x5555555555555555U; |
|
|
1011 | /* compute complement and swap info in two-bit groups */ |
|
|
1012 | cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U; |
|
|
1013 | |
|
|
1014 | /* parallel prefix xor op to propagate both complement |
|
|
1015 | * and swap info together from left to right (there is |
|
|
1016 | * no step "cs ^= cs >> 1", so in effect it computes |
|
|
1017 | * two independent parallel prefix operations on two |
|
|
1018 | * interleaved sets of thirty-two bits). |
|
|
1019 | */ |
|
|
1020 | cs ^= cs >> 2; |
|
|
1021 | cs ^= cs >> 4; |
|
|
1022 | cs ^= cs >> 8; |
|
|
1023 | cs ^= cs >> 16; |
|
|
1024 | cs ^= cs >> 32; |
|
|
1025 | |
|
|
1026 | /* separate swap and complement bits */ |
|
|
1027 | swap = cs & 0x5555555555555555U; |
|
|
1028 | comp = (cs >> 1) & 0x5555555555555555U; |
|
|
1029 | |
|
|
1030 | /* calculate coordinates in odd and even bit positions */ |
|
|
1031 | t = (s & swap) ^ comp; |
|
|
1032 | s = s ^ sr ^ t ^ (t << 1); |
|
|
1033 | |
|
|
1034 | /* unpad/clear out any junk on the left */ |
|
|
1035 | s = s & ((1 << n << n) - 1); |
|
|
1036 | |
|
|
1037 | /* Now "unshuffle" to separate the x and y bits. */ |
|
|
1038 | t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1); |
|
|
1039 | t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2); |
|
|
1040 | t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4); |
|
|
1041 | t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8); |
|
|
1042 | t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16); |
|
|
1043 | |
|
|
1044 | /* now s contains two 32-bit coordinates */ |
|
|
1045 | return s; |
|
|
1046 | } |
|
|
1047 | |
|
|
1048 | /* algorithm from the book Hacker's Delight, but a similar algorithm*/ |
|
|
1049 | /* is given in https://doi.org/10.1002/spe.4380160103 */ |
|
|
1050 | /* this has been slightly improved over the original version */ |
|
|
1051 | ecb_function_ uint32_t |
|
|
1052 | ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy) |
|
|
1053 | { |
|
|
1054 | uint32_t row; |
|
|
1055 | uint32_t state = 0; |
|
|
1056 | uint32_t s = 0; |
|
|
1057 | |
|
|
1058 | do |
|
|
1059 | { |
|
|
1060 | --n; |
|
|
1061 | |
|
|
1062 | row = 4 * state |
|
|
1063 | | (2 & (xy >> n >> 15)) |
|
|
1064 | | (1 & (xy >> n )); |
|
|
1065 | |
|
|
1066 | /* these funky constants are lookup tables for two-bit values */ |
|
|
1067 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
|
|
1068 | state = (0x8fe65831U >> 2 * row) & 3; |
|
|
1069 | } |
|
|
1070 | while (n > 0); |
|
|
1071 | |
|
|
1072 | return s; |
|
|
1073 | } |
|
|
1074 | |
|
|
1075 | /* 64 bit, essentially the same as 32 bit */ |
|
|
1076 | ecb_function_ uint64_t |
|
|
1077 | ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy) |
|
|
1078 | { |
|
|
1079 | uint32_t row; |
|
|
1080 | uint32_t state = 0; |
|
|
1081 | uint64_t s = 0; |
|
|
1082 | |
|
|
1083 | do |
|
|
1084 | { |
|
|
1085 | --n; |
|
|
1086 | |
|
|
1087 | row = 4 * state |
|
|
1088 | | (2 & (xy >> n >> 31)) |
|
|
1089 | | (1 & (xy >> n )); |
|
|
1090 | |
|
|
1091 | /* these funky constants are lookup tables for two-bit values */ |
|
|
1092 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
|
|
1093 | state = (0x8fe65831U >> 2 * row) & 3; |
|
|
1094 | } |
|
|
1095 | while (n > 0); |
|
|
1096 | |
|
|
1097 | return s; |
|
|
1098 | } |
|
|
1099 | |
|
|
1100 | /*****************************************************************************/ |
|
|
1101 | /* division */ |
633 | |
1102 | |
634 | #if ECB_GCC_VERSION(3,0) || ECB_C99 |
1103 | #if ECB_GCC_VERSION(3,0) || ECB_C99 |
|
|
1104 | /* C99 tightened the definition of %, so we can use a more efficient version */ |
635 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |
1105 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |
636 | #else |
1106 | #else |
637 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |
1107 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |
638 | #endif |
1108 | #endif |
639 | |
1109 | |
… | |
… | |
651 | #else |
1121 | #else |
652 | #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) |
1122 | #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) |
653 | #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) |
1123 | #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) |
654 | #endif |
1124 | #endif |
655 | |
1125 | |
|
|
1126 | /*****************************************************************************/ |
|
|
1127 | /* array length */ |
|
|
1128 | |
656 | #if ecb_cplusplus_does_not_suck |
1129 | #if ecb_cplusplus_does_not_suck |
657 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |
1130 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |
658 | template<typename T, int N> |
1131 | template<typename T, int N> |
659 | static inline int ecb_array_length (const T (&arr)[N]) |
1132 | static inline int ecb_array_length (const T (&arr)[N]) |
660 | { |
1133 | { |
… | |
… | |
662 | } |
1135 | } |
663 | #else |
1136 | #else |
664 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |
1137 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |
665 | #endif |
1138 | #endif |
666 | |
1139 | |
|
|
1140 | /*****************************************************************************/ |
|
|
1141 | /* IEEE 754-2008 half float conversions */ |
|
|
1142 | |
667 | ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint16_t x); |
1143 | ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); |
668 | ecb_function_ ecb_const uint32_t |
1144 | ecb_function_ ecb_const uint32_t |
669 | ecb_binary16_to_binary32 (uint16_t x) |
1145 | ecb_binary16_to_binary32 (uint32_t x) |
670 | { |
1146 | { |
671 | unsigned int s = (x & 0x8000) << (31 - 15); |
1147 | unsigned int s = (x & 0x8000) << (31 - 15); |
672 | int e = (x >> 10) & 0x001f; |
1148 | int e = (x >> 10) & 0x001f; |
673 | unsigned int m = x & 0x03ff; |
1149 | unsigned int m = x & 0x03ff; |
674 | |
1150 | |
… | |
… | |
699 | ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); |
1175 | ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); |
700 | ecb_function_ ecb_const uint16_t |
1176 | ecb_function_ ecb_const uint16_t |
701 | ecb_binary32_to_binary16 (uint32_t x) |
1177 | ecb_binary32_to_binary16 (uint32_t x) |
702 | { |
1178 | { |
703 | unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ |
1179 | unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ |
704 | unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ |
1180 | int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ |
705 | unsigned int m = x & 0x007fffff; |
1181 | unsigned int m = x & 0x007fffff; |
706 | |
1182 | |
707 | x &= 0x7fffffff; |
1183 | x &= 0x7fffffff; |
708 | |
1184 | |
709 | /* if it's within range of binary16 normals, use fast path */ |
1185 | /* if it's within range of binary16 normals, use fast path */ |
… | |
… | |
724 | |
1200 | |
725 | /* handle large numbers and infinity */ |
1201 | /* handle large numbers and infinity */ |
726 | if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) |
1202 | if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) |
727 | return s | 0x7c00; |
1203 | return s | 0x7c00; |
728 | |
1204 | |
729 | /* handle zero and subnormals */ |
1205 | /* handle zero, subnormals and small numbers */ |
730 | if (ecb_expect_true (x < 0x38800000)) |
1206 | if (ecb_expect_true (x < 0x38800000)) |
731 | { |
1207 | { |
732 | /* zero */ |
1208 | /* zero */ |
733 | if (ecb_expect_true (!x)) |
1209 | if (ecb_expect_true (!x)) |
734 | return s; |
1210 | return s; |
735 | |
1211 | |
736 | /* handle subnormals */ |
1212 | /* handle subnormals */ |
737 | |
1213 | |
|
|
1214 | /* too small, will be zero */ |
|
|
1215 | if (e < (14 - 24)) /* might not be sharp, but is good enough */ |
|
|
1216 | return s; |
|
|
1217 | |
738 | m |= 0x00800000; /* make implicit bit explicit */ |
1218 | m |= 0x00800000; /* make implicit bit explicit */ |
739 | |
1219 | |
740 | /* very tricky - we need to round to the nearest e (+10) bit value */ |
1220 | /* very tricky - we need to round to the nearest e (+10) bit value */ |
741 | { |
1221 | { |
742 | unsigned int bits = 14 - e; |
1222 | unsigned int bits = 14 - e; |
… | |
… | |
752 | |
1232 | |
753 | /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ |
1233 | /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ |
754 | m >>= 13; |
1234 | m >>= 13; |
755 | |
1235 | |
756 | return s | 0x7c00 | m | !m; |
1236 | return s | 0x7c00 | m | !m; |
|
|
1237 | } |
|
|
1238 | |
|
|
1239 | /*******************************************************************************/ |
|
|
1240 | /* fast integer to ascii */ |
|
|
1241 | |
|
|
1242 | /* |
|
|
1243 | * This code is pretty complicated because it is general. The idea behind it, |
|
|
1244 | * however, is pretty simple: first, the number is multiplied with a scaling |
|
|
1245 | * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point |
|
|
1246 | * number with the first digit in the upper bits. |
|
|
1247 | * Then this digit is converted to text and masked out. The resulting number |
|
|
1248 | * is then multiplied by 10, by multiplying the fixed point representation |
|
|
1249 | * by 5 and shifting the (binary) decimal point one to the right, so a 4.28 |
|
|
1250 | * format becomes 5.27, 6.26 and so on. |
|
|
1251 | * The rest involves only advancing the pointer if we already generated a |
|
|
1252 | * non-zero digit, so leading zeroes are overwritten. |
|
|
1253 | */ |
|
|
1254 | |
|
|
1255 | /* simply return a mask with "bits" bits set */ |
|
|
1256 | #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) |
|
|
1257 | |
|
|
1258 | /* oputput a single digit. maskvalue is 10**digitidx */ |
|
|
1259 | #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ |
|
|
1260 | if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ |
|
|
1261 | { \ |
|
|
1262 | char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ |
|
|
1263 | *ptr = digit + '0'; /* output it */ \ |
|
|
1264 | nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ |
|
|
1265 | ptr += nz; /* output digit only if non-zero digit seen */ \ |
|
|
1266 | x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ |
|
|
1267 | } |
|
|
1268 | |
|
|
1269 | /* convert integer to fixed point format and multiply out digits, highest first */ |
|
|
1270 | /* requires magic constants: max. digits and number of bits after the decimal point */ |
|
|
1271 | #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ |
|
|
1272 | ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ |
|
|
1273 | { \ |
|
|
1274 | char nz = lz; /* non-zero digit seen? */ \ |
|
|
1275 | /* convert to x.bits fixed-point */ \ |
|
|
1276 | type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \ |
|
|
1277 | /* output up to 10 digits */ \ |
|
|
1278 | ecb_i2a_digit (type,bits,digitmask, 1, 0); \ |
|
|
1279 | ecb_i2a_digit (type,bits,digitmask, 10, 1); \ |
|
|
1280 | ecb_i2a_digit (type,bits,digitmask, 100, 2); \ |
|
|
1281 | ecb_i2a_digit (type,bits,digitmask, 1000, 3); \ |
|
|
1282 | ecb_i2a_digit (type,bits,digitmask, 10000, 4); \ |
|
|
1283 | ecb_i2a_digit (type,bits,digitmask, 100000, 5); \ |
|
|
1284 | ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \ |
|
|
1285 | ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \ |
|
|
1286 | ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ |
|
|
1287 | ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ |
|
|
1288 | return ptr; \ |
|
|
1289 | } |
|
|
1290 | |
|
|
1291 | /* predefined versions of the above, for various digits */ |
|
|
1292 | /* ecb_i2a_xN = almost N digits, limit defined by macro */ |
|
|
1293 | /* ecb_i2a_N = up to N digits, leading zeroes suppressed */ |
|
|
1294 | /* ecb_i2a_0N = exactly N digits, including leading zeroes */ |
|
|
1295 | |
|
|
1296 | /* non-leading-zero versions, limited range */ |
|
|
1297 | #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */ |
|
|
1298 | #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */ |
|
|
1299 | ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) |
|
|
1300 | ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) |
|
|
1301 | |
|
|
1302 | /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */ |
|
|
1303 | ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) |
|
|
1304 | ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) |
|
|
1305 | ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) |
|
|
1306 | ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) |
|
|
1307 | ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) |
|
|
1308 | ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) |
|
|
1309 | ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) |
|
|
1310 | ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) |
|
|
1311 | |
|
|
1312 | /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */ |
|
|
1313 | ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) |
|
|
1314 | ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) |
|
|
1315 | ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) |
|
|
1316 | ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) |
|
|
1317 | ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) |
|
|
1318 | ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1) |
|
|
1319 | ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1) |
|
|
1320 | ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1) |
|
|
1321 | |
|
|
1322 | #define ECB_I2A_I32_DIGITS 11 |
|
|
1323 | #define ECB_I2A_U32_DIGITS 10 |
|
|
1324 | #define ECB_I2A_I64_DIGITS 20 |
|
|
1325 | #define ECB_I2A_U64_DIGITS 21 |
|
|
1326 | #define ECB_I2A_MAX_DIGITS 21 |
|
|
1327 | |
|
|
1328 | ecb_inline char * |
|
|
1329 | ecb_i2a_u32 (char *ptr, uint32_t u) |
|
|
1330 | { |
|
|
1331 | #if ECB_64BIT_NATIVE |
|
|
1332 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1333 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1334 | else /* x10 almost, but not fully, covers 32 bit */ |
|
|
1335 | { |
|
|
1336 | uint32_t u1 = u % 1000000000; |
|
|
1337 | uint32_t u2 = u / 1000000000; |
|
|
1338 | |
|
|
1339 | *ptr++ = u2 + '0'; |
|
|
1340 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1341 | } |
|
|
1342 | #else |
|
|
1343 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
|
|
1344 | ecb_i2a_x5 (ptr, u); |
|
|
1345 | else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000)) |
|
|
1346 | { |
|
|
1347 | uint32_t u1 = u % 10000; |
|
|
1348 | uint32_t u2 = u / 10000; |
|
|
1349 | |
|
|
1350 | ptr = ecb_i2a_x5 (ptr, u2); |
|
|
1351 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1352 | } |
|
|
1353 | else |
|
|
1354 | { |
|
|
1355 | uint32_t u1 = u % 10000; |
|
|
1356 | uint32_t ua = u / 10000; |
|
|
1357 | uint32_t u2 = ua % 10000; |
|
|
1358 | uint32_t u3 = ua / 10000; |
|
|
1359 | |
|
|
1360 | ptr = ecb_i2a_2 (ptr, u3); |
|
|
1361 | ptr = ecb_i2a_04 (ptr, u2); |
|
|
1362 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1363 | } |
|
|
1364 | #endif |
|
|
1365 | |
|
|
1366 | return ptr; |
|
|
1367 | } |
|
|
1368 | |
|
|
1369 | ecb_inline char * |
|
|
1370 | ecb_i2a_i32 (char *ptr, int32_t v) |
|
|
1371 | { |
|
|
1372 | *ptr = '-'; ptr += v < 0; |
|
|
1373 | uint32_t u = v < 0 ? -(uint32_t)v : v; |
|
|
1374 | |
|
|
1375 | #if ECB_64BIT_NATIVE |
|
|
1376 | ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */ |
|
|
1377 | #else |
|
|
1378 | ptr = ecb_i2a_u32 (ptr, u); |
|
|
1379 | #endif |
|
|
1380 | |
|
|
1381 | return ptr; |
|
|
1382 | } |
|
|
1383 | |
|
|
1384 | ecb_inline char * |
|
|
1385 | ecb_i2a_u64 (char *ptr, uint64_t u) |
|
|
1386 | { |
|
|
1387 | #if ECB_64BIT_NATIVE |
|
|
1388 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1389 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1390 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
|
|
1391 | { |
|
|
1392 | uint64_t u1 = u % 1000000000; |
|
|
1393 | uint64_t u2 = u / 1000000000; |
|
|
1394 | |
|
|
1395 | ptr = ecb_i2a_x10 (ptr, u2); |
|
|
1396 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1397 | } |
|
|
1398 | else |
|
|
1399 | { |
|
|
1400 | uint64_t u1 = u % 1000000000; |
|
|
1401 | uint64_t ua = u / 1000000000; |
|
|
1402 | uint64_t u2 = ua % 1000000000; |
|
|
1403 | uint64_t u3 = ua / 1000000000; |
|
|
1404 | |
|
|
1405 | ptr = ecb_i2a_2 (ptr, u3); |
|
|
1406 | ptr = ecb_i2a_09 (ptr, u2); |
|
|
1407 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1408 | } |
|
|
1409 | #else |
|
|
1410 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
|
|
1411 | ptr = ecb_i2a_x5 (ptr, u); |
|
|
1412 | else |
|
|
1413 | { |
|
|
1414 | uint64_t u1 = u % 10000; |
|
|
1415 | uint64_t u2 = u / 10000; |
|
|
1416 | |
|
|
1417 | ptr = ecb_i2a_u64 (ptr, u2); |
|
|
1418 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1419 | } |
|
|
1420 | #endif |
|
|
1421 | |
|
|
1422 | return ptr; |
|
|
1423 | } |
|
|
1424 | |
|
|
1425 | ecb_inline char * |
|
|
1426 | ecb_i2a_i64 (char *ptr, int64_t v) |
|
|
1427 | { |
|
|
1428 | *ptr = '-'; ptr += v < 0; |
|
|
1429 | uint64_t u = v < 0 ? -(uint64_t)v : v; |
|
|
1430 | |
|
|
1431 | #if ECB_64BIT_NATIVE |
|
|
1432 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1433 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1434 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
|
|
1435 | { |
|
|
1436 | uint64_t u1 = u % 1000000000; |
|
|
1437 | uint64_t u2 = u / 1000000000; |
|
|
1438 | |
|
|
1439 | ptr = ecb_i2a_x10 (ptr, u2); |
|
|
1440 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1441 | } |
|
|
1442 | else |
|
|
1443 | { |
|
|
1444 | uint64_t u1 = u % 1000000000; |
|
|
1445 | uint64_t ua = u / 1000000000; |
|
|
1446 | uint64_t u2 = ua % 1000000000; |
|
|
1447 | uint64_t u3 = ua / 1000000000; |
|
|
1448 | |
|
|
1449 | /* 2**31 is 19 digits, so the top is exactly one digit */ |
|
|
1450 | *ptr++ = u3 + '0'; |
|
|
1451 | ptr = ecb_i2a_09 (ptr, u2); |
|
|
1452 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1453 | } |
|
|
1454 | #else |
|
|
1455 | ptr = ecb_i2a_u64 (ptr, u); |
|
|
1456 | #endif |
|
|
1457 | |
|
|
1458 | return ptr; |
757 | } |
1459 | } |
758 | |
1460 | |
759 | /*******************************************************************************/ |
1461 | /*******************************************************************************/ |
760 | /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ |
1462 | /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ |
761 | |
1463 | |
… | |
… | |
775 | || defined __sh__ \ |
1477 | || defined __sh__ \ |
776 | || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ |
1478 | || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ |
777 | || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ |
1479 | || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ |
778 | || defined __aarch64__ |
1480 | || defined __aarch64__ |
779 | #define ECB_STDFP 1 |
1481 | #define ECB_STDFP 1 |
780 | #include <string.h> /* for memcpy */ |
|
|
781 | #else |
1482 | #else |
782 | #define ECB_STDFP 0 |
1483 | #define ECB_STDFP 0 |
783 | #endif |
1484 | #endif |
784 | |
1485 | |
785 | #ifndef ECB_NO_LIBM |
1486 | #ifndef ECB_NO_LIBM |