ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.78 by root, Sat Feb 4 15:17:22 2012 UTC vs.
Revision 1.204 by root, Fri Mar 25 08:44:14 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- 25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 26 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THE POSSIBILITY OF SUCH DAMAGE. 27 * OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Alternatively, the contents of this file may be used under the terms of
30 * the GNU General Public License ("GPL") version 2 or any later version,
31 * in which case the provisions of the GPL are applicable instead of
32 * the above. If you wish to allow the use of your version of this file
33 * only under the terms of the GPL and not to allow others to use your
34 * version of this file under the BSD license, indicate your decision
35 * by deleting the provisions above and replace them with the notice
36 * and other provisions required by the GPL. If you do not delete the
37 * provisions above, a recipient may use your version of this file under
38 * either the BSD or the GPL.
28 */ 39 */
29 40
30#ifndef ECB_H 41#ifndef ECB_H
31#define ECB_H 42#define ECB_H
32 43
33#ifdef _WIN32 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x0001000c
46
47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
34 typedef signed char int8_t; 50 typedef signed char int8_t;
35 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
36 typedef signed short int16_t; 54 typedef signed short int16_t;
37 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
38 typedef signed int int32_t; 58 typedef signed int int32_t;
39 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
40 #if __GNUC__ 62 #if __GNUC__
41 typedef signed long long int64_t; 63 typedef signed long long int64_t;
42 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
43 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
44 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
45 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
46 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
71 #ifdef _WIN64
72 #define ECB_PTRSIZE 8
73 typedef uint64_t uintptr_t;
74 typedef int64_t intptr_t;
75 #else
76 #define ECB_PTRSIZE 4
77 typedef uint32_t uintptr_t;
78 typedef int32_t intptr_t;
79 #endif
47#else 80#else
48 #include <inttypes.h> 81 #include <inttypes.h>
82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 #define ECB_PTRSIZE 8
84 #else
85 #define ECB_PTRSIZE 4
86 #endif
87#endif
88
89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
99
100/* work around x32 idiocy by defining proper macros */
101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 #if _ILP32
103 #define ECB_AMD64_X32 1
104 #else
105 #define ECB_AMD64 1
106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
49#endif 113#endif
50 114
51/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
52 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
53 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
54 * or so. 118 * or so.
55 * we try to detect these and simply assume they are not gcc - if they have 119 * we try to detect these and simply assume they are not gcc - if they have
56 * an issue with that they should have done it right in the first place. 120 * an issue with that they should have done it right in the first place.
57 */ 121 */
58#ifndef ECB_GCC_VERSION
59 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__) 122#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
60 #define ECB_GCC_VERSION(major,minor) 0 123 #define ECB_GCC_VERSION(major,minor) 0
61 #else 124#else
62 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) 125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
63 #endif 126#endif
127
128#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129
130#if __clang__ && defined __has_builtin
131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132#else
133 #define ECB_CLANG_BUILTIN(x) 0
134#endif
135
136#if __clang__ && defined __has_extension
137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138#else
139 #define ECB_CLANG_EXTENSION(x) 0
140#endif
141
142#define ECB_CPP (__cplusplus+0)
143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
146
147#if ECB_CPP
148 #define ECB_C 0
149 #define ECB_STDC_VERSION 0
150#else
151 #define ECB_C 1
152 #define ECB_STDC_VERSION __STDC_VERSION__
153#endif
154
155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158
159#if ECB_CPP
160 #define ECB_EXTERN_C extern "C"
161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162 #define ECB_EXTERN_C_END }
163#else
164 #define ECB_EXTERN_C extern
165 #define ECB_EXTERN_C_BEG
166 #define ECB_EXTERN_C_END
64#endif 167#endif
65 168
66/*****************************************************************************/ 169/*****************************************************************************/
67 170
68/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ 171/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
69/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ 172/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
70 173
71#if ECB_NO_THREADS || ECB_NO_SMP 174#if ECB_NO_THREADS
175 #define ECB_NO_SMP 1
176#endif
177
178#if ECB_NO_SMP
72 #define ECB_MEMORY_FENCE do { } while (0) 179 #define ECB_MEMORY_FENCE do { } while (0)
73#endif 180#endif
74 181
182/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183#if __xlC__ && ECB_CPP
184 #include <builtins.h>
185#endif
186
187#if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189#endif
190
75#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
76 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
77 #if __i386 || __i386__ 194 #if __i386 || __i386__
78 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
79 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */ 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
80 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */ 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
81 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ 198 #elif ECB_GCC_AMD64
82 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
83 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
84 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */ 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
85 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
86 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
87 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
88 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
89 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
90 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
91 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ ) 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
92 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
93 #elif __sparc || __sparc__ 218 #elif __aarch64__
219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
94 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
95 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") 222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
96 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") 223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
97 #elif defined(__s390__) || defined(__s390x__) 224 #elif defined __s390__ || defined __s390x__
98 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") 225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 #elif defined __mips__
227 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 #elif defined __alpha__
231 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232 #elif defined __hppa__
233 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235 #elif defined __ia64__
236 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 #elif defined __m68k__
238 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239 #elif defined __m88k__
240 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241 #elif defined __sh__
242 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
99 #endif 243 #endif
100 #endif 244 #endif
101#endif 245#endif
102 246
103#ifndef ECB_MEMORY_FENCE 247#ifndef ECB_MEMORY_FENCE
248 #if ECB_GCC_VERSION(4,7)
249 /* see comment below (stdatomic.h) about the C11 memory model. */
250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255
256 #elif ECB_CLANG_EXTENSION(c_atomic)
257 /* see comment below (stdatomic.h) about the C11 memory model. */
258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263
104 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__) 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
105 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
106 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
107 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
108 #elif _MSC_VER >= 1400 /* VC++ 2005 */ 272 #elif _MSC_VER >= 1400 /* VC++ 2005 */
109 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) 273 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
110 #define ECB_MEMORY_FENCE _ReadWriteBarrier () 274 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
111 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ 275 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
112 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () 276 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
113 #elif defined(_WIN32) 277 #elif defined _WIN32
114 #include <WinNT.h> 278 #include <WinNT.h>
115 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
116 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
117 #include <mbarrier.h> 281 #include <mbarrier.h>
118 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
119 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
120 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 #elif __xlC__
287 #define ECB_MEMORY_FENCE __sync ()
288 #endif
289#endif
290
291#ifndef ECB_MEMORY_FENCE
292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293 /* we assume that these memory fences work on all variables/all memory accesses, */
294 /* not just C11 atomics and atomic accesses */
295 #include <stdatomic.h>
296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
121 #endif 299 #endif
122#endif 300#endif
123 301
124#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
125 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
137 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; 315 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
138 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) 316 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
139 #endif 317 #endif
140#endif 318#endif
141 319
142#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE) 320#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
143 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE 321 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
144#endif 322#endif
145 323
146#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE) 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
147 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
148#endif 326#endif
149 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
150/*****************************************************************************/ 332/*****************************************************************************/
151 333
152#define ECB_C99 (__STDC_VERSION__ >= 199901L) 334#if ECB_CPP
153
154#if __cplusplus
155 #define ecb_inline static inline 335 #define ecb_inline static inline
156#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
157 #define ecb_inline static __inline__ 337 #define ecb_inline static __inline__
158#elif ECB_C99 338#elif ECB_C99
159 #define ecb_inline static inline 339 #define ecb_inline static inline
173 353
174#define ECB_CONCAT_(a, b) a ## b 354#define ECB_CONCAT_(a, b) a ## b
175#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
176#define ECB_STRINGIFY_(a) # a 356#define ECB_STRINGIFY_(a) # a
177#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
178 359
179#define ecb_function_ ecb_inline 360#define ecb_function_ ecb_inline
180 361
181#if ECB_GCC_VERSION(3,1) 362#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
182 #define ecb_attribute(attrlist) __attribute__(attrlist) 363 #define ecb_attribute(attrlist) __attribute__ (attrlist)
364#else
365 #define ecb_attribute(attrlist)
366#endif
367
368#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
183 #define ecb_is_constant(expr) __builtin_constant_p (expr) 369 #define ecb_is_constant(expr) __builtin_constant_p (expr)
370#else
371 /* possible C11 impl for integral types
372 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
373 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
374
375 #define ecb_is_constant(expr) 0
376#endif
377
378#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
184 #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) 379 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
380#else
381 #define ecb_expect(expr,value) (expr)
382#endif
383
384#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
185 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) 385 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
186#else 386#else
187 #define ecb_attribute(attrlist)
188 #define ecb_is_constant(expr) 0
189 #define ecb_expect(expr,value) (expr)
190 #define ecb_prefetch(addr,rw,locality) 387 #define ecb_prefetch(addr,rw,locality)
191#endif 388#endif
192 389
193/* no emulation for ecb_decltype */ 390/* no emulation for ecb_decltype */
194#if ECB_GCC_VERSION(4,5) 391#if ECB_CPP11
392 // older implementations might have problems with decltype(x)::type, work around it
393 template<class T> struct ecb_decltype_t { typedef T type; };
195 #define ecb_decltype(x) __decltype(x) 394 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
196#elif ECB_GCC_VERSION(3,0) 395#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
197 #define ecb_decltype(x) __typeof(x) 396 #define ecb_decltype(x) __typeof__ (x)
198#endif 397#endif
199 398
399#if _MSC_VER >= 1300
400 #define ecb_deprecated __declspec (deprecated)
401#else
402 #define ecb_deprecated ecb_attribute ((__deprecated__))
403#endif
404
405#if _MSC_VER >= 1500
406 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
407#elif ECB_GCC_VERSION(4,5)
408 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
409#else
410 #define ecb_deprecated_message(msg) ecb_deprecated
411#endif
412
413#if _MSC_VER >= 1400
414 #define ecb_noinline __declspec (noinline)
415#else
200#define ecb_noinline ecb_attribute ((__noinline__)) 416 #define ecb_noinline ecb_attribute ((__noinline__))
201#define ecb_noreturn ecb_attribute ((__noreturn__)) 417#endif
418
202#define ecb_unused ecb_attribute ((__unused__)) 419#define ecb_unused ecb_attribute ((__unused__))
203#define ecb_const ecb_attribute ((__const__)) 420#define ecb_const ecb_attribute ((__const__))
204#define ecb_pure ecb_attribute ((__pure__)) 421#define ecb_pure ecb_attribute ((__pure__))
422
423#if ECB_C11 || __IBMC_NORETURN
424 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
425 #define ecb_noreturn _Noreturn
426#elif ECB_CPP11
427 #define ecb_noreturn [[noreturn]]
428#elif _MSC_VER >= 1200
429 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
430 #define ecb_noreturn __declspec (noreturn)
431#else
432 #define ecb_noreturn ecb_attribute ((__noreturn__))
433#endif
205 434
206#if ECB_GCC_VERSION(4,3) 435#if ECB_GCC_VERSION(4,3)
207 #define ecb_artificial ecb_attribute ((__artificial__)) 436 #define ecb_artificial ecb_attribute ((__artificial__))
208 #define ecb_hot ecb_attribute ((__hot__)) 437 #define ecb_hot ecb_attribute ((__hot__))
209 #define ecb_cold ecb_attribute ((__cold__)) 438 #define ecb_cold ecb_attribute ((__cold__))
221/* for compatibility to the rest of the world */ 450/* for compatibility to the rest of the world */
222#define ecb_likely(expr) ecb_expect_true (expr) 451#define ecb_likely(expr) ecb_expect_true (expr)
223#define ecb_unlikely(expr) ecb_expect_false (expr) 452#define ecb_unlikely(expr) ecb_expect_false (expr)
224 453
225/* count trailing zero bits and count # of one bits */ 454/* count trailing zero bits and count # of one bits */
226#if ECB_GCC_VERSION(3,4) 455#if ECB_GCC_VERSION(3,4) \
456 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
457 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
458 && ECB_CLANG_BUILTIN(__builtin_popcount))
227 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ 459 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
228 #define ecb_ld32(x) (__builtin_clz (x) ^ 31) 460 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
229 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) 461 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
230 #define ecb_ctz32(x) __builtin_ctz (x) 462 #define ecb_ctz32(x) __builtin_ctz (x)
231 #define ecb_ctz64(x) __builtin_ctzll (x) 463 #define ecb_ctz64(x) __builtin_ctzll (x)
232 #define ecb_popcount32(x) __builtin_popcount (x) 464 #define ecb_popcount32(x) __builtin_popcount (x)
233 /* no popcountll */ 465 /* no popcountll */
234#else 466#else
235 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; 467 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
236 ecb_function_ int 468 ecb_function_ ecb_const int
237 ecb_ctz32 (uint32_t x) 469 ecb_ctz32 (uint32_t x)
238 { 470 {
471#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
472 unsigned long r;
473 _BitScanForward (&r, x);
474 return (int)r;
475#else
239 int r = 0; 476 int r = 0;
240 477
241 x &= ~x + 1; /* this isolates the lowest bit */ 478 x &= ~x + 1; /* this isolates the lowest bit */
242 479
243#if ECB_branchless_on_i386 480#if ECB_branchless_on_i386
253 if (x & 0xff00ff00) r += 8; 490 if (x & 0xff00ff00) r += 8;
254 if (x & 0xffff0000) r += 16; 491 if (x & 0xffff0000) r += 16;
255#endif 492#endif
256 493
257 return r; 494 return r;
495#endif
258 } 496 }
259 497
260 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; 498 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
261 ecb_function_ int 499 ecb_function_ ecb_const int
262 ecb_ctz64 (uint64_t x) 500 ecb_ctz64 (uint64_t x)
263 { 501 {
502#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
503 unsigned long r;
504 _BitScanForward64 (&r, x);
505 return (int)r;
506#else
264 int shift = x & 0xffffffffU ? 0 : 32; 507 int shift = x & 0xffffffff ? 0 : 32;
265 return ecb_ctz32 (x >> shift) + shift; 508 return ecb_ctz32 (x >> shift) + shift;
509#endif
266 } 510 }
267 511
268 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; 512 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
269 ecb_function_ int 513 ecb_function_ ecb_const int
270 ecb_popcount32 (uint32_t x) 514 ecb_popcount32 (uint32_t x)
271 { 515 {
272 x -= (x >> 1) & 0x55555555; 516 x -= (x >> 1) & 0x55555555;
273 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 517 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
274 x = ((x >> 4) + x) & 0x0f0f0f0f; 518 x = ((x >> 4) + x) & 0x0f0f0f0f;
275 x *= 0x01010101; 519 x *= 0x01010101;
276 520
277 return x >> 24; 521 return x >> 24;
278 } 522 }
279 523
280 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; 524 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
281 ecb_function_ int ecb_ld32 (uint32_t x) 525 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
282 { 526 {
527#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
528 unsigned long r;
529 _BitScanReverse (&r, x);
530 return (int)r;
531#else
283 int r = 0; 532 int r = 0;
284 533
285 if (x >> 16) { x >>= 16; r += 16; } 534 if (x >> 16) { x >>= 16; r += 16; }
286 if (x >> 8) { x >>= 8; r += 8; } 535 if (x >> 8) { x >>= 8; r += 8; }
287 if (x >> 4) { x >>= 4; r += 4; } 536 if (x >> 4) { x >>= 4; r += 4; }
288 if (x >> 2) { x >>= 2; r += 2; } 537 if (x >> 2) { x >>= 2; r += 2; }
289 if (x >> 1) { r += 1; } 538 if (x >> 1) { r += 1; }
290 539
291 return r; 540 return r;
541#endif
292 } 542 }
293 543
294 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; 544 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
295 ecb_function_ int ecb_ld64 (uint64_t x) 545 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
296 { 546 {
547#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
548 unsigned long r;
549 _BitScanReverse64 (&r, x);
550 return (int)r;
551#else
297 int r = 0; 552 int r = 0;
298 553
299 if (x >> 32) { x >>= 32; r += 32; } 554 if (x >> 32) { x >>= 32; r += 32; }
300 555
301 return r + ecb_ld32 (x); 556 return r + ecb_ld32 (x);
557#endif
302 } 558 }
303#endif 559#endif
304 560
561ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
562ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
563ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
564ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
565
305ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; 566ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
306ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) 567ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
307{ 568{
308 return ( (x * 0x0802U & 0x22110U) 569 return ( (x * 0x0802U & 0x22110U)
309 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 570 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
310} 571}
311 572
312ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; 573ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
313ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) 574ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
314{ 575{
315 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); 576 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
316 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); 577 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
317 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); 578 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
318 x = ( x >> 8 ) | ( x << 8); 579 x = ( x >> 8 ) | ( x << 8);
319 580
320 return x; 581 return x;
321} 582}
322 583
323ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; 584ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
324ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) 585ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
325{ 586{
326 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); 587 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
327 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); 588 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
328 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); 589 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
329 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); 590 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
332 return x; 593 return x;
333} 594}
334 595
335/* popcount64 is only available on 64 bit cpus as gcc builtin */ 596/* popcount64 is only available on 64 bit cpus as gcc builtin */
336/* so for this version we are lazy */ 597/* so for this version we are lazy */
337ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; 598ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
338ecb_function_ int 599ecb_function_ ecb_const int
339ecb_popcount64 (uint64_t x) 600ecb_popcount64 (uint64_t x)
340{ 601{
341 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 602 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
342} 603}
343 604
344ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; 605ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
345ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; 606ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
346ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; 607ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
347ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; 608ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
348ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; 609ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
349ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; 610ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
350ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; 611ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
351ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; 612ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
352 613
353ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 614ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
354ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 615ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
355ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 616ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
356ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 617ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
357ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 618ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
358ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 619ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
359ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 620ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
360ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 621ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
361 622
362#if ECB_GCC_VERSION(4,3) 623#if ECB_CPP
624
625inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
626inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
627inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
628inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
629
630inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
631inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
632inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
633inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
634
635inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
636inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
637inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
638inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
639
640inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
641inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
642inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
643inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
644
645inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
646inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
647inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
648
649inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
650inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
651inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
652inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
653
654inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
655inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
656inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
657inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
658
659#endif
660
661#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
662 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
663 #define ecb_bswap16(x) __builtin_bswap16 (x)
664 #else
363 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) 665 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
666 #endif
364 #define ecb_bswap32(x) __builtin_bswap32 (x) 667 #define ecb_bswap32(x) __builtin_bswap32 (x)
365 #define ecb_bswap64(x) __builtin_bswap64 (x) 668 #define ecb_bswap64(x) __builtin_bswap64 (x)
669#elif _MSC_VER
670 #include <stdlib.h>
671 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
672 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
673 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
366#else 674#else
367 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; 675 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
368 ecb_function_ uint16_t 676 ecb_function_ ecb_const uint16_t
369 ecb_bswap16 (uint16_t x) 677 ecb_bswap16 (uint16_t x)
370 { 678 {
371 return ecb_rotl16 (x, 8); 679 return ecb_rotl16 (x, 8);
372 } 680 }
373 681
374 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; 682 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
375 ecb_function_ uint32_t 683 ecb_function_ ecb_const uint32_t
376 ecb_bswap32 (uint32_t x) 684 ecb_bswap32 (uint32_t x)
377 { 685 {
378 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 686 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
379 } 687 }
380 688
381 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; 689 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
382 ecb_function_ uint64_t 690 ecb_function_ ecb_const uint64_t
383 ecb_bswap64 (uint64_t x) 691 ecb_bswap64 (uint64_t x)
384 { 692 {
385 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 693 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
386 } 694 }
387#endif 695#endif
388 696
389#if ECB_GCC_VERSION(4,5) 697#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
390 #define ecb_unreachable() __builtin_unreachable () 698 #define ecb_unreachable() __builtin_unreachable ()
391#else 699#else
392 /* this seems to work fine, but gcc always emits a warning for it :/ */ 700 /* this seems to work fine, but gcc always emits a warning for it :/ */
393 ecb_inline void ecb_unreachable (void) ecb_noreturn; 701 ecb_inline ecb_noreturn void ecb_unreachable (void);
394 ecb_inline void ecb_unreachable (void) { } 702 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
395#endif 703#endif
396 704
397/* try to tell the compiler that some condition is definitely true */ 705/* try to tell the compiler that some condition is definitely true */
398#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0) 706#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
399 707
400ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; 708ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
401ecb_inline unsigned char 709ecb_inline ecb_const uint32_t
402ecb_byteorder_helper (void) 710ecb_byteorder_helper (void)
403{ 711{
404 const uint32_t u = 0x11223344; 712 /* the union code still generates code under pressure in gcc, */
405 return *(unsigned char *)&u; 713 /* but less than using pointers, and always seems to */
714 /* successfully return a constant. */
715 /* the reason why we have this horrible preprocessor mess */
716 /* is to avoid it in all cases, at least on common architectures */
717 /* or when using a recent enough gcc version (>= 4.6) */
718#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
719 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
720 #define ECB_LITTLE_ENDIAN 1
721 return 0x44332211;
722#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
723 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
724 #define ECB_BIG_ENDIAN 1
725 return 0x11223344;
726#else
727 union
728 {
729 uint8_t c[4];
730 uint32_t u;
731 } u = { 0x11, 0x22, 0x33, 0x44 };
732 return u.u;
733#endif
406} 734}
407 735
408ecb_inline ecb_bool ecb_big_endian (void) ecb_const; 736ecb_inline ecb_const ecb_bool ecb_big_endian (void);
409ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 737ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
410ecb_inline ecb_bool ecb_little_endian (void) ecb_const; 738ecb_inline ecb_const ecb_bool ecb_little_endian (void);
411ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 739ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
740
741/*****************************************************************************/
742/* unaligned load/store */
743
744ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
745ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
746ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
747
748ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
749ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
750ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
751
752ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
753ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
754ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
755
756ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
757ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
758ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
759
760ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
761ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
762ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
763
764ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
765ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
766ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
767
768ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
769ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
770ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
771
772ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
773ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
774ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
775
776ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
777ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
778ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
779
780ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
781ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
782ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
783
784#if ECB_CPP
785
786inline uint8_t ecb_bswap (uint8_t v) { return v; }
787inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
788inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
789inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
790
791template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
792template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
793template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
794template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
795template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
796template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
797template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
798template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
799
800template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
801template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
802template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
803template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
804template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
805template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
806template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
807template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
808
809#endif
810
811/*****************************************************************************/
812/* pointer/integer hashing */
813
814/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
815ecb_function_ uint32_t ecb_mix32 (uint32_t v);
816ecb_function_ uint32_t ecb_mix32 (uint32_t v)
817{
818 v ^= v >> 16; v *= 0x7feb352dU;
819 v ^= v >> 15; v *= 0x846ca68bU;
820 v ^= v >> 16;
821 return v;
822}
823
824ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
825ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
826{
827 v ^= v >> 16 ; v *= 0x43021123U;
828 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
829 v ^= v >> 16 ;
830 return v;
831}
832
833/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
834ecb_function_ uint64_t ecb_mix64 (uint64_t v);
835ecb_function_ uint64_t ecb_mix64 (uint64_t v)
836{
837 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
838 v ^= v >> 27; v *= 0x94d049bb133111ebU;
839 v ^= v >> 31;
840 return v;
841}
842
843ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
844ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
845{
846 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
847 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
848 v ^= v >> 30 ^ v >> 60;
849 return v;
850}
851
852ecb_function_ uintptr_t ecb_ptrmix (void *p);
853ecb_function_ uintptr_t ecb_ptrmix (void *p)
854{
855 #if ECB_PTRSIZE <= 4
856 return ecb_mix32 ((uint32_t)p);
857 #else
858 return ecb_mix64 ((uint64_t)p);
859 #endif
860}
861
862ecb_function_ void *ecb_ptrunmix (uintptr_t v);
863ecb_function_ void *ecb_ptrunmix (uintptr_t v)
864{
865 #if ECB_PTRSIZE <= 4
866 return (void *)ecb_unmix32 (v);
867 #else
868 return (void *)ecb_unmix64 (v);
869 #endif
870}
871
872#if ECB_CPP
873
874template<typename T>
875inline uintptr_t ecb_ptrmix (T *p)
876{
877 return ecb_ptrmix (static_cast<void *>(p));
878}
879
880template<typename T>
881inline T *ecb_ptrunmix (uintptr_t v)
882{
883 return static_cast<T *>(ecb_ptrunmix (v));
884}
885
886#endif
887
888/*****************************************************************************/
889/* gray code */
890
891ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
892ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
893ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
894ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
895
896ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
897{
898 g ^= g >> 1;
899 g ^= g >> 2;
900 g ^= g >> 4;
901
902 return g;
903}
904
905ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
906{
907 g ^= g >> 1;
908 g ^= g >> 2;
909 g ^= g >> 4;
910 g ^= g >> 8;
911
912 return g;
913}
914
915ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
916{
917 g ^= g >> 1;
918 g ^= g >> 2;
919 g ^= g >> 4;
920 g ^= g >> 8;
921 g ^= g >> 16;
922
923 return g;
924}
925
926ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
927{
928 g ^= g >> 1;
929 g ^= g >> 2;
930 g ^= g >> 4;
931 g ^= g >> 8;
932 g ^= g >> 16;
933 g ^= g >> 32;
934
935 return g;
936}
937
938#if ECB_CPP
939
940ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
941ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
942ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
943ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
944
945ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
946ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
947ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
948ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
949
950#endif
951
952/*****************************************************************************/
953/* 2d hilbert curves */
954
955/* algorithm from the book Hacker's Delight, modified to not */
956/* run into undefined behaviour for n==16 */
957static uint32_t
958ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
959{
960 uint32_t comp, swap, cs, t, sr;
961
962 /* pad s on the left (unused) bits with 01 (no change groups) */
963 s |= 0x55555555U << n << n;
964 /* "s shift right" */
965 sr = (s >> 1) & 0x55555555U;
966 /* compute complement and swap info in two-bit groups */
967 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
968
969 /* parallel prefix xor op to propagate both complement
970 * and swap info together from left to right (there is
971 * no step "cs ^= cs >> 1", so in effect it computes
972 * two independent parallel prefix operations on two
973 * interleaved sets of sixteen bits).
974 */
975 cs ^= cs >> 2;
976 cs ^= cs >> 4;
977 cs ^= cs >> 8;
978 cs ^= cs >> 16;
979
980 /* separate swap and complement bits */
981 swap = cs & 0x55555555U;
982 comp = (cs >> 1) & 0x55555555U;
983
984 /* calculate coordinates in odd and even bit positions */
985 t = (s & swap) ^ comp;
986 s = s ^ sr ^ t ^ (t << 1);
987
988 /* unpad/clear out any junk on the left */
989 s = s & ((1 << n << n) - 1);
990
991 /* Now "unshuffle" to separate the x and y bits. */
992 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
993 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
994 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
995 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
996
997 /* now s contains two 16-bit coordinates */
998 return s;
999}
1000
1001/* 64 bit, a straightforward extension to the 32 bit case */
1002static uint64_t
1003ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1004{
1005 uint64_t comp, swap, cs, t, sr;
1006
1007 /* pad s on the left (unused) bits with 01 (no change groups) */
1008 s |= 0x5555555555555555U << n << n;
1009 /* "s shift right" */
1010 sr = (s >> 1) & 0x5555555555555555U;
1011 /* compute complement and swap info in two-bit groups */
1012 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1013
1014 /* parallel prefix xor op to propagate both complement
1015 * and swap info together from left to right (there is
1016 * no step "cs ^= cs >> 1", so in effect it computes
1017 * two independent parallel prefix operations on two
1018 * interleaved sets of thirty-two bits).
1019 */
1020 cs ^= cs >> 2;
1021 cs ^= cs >> 4;
1022 cs ^= cs >> 8;
1023 cs ^= cs >> 16;
1024 cs ^= cs >> 32;
1025
1026 /* separate swap and complement bits */
1027 swap = cs & 0x5555555555555555U;
1028 comp = (cs >> 1) & 0x5555555555555555U;
1029
1030 /* calculate coordinates in odd and even bit positions */
1031 t = (s & swap) ^ comp;
1032 s = s ^ sr ^ t ^ (t << 1);
1033
1034 /* unpad/clear out any junk on the left */
1035 s = s & ((1 << n << n) - 1);
1036
1037 /* Now "unshuffle" to separate the x and y bits. */
1038 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1039 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1040 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1041 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1042 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1043
1044 /* now s contains two 32-bit coordinates */
1045 return s;
1046}
1047
1048/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1049/* is given in https://doi.org/10.1002/spe.4380160103 */
1050/* this has been slightly improved over the original version */
1051ecb_function_ uint32_t
1052ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1053{
1054 uint32_t row;
1055 uint32_t state = 0;
1056 uint32_t s = 0;
1057
1058 do
1059 {
1060 --n;
1061
1062 row = 4 * state
1063 | (2 & (xy >> n >> 15))
1064 | (1 & (xy >> n ));
1065
1066 /* these funky constants are lookup tables for two-bit values */
1067 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1068 state = (0x8fe65831U >> 2 * row) & 3;
1069 }
1070 while (n > 0);
1071
1072 return s;
1073}
1074
1075/* 64 bit, essentially the same as 32 bit */
1076ecb_function_ uint64_t
1077ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1078{
1079 uint32_t row;
1080 uint32_t state = 0;
1081 uint64_t s = 0;
1082
1083 do
1084 {
1085 --n;
1086
1087 row = 4 * state
1088 | (2 & (xy >> n >> 31))
1089 | (1 & (xy >> n ));
1090
1091 /* these funky constants are lookup tables for two-bit values */
1092 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1093 state = (0x8fe65831U >> 2 * row) & 3;
1094 }
1095 while (n > 0);
1096
1097 return s;
1098}
1099
1100/*****************************************************************************/
1101/* division */
412 1102
413#if ECB_GCC_VERSION(3,0) || ECB_C99 1103#if ECB_GCC_VERSION(3,0) || ECB_C99
1104 /* C99 tightened the definition of %, so we can use a more efficient version */
414 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1105 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
415#else 1106#else
416 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1107 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
417#endif 1108#endif
418 1109
419#if __cplusplus 1110#if ECB_CPP
420 template<typename T> 1111 template<typename T>
421 static inline T ecb_div_rd (T val, T div) 1112 static inline T ecb_div_rd (T val, T div)
422 { 1113 {
423 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; 1114 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
424 } 1115 }
430#else 1121#else
431 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1122 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
432 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1123 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
433#endif 1124#endif
434 1125
1126/*****************************************************************************/
1127/* array length */
1128
435#if ecb_cplusplus_does_not_suck 1129#if ecb_cplusplus_does_not_suck
436 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1130 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
437 template<typename T, int N> 1131 template<typename T, int N>
438 static inline int ecb_array_length (const T (&arr)[N]) 1132 static inline int ecb_array_length (const T (&arr)[N])
439 { 1133 {
441 } 1135 }
442#else 1136#else
443 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1137 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
444#endif 1138#endif
445 1139
1140/*****************************************************************************/
1141/* IEEE 754-2008 half float conversions */
1142
1143ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1144ecb_function_ ecb_const uint32_t
1145ecb_binary16_to_binary32 (uint32_t x)
1146{
1147 unsigned int s = (x & 0x8000) << (31 - 15);
1148 int e = (x >> 10) & 0x001f;
1149 unsigned int m = x & 0x03ff;
1150
1151 if (ecb_expect_false (e == 31))
1152 /* infinity or NaN */
1153 e = 255 - (127 - 15);
1154 else if (ecb_expect_false (!e))
1155 {
1156 if (ecb_expect_true (!m))
1157 /* zero, handled by code below by forcing e to 0 */
1158 e = 0 - (127 - 15);
1159 else
1160 {
1161 /* subnormal, renormalise */
1162 unsigned int s = 10 - ecb_ld32 (m);
1163
1164 m = (m << s) & 0x3ff; /* mask implicit bit */
1165 e -= s - 1;
1166 }
1167 }
1168
1169 /* e and m now are normalised, or zero, (or inf or nan) */
1170 e += 127 - 15;
1171
1172 return s | (e << 23) | (m << (23 - 10));
1173}
1174
1175ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1176ecb_function_ ecb_const uint16_t
1177ecb_binary32_to_binary16 (uint32_t x)
1178{
1179 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1180 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1181 unsigned int m = x & 0x007fffff;
1182
1183 x &= 0x7fffffff;
1184
1185 /* if it's within range of binary16 normals, use fast path */
1186 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1187 {
1188 /* mantissa round-to-even */
1189 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1190
1191 /* handle overflow */
1192 if (ecb_expect_false (m >= 0x00800000))
1193 {
1194 m >>= 1;
1195 e += 1;
1196 }
1197
1198 return s | (e << 10) | (m >> (23 - 10));
1199 }
1200
1201 /* handle large numbers and infinity */
1202 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1203 return s | 0x7c00;
1204
1205 /* handle zero, subnormals and small numbers */
1206 if (ecb_expect_true (x < 0x38800000))
1207 {
1208 /* zero */
1209 if (ecb_expect_true (!x))
1210 return s;
1211
1212 /* handle subnormals */
1213
1214 /* too small, will be zero */
1215 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1216 return s;
1217
1218 m |= 0x00800000; /* make implicit bit explicit */
1219
1220 /* very tricky - we need to round to the nearest e (+10) bit value */
1221 {
1222 unsigned int bits = 14 - e;
1223 unsigned int half = (1 << (bits - 1)) - 1;
1224 unsigned int even = (m >> bits) & 1;
1225
1226 /* if this overflows, we will end up with a normalised number */
1227 m = (m + half + even) >> bits;
1228 }
1229
1230 return s | m;
1231 }
1232
1233 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1234 m >>= 13;
1235
1236 return s | 0x7c00 | m | !m;
1237}
1238
1239/*******************************************************************************/
1240/* fast integer to ascii */
1241
1242/*
1243 * This code is pretty complicated because it is general. The idea behind it,
1244 * however, is pretty simple: first, the number is multiplied with a scaling
1245 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1246 * number with the first digit in the upper bits.
1247 * Then this digit is converted to text and masked out. The resulting number
1248 * is then multiplied by 10, by multiplying the fixed point representation
1249 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1250 * format becomes 5.27, 6.26 and so on.
1251 * The rest involves only advancing the pointer if we already generated a
1252 * non-zero digit, so leading zeroes are overwritten.
1253 */
1254
1255/* simply return a mask with "bits" bits set */
1256#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1257
1258/* oputput a single digit. maskvalue is 10**digitidx */
1259#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1260 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1261 { \
1262 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1263 *ptr = digit + '0'; /* output it */ \
1264 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1265 ptr += nz; /* output digit only if non-zero digit seen */ \
1266 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1267 }
1268
1269/* convert integer to fixed point format and multiply out digits, highest first */
1270/* requires magic constants: max. digits and number of bits after the decimal point */
1271#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1272ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1273{ \
1274 char nz = lz; /* non-zero digit seen? */ \
1275 /* convert to x.bits fixed-point */ \
1276 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1277 /* output up to 10 digits */ \
1278 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1279 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1280 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1281 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1282 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1283 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1284 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1285 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1286 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1287 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1288 return ptr; \
1289}
1290
1291/* predefined versions of the above, for various digits */
1292/* ecb_i2a_xN = almost N digits, limit defined by macro */
1293/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1294/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1295
1296/* non-leading-zero versions, limited range */
1297#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1298#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1299ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1300ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1301
1302/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1303ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1304ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1305ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1306ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1307ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1308ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1309ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1310ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1311
1312/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1313ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1314ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1315ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1316ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1317ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1318ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1319ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1320ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1321
1322#define ECB_I2A_I32_DIGITS 11
1323#define ECB_I2A_U32_DIGITS 10
1324#define ECB_I2A_I64_DIGITS 20
1325#define ECB_I2A_U64_DIGITS 21
1326#define ECB_I2A_MAX_DIGITS 21
1327
1328ecb_inline char *
1329ecb_i2a_u32 (char *ptr, uint32_t u)
1330{
1331 #if ECB_64BIT_NATIVE
1332 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1333 ptr = ecb_i2a_x10 (ptr, u);
1334 else /* x10 almost, but not fully, covers 32 bit */
1335 {
1336 uint32_t u1 = u % 1000000000;
1337 uint32_t u2 = u / 1000000000;
1338
1339 *ptr++ = u2 + '0';
1340 ptr = ecb_i2a_09 (ptr, u1);
1341 }
1342 #else
1343 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1344 ecb_i2a_x5 (ptr, u);
1345 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1346 {
1347 uint32_t u1 = u % 10000;
1348 uint32_t u2 = u / 10000;
1349
1350 ptr = ecb_i2a_x5 (ptr, u2);
1351 ptr = ecb_i2a_04 (ptr, u1);
1352 }
1353 else
1354 {
1355 uint32_t u1 = u % 10000;
1356 uint32_t ua = u / 10000;
1357 uint32_t u2 = ua % 10000;
1358 uint32_t u3 = ua / 10000;
1359
1360 ptr = ecb_i2a_2 (ptr, u3);
1361 ptr = ecb_i2a_04 (ptr, u2);
1362 ptr = ecb_i2a_04 (ptr, u1);
1363 }
446#endif 1364 #endif
447 1365
1366 return ptr;
1367}
1368
1369ecb_inline char *
1370ecb_i2a_i32 (char *ptr, int32_t v)
1371{
1372 *ptr = '-'; ptr += v < 0;
1373 uint32_t u = v < 0 ? -(uint32_t)v : v;
1374
1375 #if ECB_64BIT_NATIVE
1376 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1377 #else
1378 ptr = ecb_i2a_u32 (ptr, u);
1379 #endif
1380
1381 return ptr;
1382}
1383
1384ecb_inline char *
1385ecb_i2a_u64 (char *ptr, uint64_t u)
1386{
1387 #if ECB_64BIT_NATIVE
1388 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1389 ptr = ecb_i2a_x10 (ptr, u);
1390 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1391 {
1392 uint64_t u1 = u % 1000000000;
1393 uint64_t u2 = u / 1000000000;
1394
1395 ptr = ecb_i2a_x10 (ptr, u2);
1396 ptr = ecb_i2a_09 (ptr, u1);
1397 }
1398 else
1399 {
1400 uint64_t u1 = u % 1000000000;
1401 uint64_t ua = u / 1000000000;
1402 uint64_t u2 = ua % 1000000000;
1403 uint64_t u3 = ua / 1000000000;
1404
1405 ptr = ecb_i2a_2 (ptr, u3);
1406 ptr = ecb_i2a_09 (ptr, u2);
1407 ptr = ecb_i2a_09 (ptr, u1);
1408 }
1409 #else
1410 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1411 ptr = ecb_i2a_x5 (ptr, u);
1412 else
1413 {
1414 uint64_t u1 = u % 10000;
1415 uint64_t u2 = u / 10000;
1416
1417 ptr = ecb_i2a_u64 (ptr, u2);
1418 ptr = ecb_i2a_04 (ptr, u1);
1419 }
1420 #endif
1421
1422 return ptr;
1423}
1424
1425ecb_inline char *
1426ecb_i2a_i64 (char *ptr, int64_t v)
1427{
1428 *ptr = '-'; ptr += v < 0;
1429 uint64_t u = v < 0 ? -(uint64_t)v : v;
1430
1431 #if ECB_64BIT_NATIVE
1432 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1433 ptr = ecb_i2a_x10 (ptr, u);
1434 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1435 {
1436 uint64_t u1 = u % 1000000000;
1437 uint64_t u2 = u / 1000000000;
1438
1439 ptr = ecb_i2a_x10 (ptr, u2);
1440 ptr = ecb_i2a_09 (ptr, u1);
1441 }
1442 else
1443 {
1444 uint64_t u1 = u % 1000000000;
1445 uint64_t ua = u / 1000000000;
1446 uint64_t u2 = ua % 1000000000;
1447 uint64_t u3 = ua / 1000000000;
1448
1449 /* 2**31 is 19 digits, so the top is exactly one digit */
1450 *ptr++ = u3 + '0';
1451 ptr = ecb_i2a_09 (ptr, u2);
1452 ptr = ecb_i2a_09 (ptr, u1);
1453 }
1454 #else
1455 ptr = ecb_i2a_u64 (ptr, u);
1456 #endif
1457
1458 return ptr;
1459}
1460
1461/*******************************************************************************/
1462/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1463
1464/* basically, everything uses "ieee pure-endian" floating point numbers */
1465/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1466#if 0 \
1467 || __i386 || __i386__ \
1468 || ECB_GCC_AMD64 \
1469 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1470 || defined __s390__ || defined __s390x__ \
1471 || defined __mips__ \
1472 || defined __alpha__ \
1473 || defined __hppa__ \
1474 || defined __ia64__ \
1475 || defined __m68k__ \
1476 || defined __m88k__ \
1477 || defined __sh__ \
1478 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1479 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1480 || defined __aarch64__
1481 #define ECB_STDFP 1
1482#else
1483 #define ECB_STDFP 0
1484#endif
1485
1486#ifndef ECB_NO_LIBM
1487
1488 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1489
1490 /* only the oldest of old doesn't have this one. solaris. */
1491 #ifdef INFINITY
1492 #define ECB_INFINITY INFINITY
1493 #else
1494 #define ECB_INFINITY HUGE_VAL
1495 #endif
1496
1497 #ifdef NAN
1498 #define ECB_NAN NAN
1499 #else
1500 #define ECB_NAN ECB_INFINITY
1501 #endif
1502
1503 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1504 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1505 #define ecb_frexpf(x,e) frexpf ((x), (e))
1506 #else
1507 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1508 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1509 #endif
1510
1511 /* convert a float to ieee single/binary32 */
1512 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1513 ecb_function_ ecb_const uint32_t
1514 ecb_float_to_binary32 (float x)
1515 {
1516 uint32_t r;
1517
1518 #if ECB_STDFP
1519 memcpy (&r, &x, 4);
1520 #else
1521 /* slow emulation, works for anything but -0 */
1522 uint32_t m;
1523 int e;
1524
1525 if (x == 0e0f ) return 0x00000000U;
1526 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1527 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1528 if (x != x ) return 0x7fbfffffU;
1529
1530 m = ecb_frexpf (x, &e) * 0x1000000U;
1531
1532 r = m & 0x80000000U;
1533
1534 if (r)
1535 m = -m;
1536
1537 if (e <= -126)
1538 {
1539 m &= 0xffffffU;
1540 m >>= (-125 - e);
1541 e = -126;
1542 }
1543
1544 r |= (e + 126) << 23;
1545 r |= m & 0x7fffffU;
1546 #endif
1547
1548 return r;
1549 }
1550
1551 /* converts an ieee single/binary32 to a float */
1552 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1553 ecb_function_ ecb_const float
1554 ecb_binary32_to_float (uint32_t x)
1555 {
1556 float r;
1557
1558 #if ECB_STDFP
1559 memcpy (&r, &x, 4);
1560 #else
1561 /* emulation, only works for normals and subnormals and +0 */
1562 int neg = x >> 31;
1563 int e = (x >> 23) & 0xffU;
1564
1565 x &= 0x7fffffU;
1566
1567 if (e)
1568 x |= 0x800000U;
1569 else
1570 e = 1;
1571
1572 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1573 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1574
1575 r = neg ? -r : r;
1576 #endif
1577
1578 return r;
1579 }
1580
1581 /* convert a double to ieee double/binary64 */
1582 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1583 ecb_function_ ecb_const uint64_t
1584 ecb_double_to_binary64 (double x)
1585 {
1586 uint64_t r;
1587
1588 #if ECB_STDFP
1589 memcpy (&r, &x, 8);
1590 #else
1591 /* slow emulation, works for anything but -0 */
1592 uint64_t m;
1593 int e;
1594
1595 if (x == 0e0 ) return 0x0000000000000000U;
1596 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1597 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1598 if (x != x ) return 0X7ff7ffffffffffffU;
1599
1600 m = frexp (x, &e) * 0x20000000000000U;
1601
1602 r = m & 0x8000000000000000;;
1603
1604 if (r)
1605 m = -m;
1606
1607 if (e <= -1022)
1608 {
1609 m &= 0x1fffffffffffffU;
1610 m >>= (-1021 - e);
1611 e = -1022;
1612 }
1613
1614 r |= ((uint64_t)(e + 1022)) << 52;
1615 r |= m & 0xfffffffffffffU;
1616 #endif
1617
1618 return r;
1619 }
1620
1621 /* converts an ieee double/binary64 to a double */
1622 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1623 ecb_function_ ecb_const double
1624 ecb_binary64_to_double (uint64_t x)
1625 {
1626 double r;
1627
1628 #if ECB_STDFP
1629 memcpy (&r, &x, 8);
1630 #else
1631 /* emulation, only works for normals and subnormals and +0 */
1632 int neg = x >> 63;
1633 int e = (x >> 52) & 0x7ffU;
1634
1635 x &= 0xfffffffffffffU;
1636
1637 if (e)
1638 x |= 0x10000000000000U;
1639 else
1640 e = 1;
1641
1642 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1643 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1644
1645 r = neg ? -r : r;
1646 #endif
1647
1648 return r;
1649 }
1650
1651 /* convert a float to ieee half/binary16 */
1652 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1653 ecb_function_ ecb_const uint16_t
1654 ecb_float_to_binary16 (float x)
1655 {
1656 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1657 }
1658
1659 /* convert an ieee half/binary16 to float */
1660 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1661 ecb_function_ ecb_const float
1662 ecb_binary16_to_float (uint16_t x)
1663 {
1664 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1665 }
1666
1667#endif
1668
1669#endif
1670

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines