ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.146 by root, Fri Oct 17 11:07:14 2014 UTC vs.
Revision 1.209 by root, Fri Mar 25 15:23:14 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010004 45#define ECB_VERSION 0x0001000c
46 46
47#ifdef _WIN32 47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
48 typedef signed char int8_t; 50 typedef signed char int8_t;
49 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
50 typedef signed short int16_t; 54 typedef signed short int16_t;
51 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
52 typedef signed int int32_t; 58 typedef signed int int32_t;
53 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
54 #if __GNUC__ 62 #if __GNUC__
55 typedef signed long long int64_t; 63 typedef signed long long int64_t;
56 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
57 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
58 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
59 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
60 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
61 #ifdef _WIN64 71 #ifdef _WIN64
62 #define ECB_PTRSIZE 8 72 #define ECB_PTRSIZE 8
63 typedef uint64_t uintptr_t; 73 typedef uint64_t uintptr_t;
64 typedef int64_t intptr_t; 74 typedef int64_t intptr_t;
65 #else 75 #else
67 typedef uint32_t uintptr_t; 77 typedef uint32_t uintptr_t;
68 typedef int32_t intptr_t; 78 typedef int32_t intptr_t;
69 #endif 79 #endif
70#else 80#else
71 #include <inttypes.h> 81 #include <inttypes.h>
72 #if UINTMAX_MAX > 0xffffffffU 82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
73 #define ECB_PTRSIZE 8 83 #define ECB_PTRSIZE 8
74 #else 84 #else
75 #define ECB_PTRSIZE 4 85 #define ECB_PTRSIZE 4
76 #endif 86 #endif
77#endif 87#endif
78 88
89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
99
79/* work around x32 idiocy by defining proper macros */ 100/* work around x32 idiocy by defining proper macros */
80#if __amd64 || __x86_64 || _M_AMD64 || _M_X64 101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
81 #if _ILP32 102 #if _ILP32
82 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
83 #else 104 #else
84 #define ECB_AMD64 1 105 #define ECB_AMD64 1
85 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
86#endif 113#endif
87 114
88/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
89 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
90 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
98 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) 125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
99#endif 126#endif
100 127
101#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) 128#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
102 129
103#if __clang__ && defined(__has_builtin) 130#if __clang__ && defined __has_builtin
104 #define ECB_CLANG_BUILTIN(x) __has_builtin(x) 131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
105#else 132#else
106 #define ECB_CLANG_BUILTIN(x) 0 133 #define ECB_CLANG_BUILTIN(x) 0
107#endif 134#endif
108 135
109#if __clang__ && defined(__has_extension) 136#if __clang__ && defined __has_extension
110 #define ECB_CLANG_EXTENSION(x) __has_extension(x) 137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
111#else 138#else
112 #define ECB_CLANG_EXTENSION(x) 0 139 #define ECB_CLANG_EXTENSION(x) 0
113#endif 140#endif
114 141
115#define ECB_CPP (__cplusplus+0) 142#define ECB_CPP (__cplusplus+0)
116#define ECB_CPP11 (__cplusplus >= 201103L) 143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
117 146
118#if ECB_CPP 147#if ECB_CPP
119 #define ECB_C 0 148 #define ECB_C 0
120 #define ECB_STDC_VERSION 0 149 #define ECB_STDC_VERSION 0
121#else 150#else
123 #define ECB_STDC_VERSION __STDC_VERSION__ 152 #define ECB_STDC_VERSION __STDC_VERSION__
124#endif 153#endif
125 154
126#define ECB_C99 (ECB_STDC_VERSION >= 199901L) 155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
127#define ECB_C11 (ECB_STDC_VERSION >= 201112L) 156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
128 158
129#if ECB_CPP 159#if ECB_CPP
130 #define ECB_EXTERN_C extern "C" 160 #define ECB_EXTERN_C extern "C"
131 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
132 #define ECB_EXTERN_C_END } 162 #define ECB_EXTERN_C_END }
147 177
148#if ECB_NO_SMP 178#if ECB_NO_SMP
149 #define ECB_MEMORY_FENCE do { } while (0) 179 #define ECB_MEMORY_FENCE do { } while (0)
150#endif 180#endif
151 181
182/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183#if __xlC__ && ECB_CPP
184 #include <builtins.h>
185#endif
186
187#if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189#endif
190
152#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
153 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
154 #if __i386 || __i386__ 194 #if __i386 || __i386__
155 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
156 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
157 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
158 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ 198 #elif ECB_GCC_AMD64
159 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
160 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
161 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
162 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
163 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
164 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
165 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
166 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
167 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
168 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
169 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
170 #elif __aarch64__ 218 #elif __aarch64__
171 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
172 #elif (__sparc || __sparc__) && !__sparcv8 220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
173 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
174 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") 222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
175 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") 223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
176 #elif defined __s390__ || defined __s390x__ 224 #elif defined __s390__ || defined __s390x__
177 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") 225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
200 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
201 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
202 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
203 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
204 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
205 255
206 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
207 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
208 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
209 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
210 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
211 263
212 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
213 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
214 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
215 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
225 #elif defined _WIN32 277 #elif defined _WIN32
226 #include <WinNT.h> 278 #include <WinNT.h>
227 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
228 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
229 #include <mbarrier.h> 281 #include <mbarrier.h>
230 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
231 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
232 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
233 #elif __xlC__ 286 #elif __xlC__
234 #define ECB_MEMORY_FENCE __sync () 287 #define ECB_MEMORY_FENCE __sync ()
235 #endif 288 #endif
236#endif 289#endif
237 290
238#ifndef ECB_MEMORY_FENCE 291#ifndef ECB_MEMORY_FENCE
239 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
240 /* we assume that these memory fences work on all variables/all memory accesses, */ 293 /* we assume that these memory fences work on all variables/all memory accesses, */
241 /* not just C11 atomics and atomic accesses */ 294 /* not just C11 atomics and atomic accesses */
242 #include <stdatomic.h> 295 #include <stdatomic.h>
243 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
244 /* any fence other than seq_cst, which isn't very efficient for us. */
245 /* Why that is, we don't know - either the C11 memory model is quite useless */
246 /* for most usages, or gcc and clang have a bug */
247 /* I *currently* lean towards the latter, and inefficiently implement */
248 /* all three of ecb's fences as a seq_cst fence */
249 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
250 /* for all __atomic_thread_fence's except seq_cst */
251 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
252 #endif 299 #endif
253#endif 300#endif
254 301
255#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
256 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
276 323
277#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
278 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
279#endif 326#endif
280 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
281/*****************************************************************************/ 332/*****************************************************************************/
282 333
283#if __cplusplus 334#if ECB_CPP
284 #define ecb_inline static inline 335 #define ecb_inline static inline
285#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
286 #define ecb_inline static __inline__ 337 #define ecb_inline static __inline__
287#elif ECB_C99 338#elif ECB_C99
288 #define ecb_inline static inline 339 #define ecb_inline static inline
302 353
303#define ECB_CONCAT_(a, b) a ## b 354#define ECB_CONCAT_(a, b) a ## b
304#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
305#define ECB_STRINGIFY_(a) # a 356#define ECB_STRINGIFY_(a) # a
306#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
307 359
308#define ecb_function_ ecb_inline 360#define ecb_function_ ecb_inline
309 361
310#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) 362#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
311 #define ecb_attribute(attrlist) __attribute__ (attrlist) 363 #define ecb_attribute(attrlist) __attribute__ (attrlist)
343#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) 395#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
344 #define ecb_decltype(x) __typeof__ (x) 396 #define ecb_decltype(x) __typeof__ (x)
345#endif 397#endif
346 398
347#if _MSC_VER >= 1300 399#if _MSC_VER >= 1300
348 #define ecb_deprecated __declspec(deprecated) 400 #define ecb_deprecated __declspec (deprecated)
349#else 401#else
350 #define ecb_deprecated ecb_attribute ((__deprecated__)) 402 #define ecb_deprecated ecb_attribute ((__deprecated__))
351#endif 403#endif
352 404
405#if _MSC_VER >= 1500
406 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
407#elif ECB_GCC_VERSION(4,5)
408 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
409#else
410 #define ecb_deprecated_message(msg) ecb_deprecated
411#endif
412
413#if _MSC_VER >= 1400
414 #define ecb_noinline __declspec (noinline)
415#else
353#define ecb_noinline ecb_attribute ((__noinline__)) 416 #define ecb_noinline ecb_attribute ((__noinline__))
417#endif
418
354#define ecb_unused ecb_attribute ((__unused__)) 419#define ecb_unused ecb_attribute ((__unused__))
355#define ecb_const ecb_attribute ((__const__)) 420#define ecb_const ecb_attribute ((__const__))
356#define ecb_pure ecb_attribute ((__pure__)) 421#define ecb_pure ecb_attribute ((__pure__))
357 422
358/* TODO http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */
359#if ECB_C11 || __IBMC_NORETURN 423#if ECB_C11 || __IBMC_NORETURN
360 /* http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/noreturn.html */ 424 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
361 #define ecb_noreturn _Noreturn 425 #define ecb_noreturn _Noreturn
426#elif ECB_CPP11
427 #define ecb_noreturn [[noreturn]]
428#elif _MSC_VER >= 1200
429 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
430 #define ecb_noreturn __declspec (noreturn)
362#else 431#else
363 #define ecb_noreturn ecb_attribute ((__noreturn__)) 432 #define ecb_noreturn ecb_attribute ((__noreturn__))
364#endif 433#endif
365 434
366#if ECB_GCC_VERSION(4,3) 435#if ECB_GCC_VERSION(4,3)
385/* count trailing zero bits and count # of one bits */ 454/* count trailing zero bits and count # of one bits */
386#if ECB_GCC_VERSION(3,4) \ 455#if ECB_GCC_VERSION(3,4) \
387 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 456 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
388 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 457 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
389 && ECB_CLANG_BUILTIN(__builtin_popcount)) 458 && ECB_CLANG_BUILTIN(__builtin_popcount))
390 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
391 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
392 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
393 #define ecb_ctz32(x) __builtin_ctz (x) 459 #define ecb_ctz32(x) __builtin_ctz (x)
460 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
394 #define ecb_ctz64(x) __builtin_ctzll (x) 461 #define ecb_clz32(x) __builtin_clz (x)
462 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
463 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
464 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
395 #define ecb_popcount32(x) __builtin_popcount (x) 465 #define ecb_popcount32(x) __builtin_popcount (x)
396 /* no popcountll */ 466 /* ecb_popcount64 is more difficult, see below */
397#else 467#else
398 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; 468 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
399 ecb_function_ int 469 ecb_function_ ecb_const int
400 ecb_ctz32 (uint32_t x) 470 ecb_ctz32 (uint32_t x)
401 { 471 {
472#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
473 unsigned long r;
474 _BitScanForward (&r, x);
475 return (int)r;
476#else
402 int r = 0; 477 int r;
403 478
404 x &= ~x + 1; /* this isolates the lowest bit */ 479 x &= ~x + 1; /* this isolates the lowest bit */
405 480
406#if ECB_branchless_on_i386 481 #if 1
482 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
483 /* This happens to return 32 for x == 0, but the API does not support this */
484
485 /* -0 marks unused entries */
486 static unsigned char table[64] =
487 {
488 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
489 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
490 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
491 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
492 };
493
494 /* magic constant results in 33 unique values in the upper 6 bits */
495 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
496
497 r = table [x >> 26];
498 #elif 0 /* branchless on i386, typically */
499 r = 0;
407 r += !!(x & 0xaaaaaaaa) << 0; 500 r += !!(x & 0xaaaaaaaa) << 0;
408 r += !!(x & 0xcccccccc) << 1; 501 r += !!(x & 0xcccccccc) << 1;
409 r += !!(x & 0xf0f0f0f0) << 2; 502 r += !!(x & 0xf0f0f0f0) << 2;
410 r += !!(x & 0xff00ff00) << 3; 503 r += !!(x & 0xff00ff00) << 3;
411 r += !!(x & 0xffff0000) << 4; 504 r += !!(x & 0xffff0000) << 4;
412#else 505 #else /* branchless on modern compilers, typically */
506 r = 0;
413 if (x & 0xaaaaaaaa) r += 1; 507 if (x & 0xaaaaaaaa) r += 1;
414 if (x & 0xcccccccc) r += 2; 508 if (x & 0xcccccccc) r += 2;
415 if (x & 0xf0f0f0f0) r += 4; 509 if (x & 0xf0f0f0f0) r += 4;
416 if (x & 0xff00ff00) r += 8; 510 if (x & 0xff00ff00) r += 8;
417 if (x & 0xffff0000) r += 16; 511 if (x & 0xffff0000) r += 16;
418#endif 512#endif
419 513
420 return r; 514 return r;
515#endif
421 } 516 }
422 517
423 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; 518 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
424 ecb_function_ int 519 ecb_function_ ecb_const int
425 ecb_ctz64 (uint64_t x) 520 ecb_ctz64 (uint64_t x)
426 { 521 {
522#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
523 unsigned long r;
524 _BitScanForward64 (&r, x);
525 return (int)r;
526#else
427 int shift = x & 0xffffffffU ? 0 : 32; 527 int shift = x & 0xffffffff ? 0 : 32;
428 return ecb_ctz32 (x >> shift) + shift; 528 return ecb_ctz32 (x >> shift) + shift;
529#endif
429 } 530 }
430 531
532 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
533 ecb_function_ ecb_const int
534 ecb_clz32 (uint32_t x)
535 {
536#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
537 unsigned long r;
538 _BitScanReverse (&r, x);
539 return (int)r;
540#else
541
542 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
543 /* This happens to return 32 for x == 0, but the API does not support this */
544
545 /* -0 marks unused table elements */
546 static unsigned char table[64] =
547 {
548 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
549 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
550 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
551 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
552 };
553
554 /* propagate leftmost 1 bit to the right */
555 x |= x >> 1;
556 x |= x >> 2;
557 x |= x >> 4;
558 x |= x >> 8;
559 x |= x >> 16;
560
561 /* magic constant results in 33 unique values in the upper 6 bits */
562 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
563
564 return table [x >> 26];
565#endif
566 }
567
568 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
569 ecb_function_ ecb_const int
570 ecb_clz64 (uint64_t x)
571 {
572#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573 unsigned long r;
574 _BitScanReverse64 (&r, x);
575 return (int)r;
576#else
577 uint32_t l = x >> 32;
578 int shift = l ? 0 : 32;
579 return ecb_clz32 (l ? l : x) + shift;
580#endif
581 }
582
431 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; 583 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
432 ecb_function_ int 584 ecb_function_ ecb_const int
433 ecb_popcount32 (uint32_t x) 585 ecb_popcount32 (uint32_t x)
434 { 586 {
435 x -= (x >> 1) & 0x55555555; 587 x -= (x >> 1) & 0x55555555;
436 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 588 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
437 x = ((x >> 4) + x) & 0x0f0f0f0f; 589 x = ((x >> 4) + x) & 0x0f0f0f0f;
438 x *= 0x01010101; 590 x *= 0x01010101;
439 591
440 return x >> 24; 592 return x >> 24;
441 } 593 }
442 594
443 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; 595 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
444 ecb_function_ int ecb_ld32 (uint32_t x) 596 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
445 { 597 {
598#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
599 unsigned long r;
600 _BitScanReverse (&r, x);
601 return (int)r;
602#else
446 int r = 0; 603 int r = 0;
447 604
448 if (x >> 16) { x >>= 16; r += 16; } 605 if (x >> 16) { x >>= 16; r += 16; }
449 if (x >> 8) { x >>= 8; r += 8; } 606 if (x >> 8) { x >>= 8; r += 8; }
450 if (x >> 4) { x >>= 4; r += 4; } 607 if (x >> 4) { x >>= 4; r += 4; }
451 if (x >> 2) { x >>= 2; r += 2; } 608 if (x >> 2) { x >>= 2; r += 2; }
452 if (x >> 1) { r += 1; } 609 if (x >> 1) { r += 1; }
453 610
454 return r; 611 return r;
612#endif
455 } 613 }
456 614
457 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; 615 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
458 ecb_function_ int ecb_ld64 (uint64_t x) 616 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
459 { 617 {
618#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
619 unsigned long r;
620 _BitScanReverse64 (&r, x);
621 return (int)r;
622#else
460 int r = 0; 623 int r = 0;
461 624
462 if (x >> 32) { x >>= 32; r += 32; } 625 if (x >> 32) { x >>= 32; r += 32; }
463 626
464 return r + ecb_ld32 (x); 627 return r + ecb_ld32 (x);
465 }
466#endif 628#endif
629 }
630#endif
467 631
468ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const; 632ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
469ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } 633ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
470ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const; 634ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
471ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } 635ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
472 636
473ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; 637ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
474ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) 638ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
475{ 639{
476 return ( (x * 0x0802U & 0x22110U) 640 return ( (x * 0x0802U & 0x22110U)
477 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 641 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
478} 642}
479 643
480ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; 644ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
481ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) 645ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
482{ 646{
483 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); 647 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
484 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); 648 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
485 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); 649 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
486 x = ( x >> 8 ) | ( x << 8); 650 x = ( x >> 8 ) | ( x << 8);
487 651
488 return x; 652 return x;
489} 653}
490 654
491ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; 655ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
492ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) 656ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
493{ 657{
494 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); 658 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
495 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); 659 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
496 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); 660 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
497 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); 661 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
498 x = ( x >> 16 ) | ( x << 16); 662 x = ( x >> 16 ) | ( x << 16);
499 663
500 return x; 664 return x;
501} 665}
502 666
503/* popcount64 is only available on 64 bit cpus as gcc builtin */
504/* so for this version we are lazy */
505ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; 667ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
506ecb_function_ int 668ecb_function_ ecb_const int
507ecb_popcount64 (uint64_t x) 669ecb_popcount64 (uint64_t x)
508{ 670{
671 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
672 /* also, gcc/clang make this surprisingly difficult to use */
673#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
674 return __builtin_popcountl (x);
675#else
509 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 676 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
677#endif
510} 678}
511 679
512ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; 680ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
513ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; 681ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
514ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; 682ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
515ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; 683ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
516ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; 684ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
517ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; 685ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
518ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; 686ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
519ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; 687ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
520 688
521ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 689ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
522ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 690ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
523ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 691ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
524ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 692ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
525ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 693ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
526ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 694ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
527ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 695ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
528ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 696ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
697
698#if ECB_CPP
699
700inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
701inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
702inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
703inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
704
705inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
706inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
707inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
708inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
709
710inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
711inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
712inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
713inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
714
715inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
716inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
717inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
718inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
719
720inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
721inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
722inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
723
724inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
725inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
726inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
727inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
728
729inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
730inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
731inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
732inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
733
734#endif
529 735
530#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 736#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
737 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
738 #define ecb_bswap16(x) __builtin_bswap16 (x)
739 #else
531 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) 740 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
741 #endif
532 #define ecb_bswap32(x) __builtin_bswap32 (x) 742 #define ecb_bswap32(x) __builtin_bswap32 (x)
533 #define ecb_bswap64(x) __builtin_bswap64 (x) 743 #define ecb_bswap64(x) __builtin_bswap64 (x)
744#elif _MSC_VER
745 #include <stdlib.h>
746 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
747 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
748 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
534#else 749#else
535 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; 750 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
536 ecb_function_ uint16_t 751 ecb_function_ ecb_const uint16_t
537 ecb_bswap16 (uint16_t x) 752 ecb_bswap16 (uint16_t x)
538 { 753 {
539 return ecb_rotl16 (x, 8); 754 return ecb_rotl16 (x, 8);
540 } 755 }
541 756
542 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; 757 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
543 ecb_function_ uint32_t 758 ecb_function_ ecb_const uint32_t
544 ecb_bswap32 (uint32_t x) 759 ecb_bswap32 (uint32_t x)
545 { 760 {
546 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 761 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
547 } 762 }
548 763
549 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; 764 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
550 ecb_function_ uint64_t 765 ecb_function_ ecb_const uint64_t
551 ecb_bswap64 (uint64_t x) 766 ecb_bswap64 (uint64_t x)
552 { 767 {
553 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 768 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
554 } 769 }
555#endif 770#endif
556 771
557#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) 772#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
558 #define ecb_unreachable() __builtin_unreachable () 773 #define ecb_unreachable() __builtin_unreachable ()
559#else 774#else
560 /* this seems to work fine, but gcc always emits a warning for it :/ */ 775 /* this seems to work fine, but gcc always emits a warning for it :/ */
561 ecb_inline void ecb_unreachable (void) ecb_noreturn; 776 ecb_inline ecb_noreturn void ecb_unreachable (void);
562 ecb_inline void ecb_unreachable (void) { } 777 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
563#endif 778#endif
564 779
565/* try to tell the compiler that some condition is definitely true */ 780/* try to tell the compiler that some condition is definitely true */
566#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 781#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
567 782
568ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; 783ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
569ecb_inline unsigned char 784ecb_inline ecb_const uint32_t
570ecb_byteorder_helper (void) 785ecb_byteorder_helper (void)
571{ 786{
572 /* the union code still generates code under pressure in gcc, */ 787 /* the union code still generates code under pressure in gcc, */
573 /* but less than using pointers, and always seems to */ 788 /* but less than using pointers, and always seems to */
574 /* successfully return a constant. */ 789 /* successfully return a constant. */
575 /* the reason why we have this horrible preprocessor mess */ 790 /* the reason why we have this horrible preprocessor mess */
576 /* is to avoid it in all cases, at least on common architectures */ 791 /* is to avoid it in all cases, at least on common architectures */
577 /* or when using a recent enough gcc version (>= 4.6) */ 792 /* or when using a recent enough gcc version (>= 4.6) */
578#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
579 return 0x44;
580#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 793#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
794 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
795 #define ECB_LITTLE_ENDIAN 1
581 return 0x44; 796 return 0x44332211;
582#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 797#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
798 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
799 #define ECB_BIG_ENDIAN 1
583 return 0x11; 800 return 0x11223344;
584#else 801#else
585 union 802 union
586 { 803 {
804 uint8_t c[4];
587 uint32_t i; 805 uint32_t u;
588 uint8_t c;
589 } u = { 0x11223344 }; 806 } u = { 0x11, 0x22, 0x33, 0x44 };
590 return u.c; 807 return u.u;
591#endif 808#endif
592} 809}
593 810
594ecb_inline ecb_bool ecb_big_endian (void) ecb_const; 811ecb_inline ecb_const ecb_bool ecb_big_endian (void);
595ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 812ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
596ecb_inline ecb_bool ecb_little_endian (void) ecb_const; 813ecb_inline ecb_const ecb_bool ecb_little_endian (void);
597ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 814ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
815
816/*****************************************************************************/
817/* unaligned load/store */
818
819ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
820ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
821ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
822
823ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
824ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
825ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
826
827ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
828ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
829ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
830
831ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
832ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
833ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
834
835ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
836ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
837ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
838
839ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
840ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
841ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
842
843ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
844ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
845ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
846
847ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
848ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
849ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
850
851ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
852ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
853ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
854
855ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
856ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
857ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
858
859#if ECB_CPP
860
861inline uint8_t ecb_bswap (uint8_t v) { return v; }
862inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
863inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
864inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
865
866template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
867template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
868template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
869template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
870template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
871template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
872template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
873template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
874
875template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
876template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
877template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
878template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
879template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
880template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
881template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
882template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
883
884#endif
885
886/*****************************************************************************/
887/* pointer/integer hashing */
888
889/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
890ecb_function_ uint32_t ecb_mix32 (uint32_t v);
891ecb_function_ uint32_t ecb_mix32 (uint32_t v)
892{
893 v ^= v >> 16; v *= 0x7feb352dU;
894 v ^= v >> 15; v *= 0x846ca68bU;
895 v ^= v >> 16;
896 return v;
897}
898
899ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
900ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
901{
902 v ^= v >> 16 ; v *= 0x43021123U;
903 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
904 v ^= v >> 16 ;
905 return v;
906}
907
908/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
909ecb_function_ uint64_t ecb_mix64 (uint64_t v);
910ecb_function_ uint64_t ecb_mix64 (uint64_t v)
911{
912 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
913 v ^= v >> 27; v *= 0x94d049bb133111ebU;
914 v ^= v >> 31;
915 return v;
916}
917
918ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
919ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
920{
921 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
922 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
923 v ^= v >> 30 ^ v >> 60;
924 return v;
925}
926
927ecb_function_ uintptr_t ecb_ptrmix (void *p);
928ecb_function_ uintptr_t ecb_ptrmix (void *p)
929{
930 #if ECB_PTRSIZE <= 4
931 return ecb_mix32 ((uint32_t)p);
932 #else
933 return ecb_mix64 ((uint64_t)p);
934 #endif
935}
936
937ecb_function_ void *ecb_ptrunmix (uintptr_t v);
938ecb_function_ void *ecb_ptrunmix (uintptr_t v)
939{
940 #if ECB_PTRSIZE <= 4
941 return (void *)ecb_unmix32 (v);
942 #else
943 return (void *)ecb_unmix64 (v);
944 #endif
945}
946
947#if ECB_CPP
948
949template<typename T>
950inline uintptr_t ecb_ptrmix (T *p)
951{
952 return ecb_ptrmix (static_cast<void *>(p));
953}
954
955template<typename T>
956inline T *ecb_ptrunmix (uintptr_t v)
957{
958 return static_cast<T *>(ecb_ptrunmix (v));
959}
960
961#endif
962
963/*****************************************************************************/
964/* gray code */
965
966ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
967ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
968ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
969ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
970
971ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
972{
973 g ^= g >> 1;
974 g ^= g >> 2;
975 g ^= g >> 4;
976
977 return g;
978}
979
980ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
981{
982 g ^= g >> 1;
983 g ^= g >> 2;
984 g ^= g >> 4;
985 g ^= g >> 8;
986
987 return g;
988}
989
990ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
991{
992 g ^= g >> 1;
993 g ^= g >> 2;
994 g ^= g >> 4;
995 g ^= g >> 8;
996 g ^= g >> 16;
997
998 return g;
999}
1000
1001ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
1002{
1003 g ^= g >> 1;
1004 g ^= g >> 2;
1005 g ^= g >> 4;
1006 g ^= g >> 8;
1007 g ^= g >> 16;
1008 g ^= g >> 32;
1009
1010 return g;
1011}
1012
1013#if ECB_CPP
1014
1015ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
1016ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
1017ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
1018ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
1019
1020ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
1021ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
1022ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
1023ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
1024
1025#endif
1026
1027/*****************************************************************************/
1028/* 2d hilbert curves */
1029
1030/* algorithm from the book Hacker's Delight, modified to not */
1031/* run into undefined behaviour for n==16 */
1032static uint32_t
1033ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1034{
1035 uint32_t comp, swap, cs, t, sr;
1036
1037 /* pad s on the left (unused) bits with 01 (no change groups) */
1038 s |= 0x55555555U << n << n;
1039 /* "s shift right" */
1040 sr = (s >> 1) & 0x55555555U;
1041 /* compute complement and swap info in two-bit groups */
1042 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1043
1044 /* parallel prefix xor op to propagate both complement
1045 * and swap info together from left to right (there is
1046 * no step "cs ^= cs >> 1", so in effect it computes
1047 * two independent parallel prefix operations on two
1048 * interleaved sets of sixteen bits).
1049 */
1050 cs ^= cs >> 2;
1051 cs ^= cs >> 4;
1052 cs ^= cs >> 8;
1053 cs ^= cs >> 16;
1054
1055 /* separate swap and complement bits */
1056 swap = cs & 0x55555555U;
1057 comp = (cs >> 1) & 0x55555555U;
1058
1059 /* calculate coordinates in odd and even bit positions */
1060 t = (s & swap) ^ comp;
1061 s = s ^ sr ^ t ^ (t << 1);
1062
1063 /* unpad/clear out any junk on the left */
1064 s = s & ((1 << n << n) - 1);
1065
1066 /* Now "unshuffle" to separate the x and y bits. */
1067 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1068 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1069 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1070 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1071
1072 /* now s contains two 16-bit coordinates */
1073 return s;
1074}
1075
1076/* 64 bit, a straightforward extension to the 32 bit case */
1077static uint64_t
1078ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1079{
1080 uint64_t comp, swap, cs, t, sr;
1081
1082 /* pad s on the left (unused) bits with 01 (no change groups) */
1083 s |= 0x5555555555555555U << n << n;
1084 /* "s shift right" */
1085 sr = (s >> 1) & 0x5555555555555555U;
1086 /* compute complement and swap info in two-bit groups */
1087 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1088
1089 /* parallel prefix xor op to propagate both complement
1090 * and swap info together from left to right (there is
1091 * no step "cs ^= cs >> 1", so in effect it computes
1092 * two independent parallel prefix operations on two
1093 * interleaved sets of thirty-two bits).
1094 */
1095 cs ^= cs >> 2;
1096 cs ^= cs >> 4;
1097 cs ^= cs >> 8;
1098 cs ^= cs >> 16;
1099 cs ^= cs >> 32;
1100
1101 /* separate swap and complement bits */
1102 swap = cs & 0x5555555555555555U;
1103 comp = (cs >> 1) & 0x5555555555555555U;
1104
1105 /* calculate coordinates in odd and even bit positions */
1106 t = (s & swap) ^ comp;
1107 s = s ^ sr ^ t ^ (t << 1);
1108
1109 /* unpad/clear out any junk on the left */
1110 s = s & ((1 << n << n) - 1);
1111
1112 /* Now "unshuffle" to separate the x and y bits. */
1113 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1114 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1115 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1116 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1117 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1118
1119 /* now s contains two 32-bit coordinates */
1120 return s;
1121}
1122
1123/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1124/* is given in https://doi.org/10.1002/spe.4380160103 */
1125/* this has been slightly improved over the original version */
1126ecb_function_ uint32_t
1127ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1128{
1129 uint32_t row;
1130 uint32_t state = 0;
1131 uint32_t s = 0;
1132
1133 do
1134 {
1135 --n;
1136
1137 row = 4 * state
1138 | (2 & (xy >> n >> 15))
1139 | (1 & (xy >> n ));
1140
1141 /* these funky constants are lookup tables for two-bit values */
1142 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1143 state = (0x8fe65831U >> 2 * row) & 3;
1144 }
1145 while (n > 0);
1146
1147 return s;
1148}
1149
1150/* 64 bit, essentially the same as 32 bit */
1151ecb_function_ uint64_t
1152ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1153{
1154 uint32_t row;
1155 uint32_t state = 0;
1156 uint64_t s = 0;
1157
1158 do
1159 {
1160 --n;
1161
1162 row = 4 * state
1163 | (2 & (xy >> n >> 31))
1164 | (1 & (xy >> n ));
1165
1166 /* these funky constants are lookup tables for two-bit values */
1167 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1168 state = (0x8fe65831U >> 2 * row) & 3;
1169 }
1170 while (n > 0);
1171
1172 return s;
1173}
1174
1175/*****************************************************************************/
1176/* division */
598 1177
599#if ECB_GCC_VERSION(3,0) || ECB_C99 1178#if ECB_GCC_VERSION(3,0) || ECB_C99
1179 /* C99 tightened the definition of %, so we can use a more efficient version */
600 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1180 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
601#else 1181#else
602 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1182 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
603#endif 1183#endif
604 1184
605#if __cplusplus 1185#if ECB_CPP
606 template<typename T> 1186 template<typename T>
607 static inline T ecb_div_rd (T val, T div) 1187 static inline T ecb_div_rd (T val, T div)
608 { 1188 {
609 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; 1189 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
610 } 1190 }
615 } 1195 }
616#else 1196#else
617 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1197 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
618 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1198 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
619#endif 1199#endif
1200
1201/*****************************************************************************/
1202/* array length */
620 1203
621#if ecb_cplusplus_does_not_suck 1204#if ecb_cplusplus_does_not_suck
622 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1205 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
623 template<typename T, int N> 1206 template<typename T, int N>
624 static inline int ecb_array_length (const T (&arr)[N]) 1207 static inline int ecb_array_length (const T (&arr)[N])
627 } 1210 }
628#else 1211#else
629 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1212 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
630#endif 1213#endif
631 1214
1215/*****************************************************************************/
1216/* IEEE 754-2008 half float conversions */
1217
1218ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1219ecb_function_ ecb_const uint32_t
1220ecb_binary16_to_binary32 (uint32_t x)
1221{
1222 unsigned int s = (x & 0x8000) << (31 - 15);
1223 int e = (x >> 10) & 0x001f;
1224 unsigned int m = x & 0x03ff;
1225
1226 if (ecb_expect_false (e == 31))
1227 /* infinity or NaN */
1228 e = 255 - (127 - 15);
1229 else if (ecb_expect_false (!e))
1230 {
1231 if (ecb_expect_true (!m))
1232 /* zero, handled by code below by forcing e to 0 */
1233 e = 0 - (127 - 15);
1234 else
1235 {
1236 /* subnormal, renormalise */
1237 unsigned int s = 10 - ecb_ld32 (m);
1238
1239 m = (m << s) & 0x3ff; /* mask implicit bit */
1240 e -= s - 1;
1241 }
1242 }
1243
1244 /* e and m now are normalised, or zero, (or inf or nan) */
1245 e += 127 - 15;
1246
1247 return s | (e << 23) | (m << (23 - 10));
1248}
1249
1250ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1251ecb_function_ ecb_const uint16_t
1252ecb_binary32_to_binary16 (uint32_t x)
1253{
1254 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1255 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1256 unsigned int m = x & 0x007fffff;
1257
1258 x &= 0x7fffffff;
1259
1260 /* if it's within range of binary16 normals, use fast path */
1261 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1262 {
1263 /* mantissa round-to-even */
1264 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1265
1266 /* handle overflow */
1267 if (ecb_expect_false (m >= 0x00800000))
1268 {
1269 m >>= 1;
1270 e += 1;
1271 }
1272
1273 return s | (e << 10) | (m >> (23 - 10));
1274 }
1275
1276 /* handle large numbers and infinity */
1277 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1278 return s | 0x7c00;
1279
1280 /* handle zero, subnormals and small numbers */
1281 if (ecb_expect_true (x < 0x38800000))
1282 {
1283 /* zero */
1284 if (ecb_expect_true (!x))
1285 return s;
1286
1287 /* handle subnormals */
1288
1289 /* too small, will be zero */
1290 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1291 return s;
1292
1293 m |= 0x00800000; /* make implicit bit explicit */
1294
1295 /* very tricky - we need to round to the nearest e (+10) bit value */
1296 {
1297 unsigned int bits = 14 - e;
1298 unsigned int half = (1 << (bits - 1)) - 1;
1299 unsigned int even = (m >> bits) & 1;
1300
1301 /* if this overflows, we will end up with a normalised number */
1302 m = (m + half + even) >> bits;
1303 }
1304
1305 return s | m;
1306 }
1307
1308 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1309 m >>= 13;
1310
1311 return s | 0x7c00 | m | !m;
1312}
1313
1314/*******************************************************************************/
1315/* fast integer to ascii */
1316
1317/*
1318 * This code is pretty complicated because it is general. The idea behind it,
1319 * however, is pretty simple: first, the number is multiplied with a scaling
1320 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1321 * number with the first digit in the upper bits.
1322 * Then this digit is converted to text and masked out. The resulting number
1323 * is then multiplied by 10, by multiplying the fixed point representation
1324 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1325 * format becomes 5.27, 6.26 and so on.
1326 * The rest involves only advancing the pointer if we already generated a
1327 * non-zero digit, so leading zeroes are overwritten.
1328 */
1329
1330/* simply return a mask with "bits" bits set */
1331#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1332
1333/* oputput a single digit. maskvalue is 10**digitidx */
1334#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1335 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1336 { \
1337 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1338 *ptr = digit + '0'; /* output it */ \
1339 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1340 ptr += nz; /* output digit only if non-zero digit seen */ \
1341 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1342 }
1343
1344/* convert integer to fixed point format and multiply out digits, highest first */
1345/* requires magic constants: max. digits and number of bits after the decimal point */
1346#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1347ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1348{ \
1349 char nz = lz; /* non-zero digit seen? */ \
1350 /* convert to x.bits fixed-point */ \
1351 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1352 /* output up to 10 digits */ \
1353 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1354 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1355 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1356 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1357 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1358 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1359 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1360 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1361 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1362 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1363 return ptr; \
1364}
1365
1366/* predefined versions of the above, for various digits */
1367/* ecb_i2a_xN = almost N digits, limit defined by macro */
1368/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1369/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1370
1371/* non-leading-zero versions, limited range */
1372#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1373#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1374ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1375ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1376
1377/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1378ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1379ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1380ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1381ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1382ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1383ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1384ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1385ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1386
1387/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1388ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1389ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1390ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1391ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1392ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1393ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1394ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1395ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1396
1397#define ECB_I2A_I32_DIGITS 11
1398#define ECB_I2A_U32_DIGITS 10
1399#define ECB_I2A_I64_DIGITS 20
1400#define ECB_I2A_U64_DIGITS 21
1401#define ECB_I2A_MAX_DIGITS 21
1402
1403ecb_inline char *
1404ecb_i2a_u32 (char *ptr, uint32_t u)
1405{
1406 #if ECB_64BIT_NATIVE
1407 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1408 ptr = ecb_i2a_x10 (ptr, u);
1409 else /* x10 almost, but not fully, covers 32 bit */
1410 {
1411 uint32_t u1 = u % 1000000000;
1412 uint32_t u2 = u / 1000000000;
1413
1414 *ptr++ = u2 + '0';
1415 ptr = ecb_i2a_09 (ptr, u1);
1416 }
1417 #else
1418 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1419 ecb_i2a_x5 (ptr, u);
1420 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1421 {
1422 uint32_t u1 = u % 10000;
1423 uint32_t u2 = u / 10000;
1424
1425 ptr = ecb_i2a_x5 (ptr, u2);
1426 ptr = ecb_i2a_04 (ptr, u1);
1427 }
1428 else
1429 {
1430 uint32_t u1 = u % 10000;
1431 uint32_t ua = u / 10000;
1432 uint32_t u2 = ua % 10000;
1433 uint32_t u3 = ua / 10000;
1434
1435 ptr = ecb_i2a_2 (ptr, u3);
1436 ptr = ecb_i2a_04 (ptr, u2);
1437 ptr = ecb_i2a_04 (ptr, u1);
1438 }
1439 #endif
1440
1441 return ptr;
1442}
1443
1444ecb_inline char *
1445ecb_i2a_i32 (char *ptr, int32_t v)
1446{
1447 *ptr = '-'; ptr += v < 0;
1448 uint32_t u = v < 0 ? -(uint32_t)v : v;
1449
1450 #if ECB_64BIT_NATIVE
1451 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1452 #else
1453 ptr = ecb_i2a_u32 (ptr, u);
1454 #endif
1455
1456 return ptr;
1457}
1458
1459ecb_inline char *
1460ecb_i2a_u64 (char *ptr, uint64_t u)
1461{
1462 #if ECB_64BIT_NATIVE
1463 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1464 ptr = ecb_i2a_x10 (ptr, u);
1465 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1466 {
1467 uint64_t u1 = u % 1000000000;
1468 uint64_t u2 = u / 1000000000;
1469
1470 ptr = ecb_i2a_x10 (ptr, u2);
1471 ptr = ecb_i2a_09 (ptr, u1);
1472 }
1473 else
1474 {
1475 uint64_t u1 = u % 1000000000;
1476 uint64_t ua = u / 1000000000;
1477 uint64_t u2 = ua % 1000000000;
1478 uint64_t u3 = ua / 1000000000;
1479
1480 ptr = ecb_i2a_2 (ptr, u3);
1481 ptr = ecb_i2a_09 (ptr, u2);
1482 ptr = ecb_i2a_09 (ptr, u1);
1483 }
1484 #else
1485 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1486 ptr = ecb_i2a_x5 (ptr, u);
1487 else
1488 {
1489 uint64_t u1 = u % 10000;
1490 uint64_t u2 = u / 10000;
1491
1492 ptr = ecb_i2a_u64 (ptr, u2);
1493 ptr = ecb_i2a_04 (ptr, u1);
1494 }
1495 #endif
1496
1497 return ptr;
1498}
1499
1500ecb_inline char *
1501ecb_i2a_i64 (char *ptr, int64_t v)
1502{
1503 *ptr = '-'; ptr += v < 0;
1504 uint64_t u = v < 0 ? -(uint64_t)v : v;
1505
1506 #if ECB_64BIT_NATIVE
1507 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1508 ptr = ecb_i2a_x10 (ptr, u);
1509 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1510 {
1511 uint64_t u1 = u % 1000000000;
1512 uint64_t u2 = u / 1000000000;
1513
1514 ptr = ecb_i2a_x10 (ptr, u2);
1515 ptr = ecb_i2a_09 (ptr, u1);
1516 }
1517 else
1518 {
1519 uint64_t u1 = u % 1000000000;
1520 uint64_t ua = u / 1000000000;
1521 uint64_t u2 = ua % 1000000000;
1522 uint64_t u3 = ua / 1000000000;
1523
1524 /* 2**31 is 19 digits, so the top is exactly one digit */
1525 *ptr++ = u3 + '0';
1526 ptr = ecb_i2a_09 (ptr, u2);
1527 ptr = ecb_i2a_09 (ptr, u1);
1528 }
1529 #else
1530 ptr = ecb_i2a_u64 (ptr, u);
1531 #endif
1532
1533 return ptr;
1534}
1535
632/*******************************************************************************/ 1536/*******************************************************************************/
633/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1537/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
634 1538
635/* basically, everything uses "ieee pure-endian" floating point numbers */ 1539/* basically, everything uses "ieee pure-endian" floating point numbers */
636/* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1540/* the only noteworthy exception is ancient armle, which uses order 43218765 */
637#if 0 \ 1541#if 0 \
638 || __i386 || __i386__ \ 1542 || __i386 || __i386__ \
639 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \ 1543 || ECB_GCC_AMD64 \
640 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ 1544 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
641 || defined __s390__ || defined __s390x__ \ 1545 || defined __s390__ || defined __s390x__ \
642 || defined __mips__ \ 1546 || defined __mips__ \
643 || defined __alpha__ \ 1547 || defined __alpha__ \
644 || defined __hppa__ \ 1548 || defined __hppa__ \
645 || defined __ia64__ \ 1549 || defined __ia64__ \
646 || defined __m68k__ \ 1550 || defined __m68k__ \
647 || defined __m88k__ \ 1551 || defined __m88k__ \
648 || defined __sh__ \ 1552 || defined __sh__ \
649 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \ 1553 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
650 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1554 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
651 || defined __aarch64__ 1555 || defined __aarch64__
652 #define ECB_STDFP 1 1556 #define ECB_STDFP 1
653 #include <string.h> /* for memcpy */
654#else 1557#else
655 #define ECB_STDFP 0 1558 #define ECB_STDFP 0
656#endif 1559#endif
657 1560
658#ifndef ECB_NO_LIBM 1561#ifndef ECB_NO_LIBM
670 #define ECB_NAN NAN 1573 #define ECB_NAN NAN
671 #else 1574 #else
672 #define ECB_NAN ECB_INFINITY 1575 #define ECB_NAN ECB_INFINITY
673 #endif 1576 #endif
674 1577
675 /* converts an ieee half/binary16 to a float */ 1578 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
676 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const; 1579 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
677 ecb_function_ float 1580 #define ecb_frexpf(x,e) frexpf ((x), (e))
678 ecb_binary16_to_float (uint16_t x) 1581 #else
679 { 1582 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
680 int e = (x >> 10) & 0x1f; 1583 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
681 int m = x & 0x3ff; 1584 #endif
682 float r;
683
684 if (!e ) r = ldexpf (m , -24);
685 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
686 else if (m ) r = ECB_NAN;
687 else r = ECB_INFINITY;
688
689 return x & 0x8000 ? -r : r;
690 }
691 1585
692 /* convert a float to ieee single/binary32 */ 1586 /* convert a float to ieee single/binary32 */
693 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const; 1587 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
694 ecb_function_ uint32_t 1588 ecb_function_ ecb_const uint32_t
695 ecb_float_to_binary32 (float x) 1589 ecb_float_to_binary32 (float x)
696 { 1590 {
697 uint32_t r; 1591 uint32_t r;
698 1592
699 #if ECB_STDFP 1593 #if ECB_STDFP
706 if (x == 0e0f ) return 0x00000000U; 1600 if (x == 0e0f ) return 0x00000000U;
707 if (x > +3.40282346638528860e+38f) return 0x7f800000U; 1601 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
708 if (x < -3.40282346638528860e+38f) return 0xff800000U; 1602 if (x < -3.40282346638528860e+38f) return 0xff800000U;
709 if (x != x ) return 0x7fbfffffU; 1603 if (x != x ) return 0x7fbfffffU;
710 1604
711 m = frexpf (x, &e) * 0x1000000U; 1605 m = ecb_frexpf (x, &e) * 0x1000000U;
712 1606
713 r = m & 0x80000000U; 1607 r = m & 0x80000000U;
714 1608
715 if (r) 1609 if (r)
716 m = -m; 1610 m = -m;
728 1622
729 return r; 1623 return r;
730 } 1624 }
731 1625
732 /* converts an ieee single/binary32 to a float */ 1626 /* converts an ieee single/binary32 to a float */
733 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const; 1627 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
734 ecb_function_ float 1628 ecb_function_ ecb_const float
735 ecb_binary32_to_float (uint32_t x) 1629 ecb_binary32_to_float (uint32_t x)
736 { 1630 {
737 float r; 1631 float r;
738 1632
739 #if ECB_STDFP 1633 #if ECB_STDFP
749 x |= 0x800000U; 1643 x |= 0x800000U;
750 else 1644 else
751 e = 1; 1645 e = 1;
752 1646
753 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ 1647 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
754 r = ldexpf (x * (0.5f / 0x800000U), e - 126); 1648 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
755 1649
756 r = neg ? -r : r; 1650 r = neg ? -r : r;
757 #endif 1651 #endif
758 1652
759 return r; 1653 return r;
760 } 1654 }
761 1655
762 /* convert a double to ieee double/binary64 */ 1656 /* convert a double to ieee double/binary64 */
763 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const; 1657 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
764 ecb_function_ uint64_t 1658 ecb_function_ ecb_const uint64_t
765 ecb_double_to_binary64 (double x) 1659 ecb_double_to_binary64 (double x)
766 { 1660 {
767 uint64_t r; 1661 uint64_t r;
768 1662
769 #if ECB_STDFP 1663 #if ECB_STDFP
798 1692
799 return r; 1693 return r;
800 } 1694 }
801 1695
802 /* converts an ieee double/binary64 to a double */ 1696 /* converts an ieee double/binary64 to a double */
803 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const; 1697 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
804 ecb_function_ double 1698 ecb_function_ ecb_const double
805 ecb_binary64_to_double (uint64_t x) 1699 ecb_binary64_to_double (uint64_t x)
806 { 1700 {
807 double r; 1701 double r;
808 1702
809 #if ECB_STDFP 1703 #if ECB_STDFP
827 #endif 1721 #endif
828 1722
829 return r; 1723 return r;
830 } 1724 }
831 1725
832#endif 1726 /* convert a float to ieee half/binary16 */
1727 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1728 ecb_function_ ecb_const uint16_t
1729 ecb_float_to_binary16 (float x)
1730 {
1731 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1732 }
833 1733
834#endif 1734 /* convert an ieee half/binary16 to float */
1735 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1736 ecb_function_ ecb_const float
1737 ecb_binary16_to_float (uint16_t x)
1738 {
1739 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1740 }
835 1741
1742#endif
1743
1744#endif
1745

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines