ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.171 by root, Tue Nov 24 19:46:20 2015 UTC vs.
Revision 1.209 by root, Fri Mar 25 15:23:14 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010005 45#define ECB_VERSION 0x0001000c
46 46
47#ifdef _WIN32 47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
48 typedef signed char int8_t; 50 typedef signed char int8_t;
49 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
50 typedef signed short int16_t; 54 typedef signed short int16_t;
51 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
52 typedef signed int int32_t; 58 typedef signed int int32_t;
53 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
54 #if __GNUC__ 62 #if __GNUC__
55 typedef signed long long int64_t; 63 typedef signed long long int64_t;
56 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
57 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
58 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
59 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
60 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
61 #ifdef _WIN64 71 #ifdef _WIN64
62 #define ECB_PTRSIZE 8 72 #define ECB_PTRSIZE 8
63 typedef uint64_t uintptr_t; 73 typedef uint64_t uintptr_t;
64 typedef int64_t intptr_t; 74 typedef int64_t intptr_t;
65 #else 75 #else
67 typedef uint32_t uintptr_t; 77 typedef uint32_t uintptr_t;
68 typedef int32_t intptr_t; 78 typedef int32_t intptr_t;
69 #endif 79 #endif
70#else 80#else
71 #include <inttypes.h> 81 #include <inttypes.h>
72 #if UINTMAX_MAX > 0xffffffffU 82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
73 #define ECB_PTRSIZE 8 83 #define ECB_PTRSIZE 8
74 #else 84 #else
75 #define ECB_PTRSIZE 4 85 #define ECB_PTRSIZE 4
76 #endif 86 #endif
77#endif 87#endif
78 88
79#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) 89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
80#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) 90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
81 99
82/* work around x32 idiocy by defining proper macros */ 100/* work around x32 idiocy by defining proper macros */
83#if ECB_GCC_AMD64 || ECB_MSVC_AMD64 101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
84 #if _ILP32 102 #if _ILP32
85 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
86 #else 104 #else
87 #define ECB_AMD64 1 105 #define ECB_AMD64 1
88 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
89#endif 113#endif
90 114
91/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
92 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
93 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
115 #define ECB_CLANG_EXTENSION(x) 0 139 #define ECB_CLANG_EXTENSION(x) 0
116#endif 140#endif
117 141
118#define ECB_CPP (__cplusplus+0) 142#define ECB_CPP (__cplusplus+0)
119#define ECB_CPP11 (__cplusplus >= 201103L) 143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
120 146
121#if ECB_CPP 147#if ECB_CPP
122 #define ECB_C 0 148 #define ECB_C 0
123 #define ECB_STDC_VERSION 0 149 #define ECB_STDC_VERSION 0
124#else 150#else
126 #define ECB_STDC_VERSION __STDC_VERSION__ 152 #define ECB_STDC_VERSION __STDC_VERSION__
127#endif 153#endif
128 154
129#define ECB_C99 (ECB_STDC_VERSION >= 199901L) 155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
130#define ECB_C11 (ECB_STDC_VERSION >= 201112L) 156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
131 158
132#if ECB_CPP 159#if ECB_CPP
133 #define ECB_EXTERN_C extern "C" 160 #define ECB_EXTERN_C extern "C"
134 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
135 #define ECB_EXTERN_C_END } 162 #define ECB_EXTERN_C_END }
161 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ 188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
162#endif 189#endif
163 190
164#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
165 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
166 #if __i386 || __i386__ 194 #if __i386 || __i386__
167 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
168 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
169 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
170 #elif ECB_GCC_AMD64 198 #elif ECB_GCC_AMD64
171 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
172 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
173 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
174 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
175 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
176 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
177 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
178 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
179 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
180 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
181 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
182 #elif __aarch64__ 218 #elif __aarch64__
183 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
184 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) 220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
185 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
212 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
213 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
214 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
215 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
216 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
217 255
218 #elif ECB_CLANG_EXTENSION(c_atomic) 256 #elif ECB_CLANG_EXTENSION(c_atomic)
219 /* see comment below (stdatomic.h) about the C11 memory model. */ 257 /* see comment below (stdatomic.h) about the C11 memory model. */
220 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
221 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
222 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
223 263
224 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
225 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
226 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
227 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
237 #elif defined _WIN32 277 #elif defined _WIN32
238 #include <WinNT.h> 278 #include <WinNT.h>
239 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
240 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
241 #include <mbarrier.h> 281 #include <mbarrier.h>
242 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
243 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
244 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
245 #elif __xlC__ 286 #elif __xlC__
246 #define ECB_MEMORY_FENCE __sync () 287 #define ECB_MEMORY_FENCE __sync ()
247 #endif 288 #endif
248#endif 289#endif
249 290
250#ifndef ECB_MEMORY_FENCE 291#ifndef ECB_MEMORY_FENCE
251 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
252 /* we assume that these memory fences work on all variables/all memory accesses, */ 293 /* we assume that these memory fences work on all variables/all memory accesses, */
253 /* not just C11 atomics and atomic accesses */ 294 /* not just C11 atomics and atomic accesses */
254 #include <stdatomic.h> 295 #include <stdatomic.h>
255 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
256 /* any fence other than seq_cst, which isn't very efficient for us. */
257 /* Why that is, we don't know - either the C11 memory model is quite useless */
258 /* for most usages, or gcc and clang have a bug */
259 /* I *currently* lean towards the latter, and inefficiently implement */
260 /* all three of ecb's fences as a seq_cst fence */
261 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
262 /* for all __atomic_thread_fence's except seq_cst */
263 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
264 #endif 299 #endif
265#endif 300#endif
266 301
267#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
268 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
288 323
289#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
290 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
291#endif 326#endif
292 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
293/*****************************************************************************/ 332/*****************************************************************************/
294 333
295#if ECB_CPP 334#if ECB_CPP
296 #define ecb_inline static inline 335 #define ecb_inline static inline
297#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
415/* count trailing zero bits and count # of one bits */ 454/* count trailing zero bits and count # of one bits */
416#if ECB_GCC_VERSION(3,4) \ 455#if ECB_GCC_VERSION(3,4) \
417 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 456 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
418 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 457 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
419 && ECB_CLANG_BUILTIN(__builtin_popcount)) 458 && ECB_CLANG_BUILTIN(__builtin_popcount))
420 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
421 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
422 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
423 #define ecb_ctz32(x) __builtin_ctz (x) 459 #define ecb_ctz32(x) __builtin_ctz (x)
460 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
424 #define ecb_ctz64(x) __builtin_ctzll (x) 461 #define ecb_clz32(x) __builtin_clz (x)
462 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
463 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
464 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
425 #define ecb_popcount32(x) __builtin_popcount (x) 465 #define ecb_popcount32(x) __builtin_popcount (x)
426 /* no popcountll */ 466 /* ecb_popcount64 is more difficult, see below */
427#else 467#else
428 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); 468 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
429 ecb_function_ ecb_const int 469 ecb_function_ ecb_const int
430 ecb_ctz32 (uint32_t x) 470 ecb_ctz32 (uint32_t x)
431 { 471 {
432#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) 472#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
433 unsigned long r = 0; 473 unsigned long r;
434 _BitScanForward (&r, x); 474 _BitScanForward (&r, x);
435 return (int)r; 475 return (int)r;
436#else 476#else
437 int r = 0; 477 int r;
438 478
439 x &= ~x + 1; /* this isolates the lowest bit */ 479 x &= ~x + 1; /* this isolates the lowest bit */
440 480
441#if ECB_branchless_on_i386 481 #if 1
482 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
483 /* This happens to return 32 for x == 0, but the API does not support this */
484
485 /* -0 marks unused entries */
486 static unsigned char table[64] =
487 {
488 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
489 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
490 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
491 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
492 };
493
494 /* magic constant results in 33 unique values in the upper 6 bits */
495 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
496
497 r = table [x >> 26];
498 #elif 0 /* branchless on i386, typically */
499 r = 0;
442 r += !!(x & 0xaaaaaaaa) << 0; 500 r += !!(x & 0xaaaaaaaa) << 0;
443 r += !!(x & 0xcccccccc) << 1; 501 r += !!(x & 0xcccccccc) << 1;
444 r += !!(x & 0xf0f0f0f0) << 2; 502 r += !!(x & 0xf0f0f0f0) << 2;
445 r += !!(x & 0xff00ff00) << 3; 503 r += !!(x & 0xff00ff00) << 3;
446 r += !!(x & 0xffff0000) << 4; 504 r += !!(x & 0xffff0000) << 4;
447#else 505 #else /* branchless on modern compilers, typically */
506 r = 0;
448 if (x & 0xaaaaaaaa) r += 1; 507 if (x & 0xaaaaaaaa) r += 1;
449 if (x & 0xcccccccc) r += 2; 508 if (x & 0xcccccccc) r += 2;
450 if (x & 0xf0f0f0f0) r += 4; 509 if (x & 0xf0f0f0f0) r += 4;
451 if (x & 0xff00ff00) r += 8; 510 if (x & 0xff00ff00) r += 8;
452 if (x & 0xffff0000) r += 16; 511 if (x & 0xffff0000) r += 16;
459 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); 518 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
460 ecb_function_ ecb_const int 519 ecb_function_ ecb_const int
461 ecb_ctz64 (uint64_t x) 520 ecb_ctz64 (uint64_t x)
462 { 521 {
463#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) 522#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
464 unsigned long r = 0; 523 unsigned long r;
465 _BitScanForward64 (&r, x); 524 _BitScanForward64 (&r, x);
466 return (int)r; 525 return (int)r;
467#else 526#else
468 int shift = x & 0xffffffff ? 0 : 32; 527 int shift = x & 0xffffffff ? 0 : 32;
469 return ecb_ctz32 (x >> shift) + shift; 528 return ecb_ctz32 (x >> shift) + shift;
529#endif
530 }
531
532 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
533 ecb_function_ ecb_const int
534 ecb_clz32 (uint32_t x)
535 {
536#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
537 unsigned long r;
538 _BitScanReverse (&r, x);
539 return (int)r;
540#else
541
542 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
543 /* This happens to return 32 for x == 0, but the API does not support this */
544
545 /* -0 marks unused table elements */
546 static unsigned char table[64] =
547 {
548 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
549 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
550 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
551 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
552 };
553
554 /* propagate leftmost 1 bit to the right */
555 x |= x >> 1;
556 x |= x >> 2;
557 x |= x >> 4;
558 x |= x >> 8;
559 x |= x >> 16;
560
561 /* magic constant results in 33 unique values in the upper 6 bits */
562 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
563
564 return table [x >> 26];
565#endif
566 }
567
568 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
569 ecb_function_ ecb_const int
570 ecb_clz64 (uint64_t x)
571 {
572#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573 unsigned long r;
574 _BitScanReverse64 (&r, x);
575 return (int)r;
576#else
577 uint32_t l = x >> 32;
578 int shift = l ? 0 : 32;
579 return ecb_clz32 (l ? l : x) + shift;
470#endif 580#endif
471 } 581 }
472 582
473 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); 583 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
474 ecb_function_ ecb_const int 584 ecb_function_ ecb_const int
484 594
485 ecb_function_ ecb_const int ecb_ld32 (uint32_t x); 595 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
486 ecb_function_ ecb_const int ecb_ld32 (uint32_t x) 596 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
487 { 597 {
488#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) 598#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
489 unsigned long r = 0; 599 unsigned long r;
490 _BitScanReverse (&r, x); 600 _BitScanReverse (&r, x);
491 return (int)r; 601 return (int)r;
492#else 602#else
493 int r = 0; 603 int r = 0;
494 604
504 614
505 ecb_function_ ecb_const int ecb_ld64 (uint64_t x); 615 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
506 ecb_function_ ecb_const int ecb_ld64 (uint64_t x) 616 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
507 { 617 {
508#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) 618#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
509 unsigned long r = 0; 619 unsigned long r;
510 _BitScanReverse64 (&r, x); 620 _BitScanReverse64 (&r, x);
511 return (int)r; 621 return (int)r;
512#else 622#else
513 int r = 0; 623 int r = 0;
514 624
552 x = ( x >> 16 ) | ( x << 16); 662 x = ( x >> 16 ) | ( x << 16);
553 663
554 return x; 664 return x;
555} 665}
556 666
557/* popcount64 is only available on 64 bit cpus as gcc builtin */
558/* so for this version we are lazy */
559ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); 667ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
560ecb_function_ ecb_const int 668ecb_function_ ecb_const int
561ecb_popcount64 (uint64_t x) 669ecb_popcount64 (uint64_t x)
562{ 670{
671 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
672 /* also, gcc/clang make this surprisingly difficult to use */
673#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
674 return __builtin_popcountl (x);
675#else
563 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 676 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
677#endif
564} 678}
565 679
566ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); 680ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
567ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); 681ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
568ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); 682ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
570ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); 684ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
571ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); 685ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
572ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); 686ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
573ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); 687ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
574 688
575ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 689ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
576ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 690ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
577ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 691ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
578ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 692ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
579ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 693ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
580ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 694ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
581ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 695ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
582ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 696ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
697
698#if ECB_CPP
699
700inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
701inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
702inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
703inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
704
705inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
706inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
707inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
708inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
709
710inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
711inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
712inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
713inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
714
715inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
716inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
717inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
718inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
719
720inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
721inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
722inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
723
724inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
725inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
726inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
727inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
728
729inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
730inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
731inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
732inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
733
734#endif
583 735
584#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 736#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
585 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) 737 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
586 #define ecb_bswap16(x) __builtin_bswap16 (x) 738 #define ecb_bswap16(x) __builtin_bswap16 (x)
587 #else 739 #else
626#endif 778#endif
627 779
628/* try to tell the compiler that some condition is definitely true */ 780/* try to tell the compiler that some condition is definitely true */
629#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 781#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
630 782
631ecb_inline ecb_const unsigned char ecb_byteorder_helper (void); 783ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
632ecb_inline ecb_const unsigned char 784ecb_inline ecb_const uint32_t
633ecb_byteorder_helper (void) 785ecb_byteorder_helper (void)
634{ 786{
635 /* the union code still generates code under pressure in gcc, */ 787 /* the union code still generates code under pressure in gcc, */
636 /* but less than using pointers, and always seems to */ 788 /* but less than using pointers, and always seems to */
637 /* successfully return a constant. */ 789 /* successfully return a constant. */
638 /* the reason why we have this horrible preprocessor mess */ 790 /* the reason why we have this horrible preprocessor mess */
639 /* is to avoid it in all cases, at least on common architectures */ 791 /* is to avoid it in all cases, at least on common architectures */
640 /* or when using a recent enough gcc version (>= 4.6) */ 792 /* or when using a recent enough gcc version (>= 4.6) */
641#if ((__i386 || __i386__) && !__VOS__) || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64
642 return 0x44;
643#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 793#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
794 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
795 #define ECB_LITTLE_ENDIAN 1
644 return 0x44; 796 return 0x44332211;
645#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 797#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
798 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
799 #define ECB_BIG_ENDIAN 1
646 return 0x11; 800 return 0x11223344;
647#else 801#else
648 union 802 union
649 { 803 {
804 uint8_t c[4];
650 uint32_t i; 805 uint32_t u;
651 uint8_t c;
652 } u = { 0x11223344 }; 806 } u = { 0x11, 0x22, 0x33, 0x44 };
653 return u.c; 807 return u.u;
654#endif 808#endif
655} 809}
656 810
657ecb_inline ecb_const ecb_bool ecb_big_endian (void); 811ecb_inline ecb_const ecb_bool ecb_big_endian (void);
658ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 812ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
659ecb_inline ecb_const ecb_bool ecb_little_endian (void); 813ecb_inline ecb_const ecb_bool ecb_little_endian (void);
660ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 814ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
815
816/*****************************************************************************/
817/* unaligned load/store */
818
819ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
820ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
821ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
822
823ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
824ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
825ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
826
827ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
828ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
829ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
830
831ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
832ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
833ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
834
835ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
836ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
837ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
838
839ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
840ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
841ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
842
843ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
844ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
845ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
846
847ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
848ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
849ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
850
851ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
852ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
853ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
854
855ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
856ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
857ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
858
859#if ECB_CPP
860
861inline uint8_t ecb_bswap (uint8_t v) { return v; }
862inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
863inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
864inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
865
866template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
867template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
868template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
869template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
870template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
871template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
872template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
873template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
874
875template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
876template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
877template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
878template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
879template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
880template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
881template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
882template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
883
884#endif
885
886/*****************************************************************************/
887/* pointer/integer hashing */
888
889/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
890ecb_function_ uint32_t ecb_mix32 (uint32_t v);
891ecb_function_ uint32_t ecb_mix32 (uint32_t v)
892{
893 v ^= v >> 16; v *= 0x7feb352dU;
894 v ^= v >> 15; v *= 0x846ca68bU;
895 v ^= v >> 16;
896 return v;
897}
898
899ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
900ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
901{
902 v ^= v >> 16 ; v *= 0x43021123U;
903 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
904 v ^= v >> 16 ;
905 return v;
906}
907
908/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
909ecb_function_ uint64_t ecb_mix64 (uint64_t v);
910ecb_function_ uint64_t ecb_mix64 (uint64_t v)
911{
912 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
913 v ^= v >> 27; v *= 0x94d049bb133111ebU;
914 v ^= v >> 31;
915 return v;
916}
917
918ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
919ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
920{
921 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
922 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
923 v ^= v >> 30 ^ v >> 60;
924 return v;
925}
926
927ecb_function_ uintptr_t ecb_ptrmix (void *p);
928ecb_function_ uintptr_t ecb_ptrmix (void *p)
929{
930 #if ECB_PTRSIZE <= 4
931 return ecb_mix32 ((uint32_t)p);
932 #else
933 return ecb_mix64 ((uint64_t)p);
934 #endif
935}
936
937ecb_function_ void *ecb_ptrunmix (uintptr_t v);
938ecb_function_ void *ecb_ptrunmix (uintptr_t v)
939{
940 #if ECB_PTRSIZE <= 4
941 return (void *)ecb_unmix32 (v);
942 #else
943 return (void *)ecb_unmix64 (v);
944 #endif
945}
946
947#if ECB_CPP
948
949template<typename T>
950inline uintptr_t ecb_ptrmix (T *p)
951{
952 return ecb_ptrmix (static_cast<void *>(p));
953}
954
955template<typename T>
956inline T *ecb_ptrunmix (uintptr_t v)
957{
958 return static_cast<T *>(ecb_ptrunmix (v));
959}
960
961#endif
962
963/*****************************************************************************/
964/* gray code */
965
966ecb_function_ uint_fast8_t ecb_gray8_encode (uint_fast8_t b) { return b ^ (b >> 1); }
967ecb_function_ uint_fast16_t ecb_gray16_encode (uint_fast16_t b) { return b ^ (b >> 1); }
968ecb_function_ uint_fast32_t ecb_gray32_encode (uint_fast32_t b) { return b ^ (b >> 1); }
969ecb_function_ uint_fast64_t ecb_gray64_encode (uint_fast64_t b) { return b ^ (b >> 1); }
970
971ecb_function_ uint8_t ecb_gray8_decode (uint8_t g)
972{
973 g ^= g >> 1;
974 g ^= g >> 2;
975 g ^= g >> 4;
976
977 return g;
978}
979
980ecb_function_ uint16_t ecb_gray16_decode (uint16_t g)
981{
982 g ^= g >> 1;
983 g ^= g >> 2;
984 g ^= g >> 4;
985 g ^= g >> 8;
986
987 return g;
988}
989
990ecb_function_ uint32_t ecb_gray32_decode (uint32_t g)
991{
992 g ^= g >> 1;
993 g ^= g >> 2;
994 g ^= g >> 4;
995 g ^= g >> 8;
996 g ^= g >> 16;
997
998 return g;
999}
1000
1001ecb_function_ uint64_t ecb_gray64_decode (uint64_t g)
1002{
1003 g ^= g >> 1;
1004 g ^= g >> 2;
1005 g ^= g >> 4;
1006 g ^= g >> 8;
1007 g ^= g >> 16;
1008 g ^= g >> 32;
1009
1010 return g;
1011}
1012
1013#if ECB_CPP
1014
1015ecb_function_ uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray8_encode (b); }
1016ecb_function_ uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray16_encode (b); }
1017ecb_function_ uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray32_encode (b); }
1018ecb_function_ uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray64_encode (b); }
1019
1020ecb_function_ uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray8_decode (g); }
1021ecb_function_ uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray16_decode (g); }
1022ecb_function_ uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray32_decode (g); }
1023ecb_function_ uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray64_decode (g); }
1024
1025#endif
1026
1027/*****************************************************************************/
1028/* 2d hilbert curves */
1029
1030/* algorithm from the book Hacker's Delight, modified to not */
1031/* run into undefined behaviour for n==16 */
1032static uint32_t
1033ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1034{
1035 uint32_t comp, swap, cs, t, sr;
1036
1037 /* pad s on the left (unused) bits with 01 (no change groups) */
1038 s |= 0x55555555U << n << n;
1039 /* "s shift right" */
1040 sr = (s >> 1) & 0x55555555U;
1041 /* compute complement and swap info in two-bit groups */
1042 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1043
1044 /* parallel prefix xor op to propagate both complement
1045 * and swap info together from left to right (there is
1046 * no step "cs ^= cs >> 1", so in effect it computes
1047 * two independent parallel prefix operations on two
1048 * interleaved sets of sixteen bits).
1049 */
1050 cs ^= cs >> 2;
1051 cs ^= cs >> 4;
1052 cs ^= cs >> 8;
1053 cs ^= cs >> 16;
1054
1055 /* separate swap and complement bits */
1056 swap = cs & 0x55555555U;
1057 comp = (cs >> 1) & 0x55555555U;
1058
1059 /* calculate coordinates in odd and even bit positions */
1060 t = (s & swap) ^ comp;
1061 s = s ^ sr ^ t ^ (t << 1);
1062
1063 /* unpad/clear out any junk on the left */
1064 s = s & ((1 << n << n) - 1);
1065
1066 /* Now "unshuffle" to separate the x and y bits. */
1067 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1068 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1069 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1070 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1071
1072 /* now s contains two 16-bit coordinates */
1073 return s;
1074}
1075
1076/* 64 bit, a straightforward extension to the 32 bit case */
1077static uint64_t
1078ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1079{
1080 uint64_t comp, swap, cs, t, sr;
1081
1082 /* pad s on the left (unused) bits with 01 (no change groups) */
1083 s |= 0x5555555555555555U << n << n;
1084 /* "s shift right" */
1085 sr = (s >> 1) & 0x5555555555555555U;
1086 /* compute complement and swap info in two-bit groups */
1087 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1088
1089 /* parallel prefix xor op to propagate both complement
1090 * and swap info together from left to right (there is
1091 * no step "cs ^= cs >> 1", so in effect it computes
1092 * two independent parallel prefix operations on two
1093 * interleaved sets of thirty-two bits).
1094 */
1095 cs ^= cs >> 2;
1096 cs ^= cs >> 4;
1097 cs ^= cs >> 8;
1098 cs ^= cs >> 16;
1099 cs ^= cs >> 32;
1100
1101 /* separate swap and complement bits */
1102 swap = cs & 0x5555555555555555U;
1103 comp = (cs >> 1) & 0x5555555555555555U;
1104
1105 /* calculate coordinates in odd and even bit positions */
1106 t = (s & swap) ^ comp;
1107 s = s ^ sr ^ t ^ (t << 1);
1108
1109 /* unpad/clear out any junk on the left */
1110 s = s & ((1 << n << n) - 1);
1111
1112 /* Now "unshuffle" to separate the x and y bits. */
1113 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1114 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1115 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1116 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1117 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1118
1119 /* now s contains two 32-bit coordinates */
1120 return s;
1121}
1122
1123/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1124/* is given in https://doi.org/10.1002/spe.4380160103 */
1125/* this has been slightly improved over the original version */
1126ecb_function_ uint32_t
1127ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1128{
1129 uint32_t row;
1130 uint32_t state = 0;
1131 uint32_t s = 0;
1132
1133 do
1134 {
1135 --n;
1136
1137 row = 4 * state
1138 | (2 & (xy >> n >> 15))
1139 | (1 & (xy >> n ));
1140
1141 /* these funky constants are lookup tables for two-bit values */
1142 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1143 state = (0x8fe65831U >> 2 * row) & 3;
1144 }
1145 while (n > 0);
1146
1147 return s;
1148}
1149
1150/* 64 bit, essentially the same as 32 bit */
1151ecb_function_ uint64_t
1152ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1153{
1154 uint32_t row;
1155 uint32_t state = 0;
1156 uint64_t s = 0;
1157
1158 do
1159 {
1160 --n;
1161
1162 row = 4 * state
1163 | (2 & (xy >> n >> 31))
1164 | (1 & (xy >> n ));
1165
1166 /* these funky constants are lookup tables for two-bit values */
1167 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1168 state = (0x8fe65831U >> 2 * row) & 3;
1169 }
1170 while (n > 0);
1171
1172 return s;
1173}
1174
1175/*****************************************************************************/
1176/* division */
661 1177
662#if ECB_GCC_VERSION(3,0) || ECB_C99 1178#if ECB_GCC_VERSION(3,0) || ECB_C99
1179 /* C99 tightened the definition of %, so we can use a more efficient version */
663 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1180 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
664#else 1181#else
665 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1182 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
666#endif 1183#endif
667 1184
678 } 1195 }
679#else 1196#else
680 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1197 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
681 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1198 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
682#endif 1199#endif
1200
1201/*****************************************************************************/
1202/* array length */
683 1203
684#if ecb_cplusplus_does_not_suck 1204#if ecb_cplusplus_does_not_suck
685 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1205 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
686 template<typename T, int N> 1206 template<typename T, int N>
687 static inline int ecb_array_length (const T (&arr)[N]) 1207 static inline int ecb_array_length (const T (&arr)[N])
689 return N; 1209 return N;
690 } 1210 }
691#else 1211#else
692 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1212 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
693#endif 1213#endif
1214
1215/*****************************************************************************/
1216/* IEEE 754-2008 half float conversions */
694 1217
695ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); 1218ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
696ecb_function_ ecb_const uint32_t 1219ecb_function_ ecb_const uint32_t
697ecb_binary16_to_binary32 (uint32_t x) 1220ecb_binary16_to_binary32 (uint32_t x)
698{ 1221{
727ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); 1250ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
728ecb_function_ ecb_const uint16_t 1251ecb_function_ ecb_const uint16_t
729ecb_binary32_to_binary16 (uint32_t x) 1252ecb_binary32_to_binary16 (uint32_t x)
730{ 1253{
731 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ 1254 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
732 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ 1255 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
733 unsigned int m = x & 0x007fffff; 1256 unsigned int m = x & 0x007fffff;
734 1257
735 x &= 0x7fffffff; 1258 x &= 0x7fffffff;
736 1259
737 /* if it's within range of binary16 normals, use fast path */ 1260 /* if it's within range of binary16 normals, use fast path */
784 1307
785 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ 1308 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
786 m >>= 13; 1309 m >>= 13;
787 1310
788 return s | 0x7c00 | m | !m; 1311 return s | 0x7c00 | m | !m;
1312}
1313
1314/*******************************************************************************/
1315/* fast integer to ascii */
1316
1317/*
1318 * This code is pretty complicated because it is general. The idea behind it,
1319 * however, is pretty simple: first, the number is multiplied with a scaling
1320 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1321 * number with the first digit in the upper bits.
1322 * Then this digit is converted to text and masked out. The resulting number
1323 * is then multiplied by 10, by multiplying the fixed point representation
1324 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1325 * format becomes 5.27, 6.26 and so on.
1326 * The rest involves only advancing the pointer if we already generated a
1327 * non-zero digit, so leading zeroes are overwritten.
1328 */
1329
1330/* simply return a mask with "bits" bits set */
1331#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1332
1333/* oputput a single digit. maskvalue is 10**digitidx */
1334#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1335 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1336 { \
1337 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1338 *ptr = digit + '0'; /* output it */ \
1339 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1340 ptr += nz; /* output digit only if non-zero digit seen */ \
1341 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1342 }
1343
1344/* convert integer to fixed point format and multiply out digits, highest first */
1345/* requires magic constants: max. digits and number of bits after the decimal point */
1346#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1347ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1348{ \
1349 char nz = lz; /* non-zero digit seen? */ \
1350 /* convert to x.bits fixed-point */ \
1351 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1352 /* output up to 10 digits */ \
1353 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1354 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1355 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1356 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1357 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1358 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1359 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1360 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1361 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1362 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1363 return ptr; \
1364}
1365
1366/* predefined versions of the above, for various digits */
1367/* ecb_i2a_xN = almost N digits, limit defined by macro */
1368/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1369/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1370
1371/* non-leading-zero versions, limited range */
1372#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1373#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1374ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1375ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1376
1377/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1378ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1379ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1380ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1381ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1382ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1383ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1384ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1385ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1386
1387/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1388ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1389ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1390ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1391ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1392ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1393ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1394ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1395ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1396
1397#define ECB_I2A_I32_DIGITS 11
1398#define ECB_I2A_U32_DIGITS 10
1399#define ECB_I2A_I64_DIGITS 20
1400#define ECB_I2A_U64_DIGITS 21
1401#define ECB_I2A_MAX_DIGITS 21
1402
1403ecb_inline char *
1404ecb_i2a_u32 (char *ptr, uint32_t u)
1405{
1406 #if ECB_64BIT_NATIVE
1407 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1408 ptr = ecb_i2a_x10 (ptr, u);
1409 else /* x10 almost, but not fully, covers 32 bit */
1410 {
1411 uint32_t u1 = u % 1000000000;
1412 uint32_t u2 = u / 1000000000;
1413
1414 *ptr++ = u2 + '0';
1415 ptr = ecb_i2a_09 (ptr, u1);
1416 }
1417 #else
1418 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1419 ecb_i2a_x5 (ptr, u);
1420 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1421 {
1422 uint32_t u1 = u % 10000;
1423 uint32_t u2 = u / 10000;
1424
1425 ptr = ecb_i2a_x5 (ptr, u2);
1426 ptr = ecb_i2a_04 (ptr, u1);
1427 }
1428 else
1429 {
1430 uint32_t u1 = u % 10000;
1431 uint32_t ua = u / 10000;
1432 uint32_t u2 = ua % 10000;
1433 uint32_t u3 = ua / 10000;
1434
1435 ptr = ecb_i2a_2 (ptr, u3);
1436 ptr = ecb_i2a_04 (ptr, u2);
1437 ptr = ecb_i2a_04 (ptr, u1);
1438 }
1439 #endif
1440
1441 return ptr;
1442}
1443
1444ecb_inline char *
1445ecb_i2a_i32 (char *ptr, int32_t v)
1446{
1447 *ptr = '-'; ptr += v < 0;
1448 uint32_t u = v < 0 ? -(uint32_t)v : v;
1449
1450 #if ECB_64BIT_NATIVE
1451 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1452 #else
1453 ptr = ecb_i2a_u32 (ptr, u);
1454 #endif
1455
1456 return ptr;
1457}
1458
1459ecb_inline char *
1460ecb_i2a_u64 (char *ptr, uint64_t u)
1461{
1462 #if ECB_64BIT_NATIVE
1463 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1464 ptr = ecb_i2a_x10 (ptr, u);
1465 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1466 {
1467 uint64_t u1 = u % 1000000000;
1468 uint64_t u2 = u / 1000000000;
1469
1470 ptr = ecb_i2a_x10 (ptr, u2);
1471 ptr = ecb_i2a_09 (ptr, u1);
1472 }
1473 else
1474 {
1475 uint64_t u1 = u % 1000000000;
1476 uint64_t ua = u / 1000000000;
1477 uint64_t u2 = ua % 1000000000;
1478 uint64_t u3 = ua / 1000000000;
1479
1480 ptr = ecb_i2a_2 (ptr, u3);
1481 ptr = ecb_i2a_09 (ptr, u2);
1482 ptr = ecb_i2a_09 (ptr, u1);
1483 }
1484 #else
1485 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1486 ptr = ecb_i2a_x5 (ptr, u);
1487 else
1488 {
1489 uint64_t u1 = u % 10000;
1490 uint64_t u2 = u / 10000;
1491
1492 ptr = ecb_i2a_u64 (ptr, u2);
1493 ptr = ecb_i2a_04 (ptr, u1);
1494 }
1495 #endif
1496
1497 return ptr;
1498}
1499
1500ecb_inline char *
1501ecb_i2a_i64 (char *ptr, int64_t v)
1502{
1503 *ptr = '-'; ptr += v < 0;
1504 uint64_t u = v < 0 ? -(uint64_t)v : v;
1505
1506 #if ECB_64BIT_NATIVE
1507 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1508 ptr = ecb_i2a_x10 (ptr, u);
1509 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1510 {
1511 uint64_t u1 = u % 1000000000;
1512 uint64_t u2 = u / 1000000000;
1513
1514 ptr = ecb_i2a_x10 (ptr, u2);
1515 ptr = ecb_i2a_09 (ptr, u1);
1516 }
1517 else
1518 {
1519 uint64_t u1 = u % 1000000000;
1520 uint64_t ua = u / 1000000000;
1521 uint64_t u2 = ua % 1000000000;
1522 uint64_t u3 = ua / 1000000000;
1523
1524 /* 2**31 is 19 digits, so the top is exactly one digit */
1525 *ptr++ = u3 + '0';
1526 ptr = ecb_i2a_09 (ptr, u2);
1527 ptr = ecb_i2a_09 (ptr, u1);
1528 }
1529 #else
1530 ptr = ecb_i2a_u64 (ptr, u);
1531 #endif
1532
1533 return ptr;
789} 1534}
790 1535
791/*******************************************************************************/ 1536/*******************************************************************************/
792/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1537/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
793 1538
807 || defined __sh__ \ 1552 || defined __sh__ \
808 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ 1553 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
809 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1554 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
810 || defined __aarch64__ 1555 || defined __aarch64__
811 #define ECB_STDFP 1 1556 #define ECB_STDFP 1
812 #include <string.h> /* for memcpy */
813#else 1557#else
814 #define ECB_STDFP 0 1558 #define ECB_STDFP 0
815#endif 1559#endif
816 1560
817#ifndef ECB_NO_LIBM 1561#ifndef ECB_NO_LIBM

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines