ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
(Generate patch)

Comparing libecb/ecb.h (file contents):
Revision 1.139 by root, Tue Oct 14 14:39:06 2014 UTC vs.
Revision 1.212 by root, Fri Mar 25 15:31:22 2022 UTC

1/* 1/*
2 * libecb - http://software.schmorp.de/pkg/libecb 2 * libecb - http://software.schmorp.de/pkg/libecb
3 * 3 *
4 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de> 4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta 5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved. 6 * All rights reserved.
7 * 7 *
8 * Redistribution and use in source and binary forms, with or without modifica- 8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met: 9 * tion, are permitted provided that the following conditions are met:
40 40
41#ifndef ECB_H 41#ifndef ECB_H
42#define ECB_H 42#define ECB_H
43 43
44/* 16 bits major, 16 bits minor */ 44/* 16 bits major, 16 bits minor */
45#define ECB_VERSION 0x00010003 45#define ECB_VERSION 0x0001000c
46 46
47#ifdef _WIN32 47#include <string.h> /* for memcpy */
48
49#if defined (_WIN32) && !defined (__MINGW32__)
48 typedef signed char int8_t; 50 typedef signed char int8_t;
49 typedef unsigned char uint8_t; 51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
50 typedef signed short int16_t; 54 typedef signed short int16_t;
51 typedef unsigned short uint16_t; 55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
52 typedef signed int int32_t; 58 typedef signed int int32_t;
53 typedef unsigned int uint32_t; 59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
54 #if __GNUC__ 62 #if __GNUC__
55 typedef signed long long int64_t; 63 typedef signed long long int64_t;
56 typedef unsigned long long uint64_t; 64 typedef unsigned long long uint64_t;
57 #else /* _MSC_VER || __BORLANDC__ */ 65 #else /* _MSC_VER || __BORLANDC__ */
58 typedef signed __int64 int64_t; 66 typedef signed __int64 int64_t;
59 typedef unsigned __int64 uint64_t; 67 typedef unsigned __int64 uint64_t;
60 #endif 68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
61 #ifdef _WIN64 71 #ifdef _WIN64
62 #define ECB_PTRSIZE 8 72 #define ECB_PTRSIZE 8
63 typedef uint64_t uintptr_t; 73 typedef uint64_t uintptr_t;
64 typedef int64_t intptr_t; 74 typedef int64_t intptr_t;
65 #else 75 #else
67 typedef uint32_t uintptr_t; 77 typedef uint32_t uintptr_t;
68 typedef int32_t intptr_t; 78 typedef int32_t intptr_t;
69 #endif 79 #endif
70#else 80#else
71 #include <inttypes.h> 81 #include <inttypes.h>
72 #if UINTMAX_MAX > 0xffffffffU 82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
73 #define ECB_PTRSIZE 8 83 #define ECB_PTRSIZE 8
74 #else 84 #else
75 #define ECB_PTRSIZE 4 85 #define ECB_PTRSIZE 4
76 #endif 86 #endif
77#endif 87#endif
78 88
89#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92#ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98#endif
99
79/* work around x32 idiocy by defining proper macros */ 100/* work around x32 idiocy by defining proper macros */
80#if __amd64 || __x86_64 || _M_AMD64 || _M_X64 101#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
81 #if _ILP32 102 #if _ILP32
82 #define ECB_AMD64_X32 1 103 #define ECB_AMD64_X32 1
83 #else 104 #else
84 #define ECB_AMD64 1 105 #define ECB_AMD64 1
85 #endif 106 #endif
107#endif
108
109#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111#else
112 #define ECB_64BIT_NATIVE 0
86#endif 113#endif
87 114
88/* many compilers define _GNUC_ to some versions but then only implement 115/* many compilers define _GNUC_ to some versions but then only implement
89 * what their idiot authors think are the "more important" extensions, 116 * what their idiot authors think are the "more important" extensions,
90 * causing enormous grief in return for some better fake benchmark numbers. 117 * causing enormous grief in return for some better fake benchmark numbers.
98 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) 125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
99#endif 126#endif
100 127
101#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) 128#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
102 129
103#if __clang__ && defined(__has_builtin) 130#if __clang__ && defined __has_builtin
104 #define ECB_CLANG_BUILTIN(x) __has_builtin(x) 131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
105#else 132#else
106 #define ECB_CLANG_BUILTIN(x) 0 133 #define ECB_CLANG_BUILTIN(x) 0
134#endif
135
136#if __clang__ && defined __has_extension
137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138#else
139 #define ECB_CLANG_EXTENSION(x) 0
107#endif 140#endif
108 141
109#define ECB_CPP (__cplusplus+0) 142#define ECB_CPP (__cplusplus+0)
110#define ECB_CPP11 (__cplusplus >= 201103L) 143#define ECB_CPP11 (__cplusplus >= 201103L)
144#define ECB_CPP14 (__cplusplus >= 201402L)
145#define ECB_CPP17 (__cplusplus >= 201703L)
111 146
112#if ECB_CPP 147#if ECB_CPP
113 #define ECB_C 0 148 #define ECB_C 0
114 #define ECB_STDC_VERSION 0 149 #define ECB_STDC_VERSION 0
115#else 150#else
117 #define ECB_STDC_VERSION __STDC_VERSION__ 152 #define ECB_STDC_VERSION __STDC_VERSION__
118#endif 153#endif
119 154
120#define ECB_C99 (ECB_STDC_VERSION >= 199901L) 155#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
121#define ECB_C11 (ECB_STDC_VERSION >= 201112L) 156#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
122 158
123#if ECB_CPP 159#if ECB_CPP
124 #define ECB_EXTERN_C extern "C" 160 #define ECB_EXTERN_C extern "C"
125 #define ECB_EXTERN_C_BEG ECB_EXTERN_C { 161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
126 #define ECB_EXTERN_C_END } 162 #define ECB_EXTERN_C_END }
141 177
142#if ECB_NO_SMP 178#if ECB_NO_SMP
143 #define ECB_MEMORY_FENCE do { } while (0) 179 #define ECB_MEMORY_FENCE do { } while (0)
144#endif 180#endif
145 181
182/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183#if __xlC__ && ECB_CPP
184 #include <builtins.h>
185#endif
186
187#if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189#endif
190
146#ifndef ECB_MEMORY_FENCE 191#ifndef ECB_MEMORY_FENCE
147 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
148 #if __i386 || __i386__ 194 #if __i386 || __i386__
149 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") 195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
150 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
151 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
152 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__ 198 #elif ECB_GCC_AMD64
153 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") 199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
154 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") 200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
155 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") 201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
156 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ 202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
157 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") 203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
158 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ 211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
159 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ 212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
160 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") 214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
161 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ 215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
162 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__ 216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
163 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") 217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
164 #elif __aarch64__ 218 #elif __aarch64__
165 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") 219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
166 #elif (__sparc || __sparc__) && !__sparcv8 220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
167 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") 221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
168 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") 222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
169 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") 223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
170 #elif defined __s390__ || defined __s390x__ 224 #elif defined __s390__ || defined __s390x__
171 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") 225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
194 #if ECB_GCC_VERSION(4,7) 248 #if ECB_GCC_VERSION(4,7)
195 /* see comment below (stdatomic.h) about the C11 memory model. */ 249 /* see comment below (stdatomic.h) about the C11 memory model. */
196 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) 250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
197 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) 251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
198 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) 252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
199 255
200 /* The __has_feature syntax from clang is so misdesigned that we cannot use it 256 #elif ECB_CLANG_EXTENSION(c_atomic)
201 * without risking compile time errors with other compilers. We *could*
202 * define our own ecb_clang_has_feature, but I just can't be bothered to work
203 * around this shit time and again.
204 * #elif defined __clang && __has_feature (cxx_atomic)
205 * // see comment below (stdatomic.h) about the C11 memory model. 257 /* see comment below (stdatomic.h) about the C11 memory model. */
206 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) 258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
207 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) 259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
208 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) 260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
209 */ 261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
210 263
211 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ 264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
212 #define ECB_MEMORY_FENCE __sync_synchronize () 265 #define ECB_MEMORY_FENCE __sync_synchronize ()
213 #elif _MSC_VER >= 1500 /* VC++ 2008 */ 266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
214 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ 267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
224 #elif defined _WIN32 277 #elif defined _WIN32
225 #include <WinNT.h> 278 #include <WinNT.h>
226 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ 279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
227 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
228 #include <mbarrier.h> 281 #include <mbarrier.h>
229 #define ECB_MEMORY_FENCE __machine_rw_barrier () 282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
230 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier () 283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
231 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier () 284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
232 #elif __xlC__ 286 #elif __xlC__
233 #define ECB_MEMORY_FENCE __sync () 287 #define ECB_MEMORY_FENCE __sync ()
234 #endif 288 #endif
235#endif 289#endif
236 290
237#ifndef ECB_MEMORY_FENCE 291#ifndef ECB_MEMORY_FENCE
238 #if ECB_C11 && !defined __STDC_NO_ATOMICS__ 292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
239 /* we assume that these memory fences work on all variables/all memory accesses, */ 293 /* we assume that these memory fences work on all variables/all memory accesses, */
240 /* not just C11 atomics and atomic accesses */ 294 /* not just C11 atomics and atomic accesses */
241 #include <stdatomic.h> 295 #include <stdatomic.h>
242 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
243 /* any fence other than seq_cst, which isn't very efficient for us. */
244 /* Why that is, we don't know - either the C11 memory model is quite useless */
245 /* for most usages, or gcc and clang have a bug */
246 /* I *currently* lean towards the latter, and inefficiently implement */
247 /* all three of ecb's fences as a seq_cst fence */
248 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
249 /* for all __atomic_thread_fence's except seq_cst */
250 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) 296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
251 #endif 299 #endif
252#endif 300#endif
253 301
254#ifndef ECB_MEMORY_FENCE 302#ifndef ECB_MEMORY_FENCE
255 #if !ECB_AVOID_PTHREADS 303 #if !ECB_AVOID_PTHREADS
275 323
276#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE 324#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
277 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE 325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
278#endif 326#endif
279 327
328#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330#endif
331
280/*****************************************************************************/ 332/*****************************************************************************/
281 333
282#if __cplusplus 334#if ECB_CPP
283 #define ecb_inline static inline 335 #define ecb_inline static inline
284#elif ECB_GCC_VERSION(2,5) 336#elif ECB_GCC_VERSION(2,5)
285 #define ecb_inline static __inline__ 337 #define ecb_inline static __inline__
286#elif ECB_C99 338#elif ECB_C99
287 #define ecb_inline static inline 339 #define ecb_inline static inline
301 353
302#define ECB_CONCAT_(a, b) a ## b 354#define ECB_CONCAT_(a, b) a ## b
303#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) 355#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
304#define ECB_STRINGIFY_(a) # a 356#define ECB_STRINGIFY_(a) # a
305#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) 357#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
306 359
360/* This marks larger functions that do not neccessarily need to be inlined */
361/* The idea is to possibly compile the header twice, */
362/* once exposing only the declarations, another time to define external functions */
363/* TODO: possibly static would be best for these at the moment? */
307#define ecb_function_ ecb_inline 364#define ecb_function_ ecb_inline
308 365
309#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) 366#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
310 #define ecb_attribute(attrlist) __attribute__(attrlist) 367 #define ecb_attribute(attrlist) __attribute__ (attrlist)
311#else 368#else
312 #define ecb_attribute(attrlist) 369 #define ecb_attribute(attrlist)
313#endif 370#endif
314 371
315#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) 372#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
333#else 390#else
334 #define ecb_prefetch(addr,rw,locality) 391 #define ecb_prefetch(addr,rw,locality)
335#endif 392#endif
336 393
337/* no emulation for ecb_decltype */ 394/* no emulation for ecb_decltype */
338#if ECB_GCC_VERSION(4,5) 395#if ECB_CPP11
396 // older implementations might have problems with decltype(x)::type, work around it
397 template<class T> struct ecb_decltype_t { typedef T type; };
339 #define ecb_decltype(x) __decltype(x) 398 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
340#elif ECB_GCC_VERSION(3,0) 399#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
341 #define ecb_decltype(x) __typeof(x) 400 #define ecb_decltype(x) __typeof__ (x)
342#endif 401#endif
343 402
344#if _MSC_VER >= 1300 403#if _MSC_VER >= 1300
345 #define ecb_deprecated __declspec(deprecated) 404 #define ecb_deprecated __declspec (deprecated)
346#else 405#else
347 #define ecb_deprecated ecb_attribute ((__deprecated__)) 406 #define ecb_deprecated ecb_attribute ((__deprecated__))
348#endif 407#endif
349 408
409#if _MSC_VER >= 1500
410 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
411#elif ECB_GCC_VERSION(4,5)
412 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
413#else
414 #define ecb_deprecated_message(msg) ecb_deprecated
415#endif
416
417#if _MSC_VER >= 1400
418 #define ecb_noinline __declspec (noinline)
419#else
350#define ecb_noinline ecb_attribute ((__noinline__)) 420 #define ecb_noinline ecb_attribute ((__noinline__))
421#endif
422
351#define ecb_unused ecb_attribute ((__unused__)) 423#define ecb_unused ecb_attribute ((__unused__))
352#define ecb_const ecb_attribute ((__const__)) 424#define ecb_const ecb_attribute ((__const__))
353#define ecb_pure ecb_attribute ((__pure__)) 425#define ecb_pure ecb_attribute ((__pure__))
354 426
355/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx __declspec(noreturn) */ 427#if ECB_C11 || __IBMC_NORETURN
356#if ECB_C11 428 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
357 #define ecb_noreturn _Noreturn 429 #define ecb_noreturn _Noreturn
430#elif ECB_CPP11
431 #define ecb_noreturn [[noreturn]]
432#elif _MSC_VER >= 1200
433 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
434 #define ecb_noreturn __declspec (noreturn)
358#else 435#else
359 #define ecb_noreturn ecb_attribute ((__noreturn__)) 436 #define ecb_noreturn ecb_attribute ((__noreturn__))
360#endif 437#endif
361 438
362#if ECB_GCC_VERSION(4,3) 439#if ECB_GCC_VERSION(4,3)
381/* count trailing zero bits and count # of one bits */ 458/* count trailing zero bits and count # of one bits */
382#if ECB_GCC_VERSION(3,4) \ 459#if ECB_GCC_VERSION(3,4) \
383 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ 460 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
384 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ 461 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
385 && ECB_CLANG_BUILTIN(__builtin_popcount)) 462 && ECB_CLANG_BUILTIN(__builtin_popcount))
386 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
387 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
388 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
389 #define ecb_ctz32(x) __builtin_ctz (x) 463 #define ecb_ctz32(x) __builtin_ctz (x)
464 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
390 #define ecb_ctz64(x) __builtin_ctzll (x) 465 #define ecb_clz32(x) __builtin_clz (x)
466 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
467 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
468 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
391 #define ecb_popcount32(x) __builtin_popcount (x) 469 #define ecb_popcount32(x) __builtin_popcount (x)
392 /* no popcountll */ 470 /* ecb_popcount64 is more difficult, see below */
393#else 471#else
394 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; 472 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
395 ecb_function_ int 473 ecb_function_ ecb_const int
396 ecb_ctz32 (uint32_t x) 474 ecb_ctz32 (uint32_t x)
397 { 475 {
476#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
477 unsigned long r;
478 _BitScanForward (&r, x);
479 return (int)r;
480#else
398 int r = 0; 481 int r;
399 482
400 x &= ~x + 1; /* this isolates the lowest bit */ 483 x &= ~x + 1; /* this isolates the lowest bit */
401 484
402#if ECB_branchless_on_i386 485 #if 1
486 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
487 /* This happens to return 32 for x == 0, but the API does not support this */
488
489 /* -0 marks unused entries */
490 static unsigned char table[64] =
491 {
492 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
493 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
494 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
495 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
496 };
497
498 /* magic constant results in 33 unique values in the upper 6 bits */
499 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
500
501 r = table [x >> 26];
502 #elif 0 /* branchless on i386, typically */
503 r = 0;
403 r += !!(x & 0xaaaaaaaa) << 0; 504 r += !!(x & 0xaaaaaaaa) << 0;
404 r += !!(x & 0xcccccccc) << 1; 505 r += !!(x & 0xcccccccc) << 1;
405 r += !!(x & 0xf0f0f0f0) << 2; 506 r += !!(x & 0xf0f0f0f0) << 2;
406 r += !!(x & 0xff00ff00) << 3; 507 r += !!(x & 0xff00ff00) << 3;
407 r += !!(x & 0xffff0000) << 4; 508 r += !!(x & 0xffff0000) << 4;
408#else 509 #else /* branchless on modern compilers, typically */
510 r = 0;
409 if (x & 0xaaaaaaaa) r += 1; 511 if (x & 0xaaaaaaaa) r += 1;
410 if (x & 0xcccccccc) r += 2; 512 if (x & 0xcccccccc) r += 2;
411 if (x & 0xf0f0f0f0) r += 4; 513 if (x & 0xf0f0f0f0) r += 4;
412 if (x & 0xff00ff00) r += 8; 514 if (x & 0xff00ff00) r += 8;
413 if (x & 0xffff0000) r += 16; 515 if (x & 0xffff0000) r += 16;
414#endif 516#endif
415 517
416 return r; 518 return r;
519#endif
417 } 520 }
418 521
419 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; 522 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
420 ecb_function_ int 523 ecb_function_ ecb_const int
421 ecb_ctz64 (uint64_t x) 524 ecb_ctz64 (uint64_t x)
422 { 525 {
526#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
527 unsigned long r;
528 _BitScanForward64 (&r, x);
529 return (int)r;
530#else
423 int shift = x & 0xffffffffU ? 0 : 32; 531 int shift = x & 0xffffffff ? 0 : 32;
424 return ecb_ctz32 (x >> shift) + shift; 532 return ecb_ctz32 (x >> shift) + shift;
533#endif
425 } 534 }
426 535
536 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
537 ecb_function_ ecb_const int
538 ecb_clz32 (uint32_t x)
539 {
540#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
541 unsigned long r;
542 _BitScanReverse (&r, x);
543 return (int)r;
544#else
545
546 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
547 /* This happens to return 32 for x == 0, but the API does not support this */
548
549 /* -0 marks unused table elements */
550 static unsigned char table[64] =
551 {
552 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
553 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
554 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
555 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
556 };
557
558 /* propagate leftmost 1 bit to the right */
559 x |= x >> 1;
560 x |= x >> 2;
561 x |= x >> 4;
562 x |= x >> 8;
563 x |= x >> 16;
564
565 /* magic constant results in 33 unique values in the upper 6 bits */
566 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
567
568 return table [x >> 26];
569#endif
570 }
571
572 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
573 ecb_function_ ecb_const int
574 ecb_clz64 (uint64_t x)
575 {
576#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
577 unsigned long r;
578 _BitScanReverse64 (&r, x);
579 return (int)r;
580#else
581 uint32_t l = x >> 32;
582 int shift = l ? 0 : 32;
583 return ecb_clz32 (l ? l : x) + shift;
584#endif
585 }
586
427 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; 587 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
428 ecb_function_ int 588 ecb_function_ ecb_const int
429 ecb_popcount32 (uint32_t x) 589 ecb_popcount32 (uint32_t x)
430 { 590 {
431 x -= (x >> 1) & 0x55555555; 591 x -= (x >> 1) & 0x55555555;
432 x = ((x >> 2) & 0x33333333) + (x & 0x33333333); 592 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
433 x = ((x >> 4) + x) & 0x0f0f0f0f; 593 x = ((x >> 4) + x) & 0x0f0f0f0f;
434 x *= 0x01010101; 594 x *= 0x01010101;
435 595
436 return x >> 24; 596 return x >> 24;
437 } 597 }
438 598
439 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; 599 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
440 ecb_function_ int ecb_ld32 (uint32_t x) 600 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
441 { 601 {
602#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
603 unsigned long r;
604 _BitScanReverse (&r, x);
605 return (int)r;
606#else
442 int r = 0; 607 int r = 0;
443 608
444 if (x >> 16) { x >>= 16; r += 16; } 609 if (x >> 16) { x >>= 16; r += 16; }
445 if (x >> 8) { x >>= 8; r += 8; } 610 if (x >> 8) { x >>= 8; r += 8; }
446 if (x >> 4) { x >>= 4; r += 4; } 611 if (x >> 4) { x >>= 4; r += 4; }
447 if (x >> 2) { x >>= 2; r += 2; } 612 if (x >> 2) { x >>= 2; r += 2; }
448 if (x >> 1) { r += 1; } 613 if (x >> 1) { r += 1; }
449 614
450 return r; 615 return r;
616#endif
451 } 617 }
452 618
453 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; 619 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
454 ecb_function_ int ecb_ld64 (uint64_t x) 620 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
455 { 621 {
622#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
623 unsigned long r;
624 _BitScanReverse64 (&r, x);
625 return (int)r;
626#else
456 int r = 0; 627 int r = 0;
457 628
458 if (x >> 32) { x >>= 32; r += 32; } 629 if (x >> 32) { x >>= 32; r += 32; }
459 630
460 return r + ecb_ld32 (x); 631 return r + ecb_ld32 (x);
461 }
462#endif 632#endif
633 }
634#endif
463 635
464ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const; 636ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
465ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } 637ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
466ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const; 638ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
467ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } 639ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
468 640
469ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const; 641ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
470ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) 642ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
471{ 643{
472 return ( (x * 0x0802U & 0x22110U) 644 return ( (x * 0x0802U & 0x22110U)
473 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; 645 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
474} 646}
475 647
476ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const; 648ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
477ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) 649ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
478{ 650{
479 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); 651 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
480 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); 652 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
481 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); 653 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
482 x = ( x >> 8 ) | ( x << 8); 654 x = ( x >> 8 ) | ( x << 8);
483 655
484 return x; 656 return x;
485} 657}
486 658
487ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const; 659ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
488ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) 660ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
489{ 661{
490 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); 662 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
491 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); 663 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
492 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); 664 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
493 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); 665 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
494 x = ( x >> 16 ) | ( x << 16); 666 x = ( x >> 16 ) | ( x << 16);
495 667
496 return x; 668 return x;
497} 669}
498 670
499/* popcount64 is only available on 64 bit cpus as gcc builtin */
500/* so for this version we are lazy */
501ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; 671ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
502ecb_function_ int 672ecb_function_ ecb_const int
503ecb_popcount64 (uint64_t x) 673ecb_popcount64 (uint64_t x)
504{ 674{
675 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
676 /* also, gcc/clang make this surprisingly difficult to use */
677#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
678 return __builtin_popcountl (x);
679#else
505 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); 680 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
681#endif
506} 682}
507 683
508ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; 684ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
509ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; 685ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
510ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; 686ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
511ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; 687ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
512ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; 688ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
513ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; 689ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
514ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; 690ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
515ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; 691ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
516 692
517ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } 693ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
518ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } 694ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
519ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } 695ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
520ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } 696ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
521ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } 697ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
522ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } 698ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
523ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } 699ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
524ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } 700ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
701
702#if ECB_CPP
703
704inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
705inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
706inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
707inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
708
709inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
710inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
711inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
712inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
713
714inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
715inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
716inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
717inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
718
719inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
720inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
721inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
722inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
723
724inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
725inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
726inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
727
728inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
729inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
730inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
731inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
732
733inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
734inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
735inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
736inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
737
738#endif
525 739
526#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) 740#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
741 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
742 #define ecb_bswap16(x) __builtin_bswap16 (x)
743 #else
527 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) 744 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
745 #endif
528 #define ecb_bswap32(x) __builtin_bswap32 (x) 746 #define ecb_bswap32(x) __builtin_bswap32 (x)
529 #define ecb_bswap64(x) __builtin_bswap64 (x) 747 #define ecb_bswap64(x) __builtin_bswap64 (x)
748#elif _MSC_VER
749 #include <stdlib.h>
750 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
751 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
752 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
530#else 753#else
531 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; 754 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
532 ecb_function_ uint16_t 755 ecb_function_ ecb_const uint16_t
533 ecb_bswap16 (uint16_t x) 756 ecb_bswap16 (uint16_t x)
534 { 757 {
535 return ecb_rotl16 (x, 8); 758 return ecb_rotl16 (x, 8);
536 } 759 }
537 760
538 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; 761 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
539 ecb_function_ uint32_t 762 ecb_function_ ecb_const uint32_t
540 ecb_bswap32 (uint32_t x) 763 ecb_bswap32 (uint32_t x)
541 { 764 {
542 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); 765 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
543 } 766 }
544 767
545 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; 768 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
546 ecb_function_ uint64_t 769 ecb_function_ ecb_const uint64_t
547 ecb_bswap64 (uint64_t x) 770 ecb_bswap64 (uint64_t x)
548 { 771 {
549 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); 772 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
550 } 773 }
551#endif 774#endif
552 775
553#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) 776#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
554 #define ecb_unreachable() __builtin_unreachable () 777 #define ecb_unreachable() __builtin_unreachable ()
555#else 778#else
556 /* this seems to work fine, but gcc always emits a warning for it :/ */ 779 /* this seems to work fine, but gcc always emits a warning for it :/ */
557 ecb_inline void ecb_unreachable (void) ecb_noreturn; 780 ecb_inline ecb_noreturn void ecb_unreachable (void);
558 ecb_inline void ecb_unreachable (void) { } 781 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
559#endif 782#endif
560 783
561/* try to tell the compiler that some condition is definitely true */ 784/* try to tell the compiler that some condition is definitely true */
562#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 785#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
563 786
564ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const; 787ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
565ecb_inline unsigned char 788ecb_inline ecb_const uint32_t
566ecb_byteorder_helper (void) 789ecb_byteorder_helper (void)
567{ 790{
568 /* the union code still generates code under pressure in gcc, */ 791 /* the union code still generates code under pressure in gcc, */
569 /* but less than using pointers, and always seems to */ 792 /* but less than using pointers, and always seems to */
570 /* successfully return a constant. */ 793 /* successfully return a constant. */
571 /* the reason why we have this horrible preprocessor mess */ 794 /* the reason why we have this horrible preprocessor mess */
572 /* is to avoid it in all cases, at least on common architectures */ 795 /* is to avoid it in all cases, at least on common architectures */
573 /* or when using a recent enough gcc version (>= 4.6) */ 796 /* or when using a recent enough gcc version (>= 4.6) */
574#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
575 return 0x44;
576#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 797#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
798 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
799 #define ECB_LITTLE_ENDIAN 1
577 return 0x44; 800 return 0x44332211;
578#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 801#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
802 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
803 #define ECB_BIG_ENDIAN 1
579 return 0x11; 804 return 0x11223344;
580#else 805#else
581 union 806 union
582 { 807 {
808 uint8_t c[4];
583 uint32_t i; 809 uint32_t u;
584 uint8_t c;
585 } u = { 0x11223344 }; 810 } u = { 0x11, 0x22, 0x33, 0x44 };
586 return u.c; 811 return u.u;
587#endif 812#endif
588} 813}
589 814
590ecb_inline ecb_bool ecb_big_endian (void) ecb_const; 815ecb_inline ecb_const ecb_bool ecb_big_endian (void);
591ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } 816ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
592ecb_inline ecb_bool ecb_little_endian (void) ecb_const; 817ecb_inline ecb_const ecb_bool ecb_little_endian (void);
593ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } 818ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
819
820/*****************************************************************************/
821/* unaligned load/store */
822
823ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
824ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
825ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
826
827ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
828ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
829ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
830
831ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
832ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
833ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
834
835ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
836ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
837ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
838
839ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
840ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
841ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
842
843ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
844ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
845ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
846
847ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
848ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
849ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
850
851ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
852ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
853ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
854
855ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
856ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
857ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
858
859ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
860ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
861ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
862
863#if ECB_CPP
864
865inline uint8_t ecb_bswap (uint8_t v) { return v; }
866inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
867inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
868inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
869
870template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
871template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
872template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
873template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
874template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
875template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
876template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
877template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
878
879template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
880template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
881template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
882template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
883template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
884template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
885template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
886template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
887
888#endif
889
890/*****************************************************************************/
891/* pointer/integer hashing */
892
893/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
894ecb_function_ uint32_t ecb_mix32 (uint32_t v);
895ecb_function_ uint32_t ecb_mix32 (uint32_t v)
896{
897 v ^= v >> 16; v *= 0x7feb352dU;
898 v ^= v >> 15; v *= 0x846ca68bU;
899 v ^= v >> 16;
900 return v;
901}
902
903ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
904ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
905{
906 v ^= v >> 16 ; v *= 0x43021123U;
907 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
908 v ^= v >> 16 ;
909 return v;
910}
911
912/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
913ecb_function_ uint64_t ecb_mix64 (uint64_t v);
914ecb_function_ uint64_t ecb_mix64 (uint64_t v)
915{
916 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
917 v ^= v >> 27; v *= 0x94d049bb133111ebU;
918 v ^= v >> 31;
919 return v;
920}
921
922ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
923ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
924{
925 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
926 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
927 v ^= v >> 30 ^ v >> 60;
928 return v;
929}
930
931ecb_function_ uintptr_t ecb_ptrmix (void *p);
932ecb_function_ uintptr_t ecb_ptrmix (void *p)
933{
934 #if ECB_PTRSIZE <= 4
935 return ecb_mix32 ((uint32_t)p);
936 #else
937 return ecb_mix64 ((uint64_t)p);
938 #endif
939}
940
941ecb_function_ void *ecb_ptrunmix (uintptr_t v);
942ecb_function_ void *ecb_ptrunmix (uintptr_t v)
943{
944 #if ECB_PTRSIZE <= 4
945 return (void *)ecb_unmix32 (v);
946 #else
947 return (void *)ecb_unmix64 (v);
948 #endif
949}
950
951#if ECB_CPP
952
953template<typename T>
954inline uintptr_t ecb_ptrmix (T *p)
955{
956 return ecb_ptrmix (static_cast<void *>(p));
957}
958
959template<typename T>
960inline T *ecb_ptrunmix (uintptr_t v)
961{
962 return static_cast<T *>(ecb_ptrunmix (v));
963}
964
965#endif
966
967/*****************************************************************************/
968/* gray code */
969
970ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
971ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
972ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
973ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
974
975ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g);
976ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g)
977{
978 g ^= g >> 1;
979 g ^= g >> 2;
980 g ^= g >> 4;
981
982 return g;
983}
984
985ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g);
986ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g)
987{
988 g ^= g >> 1;
989 g ^= g >> 2;
990 g ^= g >> 4;
991 g ^= g >> 8;
992
993 return g;
994}
995
996ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g);
997ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g)
998{
999 g ^= g >> 1;
1000 g ^= g >> 2;
1001 g ^= g >> 4;
1002 g ^= g >> 8;
1003 g ^= g >> 16;
1004
1005 return g;
1006}
1007
1008ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g);
1009ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g)
1010{
1011 g ^= g >> 1;
1012 g ^= g >> 2;
1013 g ^= g >> 4;
1014 g ^= g >> 8;
1015 g ^= g >> 16;
1016 g ^= g >> 32;
1017
1018 return g;
1019}
1020
1021#if ECB_CPP
1022
1023ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1024ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1025ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1026ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1027
1028ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1029ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1030ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1031ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1032
1033#endif
1034
1035/*****************************************************************************/
1036/* 2d hilbert curves */
1037
1038/* algorithm from the book Hacker's Delight, modified to not */
1039/* run into undefined behaviour for n==16 */
1040static uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s);
1041static uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1042{
1043 uint32_t comp, swap, cs, t, sr;
1044
1045 /* pad s on the left (unused) bits with 01 (no change groups) */
1046 s |= 0x55555555U << n << n;
1047 /* "s shift right" */
1048 sr = (s >> 1) & 0x55555555U;
1049 /* compute complement and swap info in two-bit groups */
1050 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1051
1052 /* parallel prefix xor op to propagate both complement
1053 * and swap info together from left to right (there is
1054 * no step "cs ^= cs >> 1", so in effect it computes
1055 * two independent parallel prefix operations on two
1056 * interleaved sets of sixteen bits).
1057 */
1058 cs ^= cs >> 2;
1059 cs ^= cs >> 4;
1060 cs ^= cs >> 8;
1061 cs ^= cs >> 16;
1062
1063 /* separate swap and complement bits */
1064 swap = cs & 0x55555555U;
1065 comp = (cs >> 1) & 0x55555555U;
1066
1067 /* calculate coordinates in odd and even bit positions */
1068 t = (s & swap) ^ comp;
1069 s = s ^ sr ^ t ^ (t << 1);
1070
1071 /* unpad/clear out any junk on the left */
1072 s = s & ((1 << n << n) - 1);
1073
1074 /* Now "unshuffle" to separate the x and y bits. */
1075 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1076 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1077 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1078 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1079
1080 /* now s contains two 16-bit coordinates */
1081 return s;
1082}
1083
1084/* 64 bit, a straightforward extension to the 32 bit case */
1085static uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s);
1086static uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1087{
1088 uint64_t comp, swap, cs, t, sr;
1089
1090 /* pad s on the left (unused) bits with 01 (no change groups) */
1091 s |= 0x5555555555555555U << n << n;
1092 /* "s shift right" */
1093 sr = (s >> 1) & 0x5555555555555555U;
1094 /* compute complement and swap info in two-bit groups */
1095 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1096
1097 /* parallel prefix xor op to propagate both complement
1098 * and swap info together from left to right (there is
1099 * no step "cs ^= cs >> 1", so in effect it computes
1100 * two independent parallel prefix operations on two
1101 * interleaved sets of thirty-two bits).
1102 */
1103 cs ^= cs >> 2;
1104 cs ^= cs >> 4;
1105 cs ^= cs >> 8;
1106 cs ^= cs >> 16;
1107 cs ^= cs >> 32;
1108
1109 /* separate swap and complement bits */
1110 swap = cs & 0x5555555555555555U;
1111 comp = (cs >> 1) & 0x5555555555555555U;
1112
1113 /* calculate coordinates in odd and even bit positions */
1114 t = (s & swap) ^ comp;
1115 s = s ^ sr ^ t ^ (t << 1);
1116
1117 /* unpad/clear out any junk on the left */
1118 s = s & ((1 << n << n) - 1);
1119
1120 /* Now "unshuffle" to separate the x and y bits. */
1121 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1122 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1123 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1124 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1125 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1126
1127 /* now s contains two 32-bit coordinates */
1128 return s;
1129}
1130
1131/* algorithm from the book Hacker's Delight, but a similar algorithm*/
1132/* is given in https://doi.org/10.1002/spe.4380160103 */
1133/* this has been slightly improved over the original version */
1134ecb_function_ uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy);
1135ecb_function_ uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1136{
1137 uint32_t row;
1138 uint32_t state = 0;
1139 uint32_t s = 0;
1140
1141 do
1142 {
1143 --n;
1144
1145 row = 4 * state
1146 | (2 & (xy >> n >> 15))
1147 | (1 & (xy >> n ));
1148
1149 /* these funky constants are lookup tables for two-bit values */
1150 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1151 state = (0x8fe65831U >> 2 * row) & 3;
1152 }
1153 while (n > 0);
1154
1155 return s;
1156}
1157
1158/* 64 bit, essentially the same as 32 bit */
1159ecb_function_ uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy);
1160ecb_function_ uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1161{
1162 uint32_t row;
1163 uint32_t state = 0;
1164 uint64_t s = 0;
1165
1166 do
1167 {
1168 --n;
1169
1170 row = 4 * state
1171 | (2 & (xy >> n >> 31))
1172 | (1 & (xy >> n ));
1173
1174 /* these funky constants are lookup tables for two-bit values */
1175 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1176 state = (0x8fe65831U >> 2 * row) & 3;
1177 }
1178 while (n > 0);
1179
1180 return s;
1181}
1182
1183/*****************************************************************************/
1184/* division */
594 1185
595#if ECB_GCC_VERSION(3,0) || ECB_C99 1186#if ECB_GCC_VERSION(3,0) || ECB_C99
1187 /* C99 tightened the definition of %, so we can use a more efficient version */
596 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) 1188 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
597#else 1189#else
598 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) 1190 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
599#endif 1191#endif
600 1192
601#if __cplusplus 1193#if ECB_CPP
602 template<typename T> 1194 template<typename T>
603 static inline T ecb_div_rd (T val, T div) 1195 static inline T ecb_div_rd (T val, T div)
604 { 1196 {
605 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; 1197 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
606 } 1198 }
611 } 1203 }
612#else 1204#else
613 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) 1205 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
614 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) 1206 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
615#endif 1207#endif
1208
1209/*****************************************************************************/
1210/* array length */
616 1211
617#if ecb_cplusplus_does_not_suck 1212#if ecb_cplusplus_does_not_suck
618 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ 1213 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
619 template<typename T, int N> 1214 template<typename T, int N>
620 static inline int ecb_array_length (const T (&arr)[N]) 1215 static inline int ecb_array_length (const T (&arr)[N])
623 } 1218 }
624#else 1219#else
625 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) 1220 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
626#endif 1221#endif
627 1222
1223/*****************************************************************************/
1224/* IEEE 754-2008 half float conversions */
1225
1226ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1227ecb_function_ ecb_const uint32_t
1228ecb_binary16_to_binary32 (uint32_t x)
1229{
1230 unsigned int s = (x & 0x8000) << (31 - 15);
1231 int e = (x >> 10) & 0x001f;
1232 unsigned int m = x & 0x03ff;
1233
1234 if (ecb_expect_false (e == 31))
1235 /* infinity or NaN */
1236 e = 255 - (127 - 15);
1237 else if (ecb_expect_false (!e))
1238 {
1239 if (ecb_expect_true (!m))
1240 /* zero, handled by code below by forcing e to 0 */
1241 e = 0 - (127 - 15);
1242 else
1243 {
1244 /* subnormal, renormalise */
1245 unsigned int s = 10 - ecb_ld32 (m);
1246
1247 m = (m << s) & 0x3ff; /* mask implicit bit */
1248 e -= s - 1;
1249 }
1250 }
1251
1252 /* e and m now are normalised, or zero, (or inf or nan) */
1253 e += 127 - 15;
1254
1255 return s | (e << 23) | (m << (23 - 10));
1256}
1257
1258ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1259ecb_function_ ecb_const uint16_t
1260ecb_binary32_to_binary16 (uint32_t x)
1261{
1262 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1263 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1264 unsigned int m = x & 0x007fffff;
1265
1266 x &= 0x7fffffff;
1267
1268 /* if it's within range of binary16 normals, use fast path */
1269 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1270 {
1271 /* mantissa round-to-even */
1272 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1273
1274 /* handle overflow */
1275 if (ecb_expect_false (m >= 0x00800000))
1276 {
1277 m >>= 1;
1278 e += 1;
1279 }
1280
1281 return s | (e << 10) | (m >> (23 - 10));
1282 }
1283
1284 /* handle large numbers and infinity */
1285 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1286 return s | 0x7c00;
1287
1288 /* handle zero, subnormals and small numbers */
1289 if (ecb_expect_true (x < 0x38800000))
1290 {
1291 /* zero */
1292 if (ecb_expect_true (!x))
1293 return s;
1294
1295 /* handle subnormals */
1296
1297 /* too small, will be zero */
1298 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1299 return s;
1300
1301 m |= 0x00800000; /* make implicit bit explicit */
1302
1303 /* very tricky - we need to round to the nearest e (+10) bit value */
1304 {
1305 unsigned int bits = 14 - e;
1306 unsigned int half = (1 << (bits - 1)) - 1;
1307 unsigned int even = (m >> bits) & 1;
1308
1309 /* if this overflows, we will end up with a normalised number */
1310 m = (m + half + even) >> bits;
1311 }
1312
1313 return s | m;
1314 }
1315
1316 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1317 m >>= 13;
1318
1319 return s | 0x7c00 | m | !m;
1320}
1321
1322/*******************************************************************************/
1323/* fast integer to ascii */
1324
1325/*
1326 * This code is pretty complicated because it is general. The idea behind it,
1327 * however, is pretty simple: first, the number is multiplied with a scaling
1328 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1329 * number with the first digit in the upper bits.
1330 * Then this digit is converted to text and masked out. The resulting number
1331 * is then multiplied by 10, by multiplying the fixed point representation
1332 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1333 * format becomes 5.27, 6.26 and so on.
1334 * The rest involves only advancing the pointer if we already generated a
1335 * non-zero digit, so leading zeroes are overwritten.
1336 */
1337
1338/* simply return a mask with "bits" bits set */
1339#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1340
1341/* oputput a single digit. maskvalue is 10**digitidx */
1342#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1343 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1344 { \
1345 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1346 *ptr = digit + '0'; /* output it */ \
1347 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1348 ptr += nz; /* output digit only if non-zero digit seen */ \
1349 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1350 }
1351
1352/* convert integer to fixed point format and multiply out digits, highest first */
1353/* requires magic constants: max. digits and number of bits after the decimal point */
1354#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1355ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1356{ \
1357 char nz = lz; /* non-zero digit seen? */ \
1358 /* convert to x.bits fixed-point */ \
1359 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1360 /* output up to 10 digits */ \
1361 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1362 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1363 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1364 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1365 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1366 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1367 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1368 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1369 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1370 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1371 return ptr; \
1372}
1373
1374/* predefined versions of the above, for various digits */
1375/* ecb_i2a_xN = almost N digits, limit defined by macro */
1376/* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1377/* ecb_i2a_0N = exactly N digits, including leading zeroes */
1378
1379/* non-leading-zero versions, limited range */
1380#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1381#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1382ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1383ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1384
1385/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1386ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1387ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1388ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1389ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1390ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1391ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1392ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1393ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1394
1395/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1396ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1397ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1398ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1399ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1400ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1401ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1402ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1403ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1404
1405#define ECB_I2A_I32_DIGITS 11
1406#define ECB_I2A_U32_DIGITS 10
1407#define ECB_I2A_I64_DIGITS 20
1408#define ECB_I2A_U64_DIGITS 21
1409#define ECB_I2A_MAX_DIGITS 21
1410
1411ecb_inline char *
1412ecb_i2a_u32 (char *ptr, uint32_t u)
1413{
1414 #if ECB_64BIT_NATIVE
1415 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1416 ptr = ecb_i2a_x10 (ptr, u);
1417 else /* x10 almost, but not fully, covers 32 bit */
1418 {
1419 uint32_t u1 = u % 1000000000;
1420 uint32_t u2 = u / 1000000000;
1421
1422 *ptr++ = u2 + '0';
1423 ptr = ecb_i2a_09 (ptr, u1);
1424 }
1425 #else
1426 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1427 ecb_i2a_x5 (ptr, u);
1428 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1429 {
1430 uint32_t u1 = u % 10000;
1431 uint32_t u2 = u / 10000;
1432
1433 ptr = ecb_i2a_x5 (ptr, u2);
1434 ptr = ecb_i2a_04 (ptr, u1);
1435 }
1436 else
1437 {
1438 uint32_t u1 = u % 10000;
1439 uint32_t ua = u / 10000;
1440 uint32_t u2 = ua % 10000;
1441 uint32_t u3 = ua / 10000;
1442
1443 ptr = ecb_i2a_2 (ptr, u3);
1444 ptr = ecb_i2a_04 (ptr, u2);
1445 ptr = ecb_i2a_04 (ptr, u1);
1446 }
1447 #endif
1448
1449 return ptr;
1450}
1451
1452ecb_inline char *
1453ecb_i2a_i32 (char *ptr, int32_t v)
1454{
1455 *ptr = '-'; ptr += v < 0;
1456 uint32_t u = v < 0 ? -(uint32_t)v : v;
1457
1458 #if ECB_64BIT_NATIVE
1459 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1460 #else
1461 ptr = ecb_i2a_u32 (ptr, u);
1462 #endif
1463
1464 return ptr;
1465}
1466
1467ecb_inline char *
1468ecb_i2a_u64 (char *ptr, uint64_t u)
1469{
1470 #if ECB_64BIT_NATIVE
1471 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1472 ptr = ecb_i2a_x10 (ptr, u);
1473 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1474 {
1475 uint64_t u1 = u % 1000000000;
1476 uint64_t u2 = u / 1000000000;
1477
1478 ptr = ecb_i2a_x10 (ptr, u2);
1479 ptr = ecb_i2a_09 (ptr, u1);
1480 }
1481 else
1482 {
1483 uint64_t u1 = u % 1000000000;
1484 uint64_t ua = u / 1000000000;
1485 uint64_t u2 = ua % 1000000000;
1486 uint64_t u3 = ua / 1000000000;
1487
1488 ptr = ecb_i2a_2 (ptr, u3);
1489 ptr = ecb_i2a_09 (ptr, u2);
1490 ptr = ecb_i2a_09 (ptr, u1);
1491 }
1492 #else
1493 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1494 ptr = ecb_i2a_x5 (ptr, u);
1495 else
1496 {
1497 uint64_t u1 = u % 10000;
1498 uint64_t u2 = u / 10000;
1499
1500 ptr = ecb_i2a_u64 (ptr, u2);
1501 ptr = ecb_i2a_04 (ptr, u1);
1502 }
1503 #endif
1504
1505 return ptr;
1506}
1507
1508ecb_inline char *
1509ecb_i2a_i64 (char *ptr, int64_t v)
1510{
1511 *ptr = '-'; ptr += v < 0;
1512 uint64_t u = v < 0 ? -(uint64_t)v : v;
1513
1514 #if ECB_64BIT_NATIVE
1515 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1516 ptr = ecb_i2a_x10 (ptr, u);
1517 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1518 {
1519 uint64_t u1 = u % 1000000000;
1520 uint64_t u2 = u / 1000000000;
1521
1522 ptr = ecb_i2a_x10 (ptr, u2);
1523 ptr = ecb_i2a_09 (ptr, u1);
1524 }
1525 else
1526 {
1527 uint64_t u1 = u % 1000000000;
1528 uint64_t ua = u / 1000000000;
1529 uint64_t u2 = ua % 1000000000;
1530 uint64_t u3 = ua / 1000000000;
1531
1532 /* 2**31 is 19 digits, so the top is exactly one digit */
1533 *ptr++ = u3 + '0';
1534 ptr = ecb_i2a_09 (ptr, u2);
1535 ptr = ecb_i2a_09 (ptr, u1);
1536 }
1537 #else
1538 ptr = ecb_i2a_u64 (ptr, u);
1539 #endif
1540
1541 return ptr;
1542}
1543
628/*******************************************************************************/ 1544/*******************************************************************************/
629/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ 1545/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
630 1546
631/* basically, everything uses "ieee pure-endian" floating point numbers */ 1547/* basically, everything uses "ieee pure-endian" floating point numbers */
632/* the only noteworthy exception is ancient armle, which uses order 43218765 */ 1548/* the only noteworthy exception is ancient armle, which uses order 43218765 */
633#if 0 \ 1549#if 0 \
634 || __i386 || __i386__ \ 1550 || __i386 || __i386__ \
635 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \ 1551 || ECB_GCC_AMD64 \
636 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ 1552 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
637 || defined __s390__ || defined __s390x__ \ 1553 || defined __s390__ || defined __s390x__ \
638 || defined __mips__ \ 1554 || defined __mips__ \
639 || defined __alpha__ \ 1555 || defined __alpha__ \
640 || defined __hppa__ \ 1556 || defined __hppa__ \
641 || defined __ia64__ \ 1557 || defined __ia64__ \
642 || defined __m68k__ \ 1558 || defined __m68k__ \
643 || defined __m88k__ \ 1559 || defined __m88k__ \
644 || defined __sh__ \ 1560 || defined __sh__ \
645 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \ 1561 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
646 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ 1562 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
647 || defined __aarch64__ 1563 || defined __aarch64__
648 #define ECB_STDFP 1 1564 #define ECB_STDFP 1
649 #include <string.h> /* for memcpy */
650#else 1565#else
651 #define ECB_STDFP 0 1566 #define ECB_STDFP 0
652#endif 1567#endif
653 1568
654#ifndef ECB_NO_LIBM 1569#ifndef ECB_NO_LIBM
666 #define ECB_NAN NAN 1581 #define ECB_NAN NAN
667 #else 1582 #else
668 #define ECB_NAN ECB_INFINITY 1583 #define ECB_NAN ECB_INFINITY
669 #endif 1584 #endif
670 1585
671 /* converts an ieee half/binary16 to a float */ 1586 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
672 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const; 1587 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
673 ecb_function_ float 1588 #define ecb_frexpf(x,e) frexpf ((x), (e))
674 ecb_binary16_to_float (uint16_t x) 1589 #else
675 { 1590 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
676 int e = (x >> 10) & 0x1f; 1591 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
677 int m = x & 0x3ff; 1592 #endif
678 float r;
679
680 if (!e ) r = ldexpf (m , -24);
681 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
682 else if (m ) r = ECB_NAN;
683 else r = ECB_INFINITY;
684
685 return x & 0x8000 ? -r : r;
686 }
687 1593
688 /* convert a float to ieee single/binary32 */ 1594 /* convert a float to ieee single/binary32 */
689 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const; 1595 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
690 ecb_function_ uint32_t 1596 ecb_function_ ecb_const uint32_t
691 ecb_float_to_binary32 (float x) 1597 ecb_float_to_binary32 (float x)
692 { 1598 {
693 uint32_t r; 1599 uint32_t r;
694 1600
695 #if ECB_STDFP 1601 #if ECB_STDFP
702 if (x == 0e0f ) return 0x00000000U; 1608 if (x == 0e0f ) return 0x00000000U;
703 if (x > +3.40282346638528860e+38f) return 0x7f800000U; 1609 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
704 if (x < -3.40282346638528860e+38f) return 0xff800000U; 1610 if (x < -3.40282346638528860e+38f) return 0xff800000U;
705 if (x != x ) return 0x7fbfffffU; 1611 if (x != x ) return 0x7fbfffffU;
706 1612
707 m = frexpf (x, &e) * 0x1000000U; 1613 m = ecb_frexpf (x, &e) * 0x1000000U;
708 1614
709 r = m & 0x80000000U; 1615 r = m & 0x80000000U;
710 1616
711 if (r) 1617 if (r)
712 m = -m; 1618 m = -m;
724 1630
725 return r; 1631 return r;
726 } 1632 }
727 1633
728 /* converts an ieee single/binary32 to a float */ 1634 /* converts an ieee single/binary32 to a float */
729 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const; 1635 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
730 ecb_function_ float 1636 ecb_function_ ecb_const float
731 ecb_binary32_to_float (uint32_t x) 1637 ecb_binary32_to_float (uint32_t x)
732 { 1638 {
733 float r; 1639 float r;
734 1640
735 #if ECB_STDFP 1641 #if ECB_STDFP
745 x |= 0x800000U; 1651 x |= 0x800000U;
746 else 1652 else
747 e = 1; 1653 e = 1;
748 1654
749 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ 1655 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
750 r = ldexpf (x * (0.5f / 0x800000U), e - 126); 1656 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
751 1657
752 r = neg ? -r : r; 1658 r = neg ? -r : r;
753 #endif 1659 #endif
754 1660
755 return r; 1661 return r;
756 } 1662 }
757 1663
758 /* convert a double to ieee double/binary64 */ 1664 /* convert a double to ieee double/binary64 */
759 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const; 1665 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
760 ecb_function_ uint64_t 1666 ecb_function_ ecb_const uint64_t
761 ecb_double_to_binary64 (double x) 1667 ecb_double_to_binary64 (double x)
762 { 1668 {
763 uint64_t r; 1669 uint64_t r;
764 1670
765 #if ECB_STDFP 1671 #if ECB_STDFP
794 1700
795 return r; 1701 return r;
796 } 1702 }
797 1703
798 /* converts an ieee double/binary64 to a double */ 1704 /* converts an ieee double/binary64 to a double */
799 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const; 1705 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
800 ecb_function_ double 1706 ecb_function_ ecb_const double
801 ecb_binary64_to_double (uint64_t x) 1707 ecb_binary64_to_double (uint64_t x)
802 { 1708 {
803 double r; 1709 double r;
804 1710
805 #if ECB_STDFP 1711 #if ECB_STDFP
823 #endif 1729 #endif
824 1730
825 return r; 1731 return r;
826 } 1732 }
827 1733
828#endif 1734 /* convert a float to ieee half/binary16 */
1735 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1736 ecb_function_ ecb_const uint16_t
1737 ecb_float_to_binary16 (float x)
1738 {
1739 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1740 }
829 1741
830#endif 1742 /* convert an ieee half/binary16 to float */
1743 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1744 ecb_function_ ecb_const float
1745 ecb_binary16_to_float (uint16_t x)
1746 {
1747 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1748 }
831 1749
1750#endif
1751
1752#endif
1753

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines