1 | /* |
1 | /* |
2 | * libecb - http://software.schmorp.de/pkg/libecb |
2 | * libecb - http://software.schmorp.de/pkg/libecb |
3 | * |
3 | * |
4 | * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de> |
4 | * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de> |
5 | * Copyright (©) 2011 Emanuele Giaquinta |
5 | * Copyright (©) 2011 Emanuele Giaquinta |
6 | * All rights reserved. |
6 | * All rights reserved. |
7 | * |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without modifica- |
8 | * Redistribution and use in source and binary forms, with or without modifica- |
9 | * tion, are permitted provided that the following conditions are met: |
9 | * tion, are permitted provided that the following conditions are met: |
… | |
… | |
23 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
23 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
24 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
24 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
25 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- |
25 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- |
26 | * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
26 | * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
27 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
27 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
28 | * |
|
|
29 | * Alternatively, the contents of this file may be used under the terms of |
|
|
30 | * the GNU General Public License ("GPL") version 2 or any later version, |
|
|
31 | * in which case the provisions of the GPL are applicable instead of |
|
|
32 | * the above. If you wish to allow the use of your version of this file |
|
|
33 | * only under the terms of the GPL and not to allow others to use your |
|
|
34 | * version of this file under the BSD license, indicate your decision |
|
|
35 | * by deleting the provisions above and replace them with the notice |
|
|
36 | * and other provisions required by the GPL. If you do not delete the |
|
|
37 | * provisions above, a recipient may use your version of this file under |
|
|
38 | * either the BSD or the GPL. |
28 | */ |
39 | */ |
29 | |
40 | |
30 | #ifndef ECB_H |
41 | #ifndef ECB_H |
31 | #define ECB_H |
42 | #define ECB_H |
32 | |
43 | |
33 | #ifdef _WIN32 |
44 | /* 16 bits major, 16 bits minor */ |
|
|
45 | #define ECB_VERSION 0x0001000c |
|
|
46 | |
|
|
47 | #include <string.h> /* for memcpy */ |
|
|
48 | |
|
|
49 | #if defined (_WIN32) && !defined (__MINGW32__) |
34 | typedef signed char int8_t; |
50 | typedef signed char int8_t; |
35 | typedef unsigned char uint8_t; |
51 | typedef unsigned char uint8_t; |
|
|
52 | typedef signed char int_fast8_t; |
|
|
53 | typedef unsigned char uint_fast8_t; |
36 | typedef signed short int16_t; |
54 | typedef signed short int16_t; |
37 | typedef unsigned short uint16_t; |
55 | typedef unsigned short uint16_t; |
|
|
56 | typedef signed int int_fast16_t; |
|
|
57 | typedef unsigned int uint_fast16_t; |
38 | typedef signed int int32_t; |
58 | typedef signed int int32_t; |
39 | typedef unsigned int uint32_t; |
59 | typedef unsigned int uint32_t; |
|
|
60 | typedef signed int int_fast32_t; |
|
|
61 | typedef unsigned int uint_fast32_t; |
40 | #if __GNUC__ |
62 | #if __GNUC__ |
41 | typedef signed long long int64_t; |
63 | typedef signed long long int64_t; |
42 | typedef unsigned long long uint64_t; |
64 | typedef unsigned long long uint64_t; |
43 | #else /* _MSC_VER || __BORLANDC__ */ |
65 | #else /* _MSC_VER || __BORLANDC__ */ |
44 | typedef signed __int64 int64_t; |
66 | typedef signed __int64 int64_t; |
45 | typedef unsigned __int64 uint64_t; |
67 | typedef unsigned __int64 uint64_t; |
46 | #endif |
68 | #endif |
|
|
69 | typedef int64_t int_fast64_t; |
|
|
70 | typedef uint64_t uint_fast64_t; |
|
|
71 | #ifdef _WIN64 |
|
|
72 | #define ECB_PTRSIZE 8 |
|
|
73 | typedef uint64_t uintptr_t; |
|
|
74 | typedef int64_t intptr_t; |
|
|
75 | #else |
|
|
76 | #define ECB_PTRSIZE 4 |
|
|
77 | typedef uint32_t uintptr_t; |
|
|
78 | typedef int32_t intptr_t; |
|
|
79 | #endif |
47 | #else |
80 | #else |
48 | #include <inttypes.h> |
81 | #include <inttypes.h> |
|
|
82 | #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU |
|
|
83 | #define ECB_PTRSIZE 8 |
|
|
84 | #else |
|
|
85 | #define ECB_PTRSIZE 4 |
|
|
86 | #endif |
|
|
87 | #endif |
|
|
88 | |
|
|
89 | #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) |
|
|
90 | #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) |
|
|
91 | |
|
|
92 | #ifndef ECB_OPTIMIZE_SIZE |
|
|
93 | #if __OPTIMIZE_SIZE__ |
|
|
94 | #define ECB_OPTIMIZE_SIZE 1 |
|
|
95 | #else |
|
|
96 | #define ECB_OPTIMIZE_SIZE 0 |
|
|
97 | #endif |
|
|
98 | #endif |
|
|
99 | |
|
|
100 | /* work around x32 idiocy by defining proper macros */ |
|
|
101 | #if ECB_GCC_AMD64 || ECB_MSVC_AMD64 |
|
|
102 | #if _ILP32 |
|
|
103 | #define ECB_AMD64_X32 1 |
|
|
104 | #else |
|
|
105 | #define ECB_AMD64 1 |
|
|
106 | #endif |
|
|
107 | #endif |
|
|
108 | |
|
|
109 | #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32 |
|
|
110 | #define ECB_64BIT_NATIVE 1 |
|
|
111 | #else |
|
|
112 | #define ECB_64BIT_NATIVE 0 |
49 | #endif |
113 | #endif |
50 | |
114 | |
51 | /* many compilers define _GNUC_ to some versions but then only implement |
115 | /* many compilers define _GNUC_ to some versions but then only implement |
52 | * what their idiot authors think are the "more important" extensions, |
116 | * what their idiot authors think are the "more important" extensions, |
53 | * causing enormous grief in return for some better fake benchmark numbers. |
117 | * causing enormous grief in return for some better fake benchmark numbers. |
54 | * or so. |
118 | * or so. |
55 | * we try to detect these and simply assume they are not gcc - if they have |
119 | * we try to detect these and simply assume they are not gcc - if they have |
56 | * an issue with that they should have done it right in the first place. |
120 | * an issue with that they should have done it right in the first place. |
57 | */ |
121 | */ |
58 | #ifndef ECB_GCC_VERSION |
|
|
59 | #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__) |
122 | #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ |
60 | #define ECB_GCC_VERSION(major,minor) 0 |
123 | #define ECB_GCC_VERSION(major,minor) 0 |
61 | #else |
124 | #else |
62 | #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) |
125 | #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) |
63 | #endif |
126 | #endif |
|
|
127 | |
|
|
128 | #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) |
|
|
129 | |
|
|
130 | #if __clang__ && defined __has_builtin |
|
|
131 | #define ECB_CLANG_BUILTIN(x) __has_builtin (x) |
|
|
132 | #else |
|
|
133 | #define ECB_CLANG_BUILTIN(x) 0 |
|
|
134 | #endif |
|
|
135 | |
|
|
136 | #if __clang__ && defined __has_extension |
|
|
137 | #define ECB_CLANG_EXTENSION(x) __has_extension (x) |
|
|
138 | #else |
|
|
139 | #define ECB_CLANG_EXTENSION(x) 0 |
|
|
140 | #endif |
|
|
141 | |
|
|
142 | #define ECB_CPP (__cplusplus+0) |
|
|
143 | #define ECB_CPP11 (__cplusplus >= 201103L) |
|
|
144 | #define ECB_CPP14 (__cplusplus >= 201402L) |
|
|
145 | #define ECB_CPP17 (__cplusplus >= 201703L) |
|
|
146 | |
|
|
147 | #if ECB_CPP |
|
|
148 | #define ECB_C 0 |
|
|
149 | #define ECB_STDC_VERSION 0 |
|
|
150 | #else |
|
|
151 | #define ECB_C 1 |
|
|
152 | #define ECB_STDC_VERSION __STDC_VERSION__ |
|
|
153 | #endif |
|
|
154 | |
|
|
155 | #define ECB_C99 (ECB_STDC_VERSION >= 199901L) |
|
|
156 | #define ECB_C11 (ECB_STDC_VERSION >= 201112L) |
|
|
157 | #define ECB_C17 (ECB_STDC_VERSION >= 201710L) |
|
|
158 | |
|
|
159 | #if ECB_CPP |
|
|
160 | #define ECB_EXTERN_C extern "C" |
|
|
161 | #define ECB_EXTERN_C_BEG ECB_EXTERN_C { |
|
|
162 | #define ECB_EXTERN_C_END } |
|
|
163 | #else |
|
|
164 | #define ECB_EXTERN_C extern |
|
|
165 | #define ECB_EXTERN_C_BEG |
|
|
166 | #define ECB_EXTERN_C_END |
64 | #endif |
167 | #endif |
65 | |
168 | |
66 | /*****************************************************************************/ |
169 | /*****************************************************************************/ |
67 | |
170 | |
68 | /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ |
171 | /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ |
69 | /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ |
172 | /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ |
70 | |
173 | |
71 | #if ECB_NO_THREADS || ECB_NO_SMP |
174 | #if ECB_NO_THREADS |
|
|
175 | #define ECB_NO_SMP 1 |
|
|
176 | #endif |
|
|
177 | |
|
|
178 | #if ECB_NO_SMP |
72 | #define ECB_MEMORY_FENCE do { } while (0) |
179 | #define ECB_MEMORY_FENCE do { } while (0) |
73 | #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0) |
180 | #endif |
74 | #define ECB_MEMORY_FENCE_RELEASE do { } while (0) |
181 | |
|
|
182 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ |
|
|
183 | #if __xlC__ && ECB_CPP |
|
|
184 | #include <builtins.h> |
|
|
185 | #endif |
|
|
186 | |
|
|
187 | #if 1400 <= _MSC_VER |
|
|
188 | #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ |
75 | #endif |
189 | #endif |
76 | |
190 | |
77 | #ifndef ECB_MEMORY_FENCE |
191 | #ifndef ECB_MEMORY_FENCE |
78 | #if ECB_GCC_VERSION(2,5) |
192 | #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
79 | #if __x86 |
193 | #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory") |
|
|
194 | #if __i386 || __i386__ |
80 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |
195 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |
81 | #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */ |
196 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
82 | #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */ |
197 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
83 | #elif __amd64 |
198 | #elif ECB_GCC_AMD64 |
84 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |
199 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |
85 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory") |
200 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
86 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */ |
201 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
87 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |
202 | #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |
88 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |
203 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |
|
|
204 | #elif defined __ARM_ARCH_2__ \ |
|
|
205 | || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ |
|
|
206 | || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ |
|
|
207 | || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ |
|
|
208 | || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ |
|
|
209 | || defined __ARM_ARCH_5TEJ__ |
|
|
210 | /* should not need any, unless running old code on newer cpu - arm doesn't support that */ |
89 | #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \ |
211 | #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ |
90 | || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__) \ |
212 | || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ |
|
|
213 | || defined __ARM_ARCH_6T2__ |
|
|
214 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") |
|
|
215 | #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ |
91 | || defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \ |
216 | || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ |
92 | || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ ) |
217 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") |
93 | #define ECB_MEMORY_FENCE \ |
218 | #elif __aarch64__ |
94 | do { \ |
219 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") |
95 | int null = 0; \ |
220 | #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) |
96 | __asm__ __volatile__ ("mcr p15,0,%0,c6,c10,5", : "=&r" (null) : : "memory"); \ |
221 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") |
97 | while (0) |
222 | #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") |
|
|
223 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") |
|
|
224 | #elif defined __s390__ || defined __s390x__ |
|
|
225 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") |
|
|
226 | #elif defined __mips__ |
|
|
227 | /* GNU/Linux emulates sync on mips1 architectures, so we force its use */ |
|
|
228 | /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ |
|
|
229 | #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") |
|
|
230 | #elif defined __alpha__ |
|
|
231 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") |
|
|
232 | #elif defined __hppa__ |
|
|
233 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
|
|
234 | #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") |
|
|
235 | #elif defined __ia64__ |
|
|
236 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") |
|
|
237 | #elif defined __m68k__ |
|
|
238 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
|
|
239 | #elif defined __m88k__ |
|
|
240 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") |
|
|
241 | #elif defined __sh__ |
|
|
242 | #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
98 | #endif |
243 | #endif |
99 | #endif |
244 | #endif |
100 | #endif |
245 | #endif |
101 | |
246 | |
102 | #ifndef ECB_MEMORY_FENCE |
247 | #ifndef ECB_MEMORY_FENCE |
|
|
248 | #if ECB_GCC_VERSION(4,7) |
|
|
249 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
|
|
250 | #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) |
|
|
251 | #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) |
|
|
252 | #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) |
|
|
253 | #undef ECB_MEMORY_FENCE_RELAXED |
|
|
254 | #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) |
|
|
255 | |
|
|
256 | #elif ECB_CLANG_EXTENSION(c_atomic) |
|
|
257 | /* see comment below (stdatomic.h) about the C11 memory model. */ |
|
|
258 | #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) |
|
|
259 | #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) |
|
|
260 | #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) |
|
|
261 | #undef ECB_MEMORY_FENCE_RELAXED |
|
|
262 | #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) |
|
|
263 | |
103 | #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) |
264 | #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ |
104 | #define ECB_MEMORY_FENCE __sync_synchronize () |
265 | #define ECB_MEMORY_FENCE __sync_synchronize () |
105 | /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */ |
266 | #elif _MSC_VER >= 1500 /* VC++ 2008 */ |
106 | /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */ |
267 | /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ |
|
|
268 | #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) |
|
|
269 | #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() |
|
|
270 | #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ |
|
|
271 | #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() |
107 | #elif _MSC_VER >= 1400 /* VC++ 2005 */ |
272 | #elif _MSC_VER >= 1400 /* VC++ 2005 */ |
108 | #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) |
273 | #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) |
109 | #define ECB_MEMORY_FENCE _ReadWriteBarrier () |
274 | #define ECB_MEMORY_FENCE _ReadWriteBarrier () |
110 | #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ |
275 | #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ |
111 | #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () |
276 | #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () |
112 | #elif defined(_WIN32) |
277 | #elif defined _WIN32 |
113 | #include <WinNT.h> |
278 | #include <WinNT.h> |
114 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |
279 | #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |
|
|
280 | #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
|
|
281 | #include <mbarrier.h> |
|
|
282 | #define ECB_MEMORY_FENCE __machine_rw_barrier () |
|
|
283 | #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier () |
|
|
284 | #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier () |
|
|
285 | #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier () |
|
|
286 | #elif __xlC__ |
|
|
287 | #define ECB_MEMORY_FENCE __sync () |
|
|
288 | #endif |
|
|
289 | #endif |
|
|
290 | |
|
|
291 | #ifndef ECB_MEMORY_FENCE |
|
|
292 | #if ECB_C11 && !defined __STDC_NO_ATOMICS__ |
|
|
293 | /* we assume that these memory fences work on all variables/all memory accesses, */ |
|
|
294 | /* not just C11 atomics and atomic accesses */ |
|
|
295 | #include <stdatomic.h> |
|
|
296 | #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) |
|
|
297 | #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire) |
|
|
298 | #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release) |
115 | #endif |
299 | #endif |
116 | #endif |
300 | #endif |
117 | |
301 | |
118 | #ifndef ECB_MEMORY_FENCE |
302 | #ifndef ECB_MEMORY_FENCE |
119 | #if !ECB_AVOID_PTHREADS |
303 | #if !ECB_AVOID_PTHREADS |
… | |
… | |
131 | static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; |
315 | static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; |
132 | #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) |
316 | #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) |
133 | #endif |
317 | #endif |
134 | #endif |
318 | #endif |
135 | |
319 | |
136 | #if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE) |
320 | #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE |
137 | #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE |
321 | #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE |
138 | #endif |
322 | #endif |
139 | |
323 | |
140 | #if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE) |
324 | #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE |
141 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |
325 | #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |
142 | #endif |
326 | #endif |
143 | |
327 | |
|
|
328 | #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE |
|
|
329 | #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */ |
|
|
330 | #endif |
|
|
331 | |
144 | /*****************************************************************************/ |
332 | /*****************************************************************************/ |
145 | |
333 | |
146 | #define ECB_C99 (__STDC_VERSION__ >= 199901L) |
334 | #if ECB_CPP |
147 | |
|
|
148 | #if __cplusplus |
|
|
149 | #define ecb_inline static inline |
335 | #define ecb_inline static inline |
150 | #elif ECB_GCC_VERSION(2,5) |
336 | #elif ECB_GCC_VERSION(2,5) |
151 | #define ecb_inline static __inline__ |
337 | #define ecb_inline static __inline__ |
152 | #elif ECB_C99 |
338 | #elif ECB_C99 |
153 | #define ecb_inline static inline |
339 | #define ecb_inline static inline |
… | |
… | |
167 | |
353 | |
168 | #define ECB_CONCAT_(a, b) a ## b |
354 | #define ECB_CONCAT_(a, b) a ## b |
169 | #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) |
355 | #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) |
170 | #define ECB_STRINGIFY_(a) # a |
356 | #define ECB_STRINGIFY_(a) # a |
171 | #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) |
357 | #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) |
|
|
358 | #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) |
172 | |
359 | |
|
|
360 | /* This marks larger functions that do not neccessarily need to be inlined */ |
|
|
361 | /* The idea is to possibly compile the header twice, */ |
|
|
362 | /* once exposing only the declarations, another time to define external functions */ |
|
|
363 | /* TODO: popssibly static would be best for these at the moment? */ |
173 | #define ecb_function_ ecb_inline |
364 | #define ecb_function_ ecb_inline |
174 | |
365 | |
175 | #if ECB_GCC_VERSION(3,1) |
366 | #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) |
176 | #define ecb_attribute(attrlist) __attribute__(attrlist) |
367 | #define ecb_attribute(attrlist) __attribute__ (attrlist) |
|
|
368 | #else |
|
|
369 | #define ecb_attribute(attrlist) |
|
|
370 | #endif |
|
|
371 | |
|
|
372 | #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) |
177 | #define ecb_is_constant(expr) __builtin_constant_p (expr) |
373 | #define ecb_is_constant(expr) __builtin_constant_p (expr) |
|
|
374 | #else |
|
|
375 | /* possible C11 impl for integral types |
|
|
376 | typedef struct ecb_is_constant_struct ecb_is_constant_struct; |
|
|
377 | #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ |
|
|
378 | |
|
|
379 | #define ecb_is_constant(expr) 0 |
|
|
380 | #endif |
|
|
381 | |
|
|
382 | #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) |
178 | #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) |
383 | #define ecb_expect(expr,value) __builtin_expect ((expr),(value)) |
|
|
384 | #else |
|
|
385 | #define ecb_expect(expr,value) (expr) |
|
|
386 | #endif |
|
|
387 | |
|
|
388 | #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) |
179 | #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) |
389 | #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) |
180 | #else |
390 | #else |
181 | #define ecb_attribute(attrlist) |
|
|
182 | #define ecb_is_constant(expr) 0 |
|
|
183 | #define ecb_expect(expr,value) (expr) |
|
|
184 | #define ecb_prefetch(addr,rw,locality) |
391 | #define ecb_prefetch(addr,rw,locality) |
185 | #endif |
392 | #endif |
186 | |
393 | |
187 | /* no emulation for ecb_decltype */ |
394 | /* no emulation for ecb_decltype */ |
188 | #if ECB_GCC_VERSION(4,5) |
395 | #if ECB_CPP11 |
|
|
396 | // older implementations might have problems with decltype(x)::type, work around it |
|
|
397 | template<class T> struct ecb_decltype_t { typedef T type; }; |
189 | #define ecb_decltype(x) __decltype(x) |
398 | #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type |
190 | #elif ECB_GCC_VERSION(3,0) |
399 | #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) |
191 | #define ecb_decltype(x) __typeof(x) |
400 | #define ecb_decltype(x) __typeof__ (x) |
192 | #endif |
401 | #endif |
193 | |
402 | |
|
|
403 | #if _MSC_VER >= 1300 |
|
|
404 | #define ecb_deprecated __declspec (deprecated) |
|
|
405 | #else |
|
|
406 | #define ecb_deprecated ecb_attribute ((__deprecated__)) |
|
|
407 | #endif |
|
|
408 | |
|
|
409 | #if _MSC_VER >= 1500 |
|
|
410 | #define ecb_deprecated_message(msg) __declspec (deprecated (msg)) |
|
|
411 | #elif ECB_GCC_VERSION(4,5) |
|
|
412 | #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) |
|
|
413 | #else |
|
|
414 | #define ecb_deprecated_message(msg) ecb_deprecated |
|
|
415 | #endif |
|
|
416 | |
|
|
417 | #if _MSC_VER >= 1400 |
|
|
418 | #define ecb_noinline __declspec (noinline) |
|
|
419 | #else |
194 | #define ecb_noinline ecb_attribute ((__noinline__)) |
420 | #define ecb_noinline ecb_attribute ((__noinline__)) |
195 | #define ecb_noreturn ecb_attribute ((__noreturn__)) |
421 | #endif |
|
|
422 | |
196 | #define ecb_unused ecb_attribute ((__unused__)) |
423 | #define ecb_unused ecb_attribute ((__unused__)) |
197 | #define ecb_const ecb_attribute ((__const__)) |
424 | #define ecb_const ecb_attribute ((__const__)) |
198 | #define ecb_pure ecb_attribute ((__pure__)) |
425 | #define ecb_pure ecb_attribute ((__pure__)) |
|
|
426 | |
|
|
427 | #if ECB_C11 || __IBMC_NORETURN |
|
|
428 | /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ |
|
|
429 | #define ecb_noreturn _Noreturn |
|
|
430 | #elif ECB_CPP11 |
|
|
431 | #define ecb_noreturn [[noreturn]] |
|
|
432 | #elif _MSC_VER >= 1200 |
|
|
433 | /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ |
|
|
434 | #define ecb_noreturn __declspec (noreturn) |
|
|
435 | #else |
|
|
436 | #define ecb_noreturn ecb_attribute ((__noreturn__)) |
|
|
437 | #endif |
199 | |
438 | |
200 | #if ECB_GCC_VERSION(4,3) |
439 | #if ECB_GCC_VERSION(4,3) |
201 | #define ecb_artificial ecb_attribute ((__artificial__)) |
440 | #define ecb_artificial ecb_attribute ((__artificial__)) |
202 | #define ecb_hot ecb_attribute ((__hot__)) |
441 | #define ecb_hot ecb_attribute ((__hot__)) |
203 | #define ecb_cold ecb_attribute ((__cold__)) |
442 | #define ecb_cold ecb_attribute ((__cold__)) |
… | |
… | |
215 | /* for compatibility to the rest of the world */ |
454 | /* for compatibility to the rest of the world */ |
216 | #define ecb_likely(expr) ecb_expect_true (expr) |
455 | #define ecb_likely(expr) ecb_expect_true (expr) |
217 | #define ecb_unlikely(expr) ecb_expect_false (expr) |
456 | #define ecb_unlikely(expr) ecb_expect_false (expr) |
218 | |
457 | |
219 | /* count trailing zero bits and count # of one bits */ |
458 | /* count trailing zero bits and count # of one bits */ |
220 | #if ECB_GCC_VERSION(3,4) |
459 | #if ECB_GCC_VERSION(3,4) \ |
221 | /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */ |
460 | || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ |
222 | #define ecb_ld32(x) (__builtin_clz (x) ^ 31) |
461 | && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ |
223 | #define ecb_ld64(x) (__builtin_clzll (x) ^ 63) |
462 | && ECB_CLANG_BUILTIN(__builtin_popcount)) |
224 | #define ecb_ctz32(x) __builtin_ctz (x) |
463 | #define ecb_ctz32(x) __builtin_ctz (x) |
|
|
464 | #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x)) |
225 | #define ecb_ctz64(x) __builtin_ctzll (x) |
465 | #define ecb_clz32(x) __builtin_clz (x) |
|
|
466 | #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x)) |
|
|
467 | #define ecb_ld32(x) (ecb_clz32 (x) ^ 31) |
|
|
468 | #define ecb_ld64(x) (ecb_clz64 (x) ^ 63) |
226 | #define ecb_popcount32(x) __builtin_popcount (x) |
469 | #define ecb_popcount32(x) __builtin_popcount (x) |
227 | /* no popcountll */ |
470 | /* ecb_popcount64 is more difficult, see below */ |
228 | #else |
471 | #else |
229 | ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const; |
472 | ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); |
230 | ecb_function_ int |
473 | ecb_function_ ecb_const int |
231 | ecb_ctz32 (uint32_t x) |
474 | ecb_ctz32 (uint32_t x) |
232 | { |
475 | { |
|
|
476 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
|
|
477 | unsigned long r; |
|
|
478 | _BitScanForward (&r, x); |
|
|
479 | return (int)r; |
|
|
480 | #else |
233 | int r = 0; |
481 | int r; |
234 | |
482 | |
235 | x &= ~x + 1; /* this isolates the lowest bit */ |
483 | x &= ~x + 1; /* this isolates the lowest bit */ |
236 | |
484 | |
237 | #if ECB_branchless_on_i386 |
485 | #if 1 |
|
|
486 | /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */ |
|
|
487 | /* This happens to return 32 for x == 0, but the API does not support this */ |
|
|
488 | |
|
|
489 | /* -0 marks unused entries */ |
|
|
490 | static unsigned char table[64] = |
|
|
491 | { |
|
|
492 | 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14, |
|
|
493 | 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15, |
|
|
494 | 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26, |
|
|
495 | 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0 |
|
|
496 | }; |
|
|
497 | |
|
|
498 | /* magic constant results in 33 unique values in the upper 6 bits */ |
|
|
499 | x *= 0x0450fbafU; /* == 17 * 65 * 65535 */ |
|
|
500 | |
|
|
501 | r = table [x >> 26]; |
|
|
502 | #elif 0 /* branchless on i386, typically */ |
|
|
503 | r = 0; |
238 | r += !!(x & 0xaaaaaaaa) << 0; |
504 | r += !!(x & 0xaaaaaaaa) << 0; |
239 | r += !!(x & 0xcccccccc) << 1; |
505 | r += !!(x & 0xcccccccc) << 1; |
240 | r += !!(x & 0xf0f0f0f0) << 2; |
506 | r += !!(x & 0xf0f0f0f0) << 2; |
241 | r += !!(x & 0xff00ff00) << 3; |
507 | r += !!(x & 0xff00ff00) << 3; |
242 | r += !!(x & 0xffff0000) << 4; |
508 | r += !!(x & 0xffff0000) << 4; |
243 | #else |
509 | #else /* branchless on modern compilers, typically */ |
|
|
510 | r = 0; |
244 | if (x & 0xaaaaaaaa) r += 1; |
511 | if (x & 0xaaaaaaaa) r += 1; |
245 | if (x & 0xcccccccc) r += 2; |
512 | if (x & 0xcccccccc) r += 2; |
246 | if (x & 0xf0f0f0f0) r += 4; |
513 | if (x & 0xf0f0f0f0) r += 4; |
247 | if (x & 0xff00ff00) r += 8; |
514 | if (x & 0xff00ff00) r += 8; |
248 | if (x & 0xffff0000) r += 16; |
515 | if (x & 0xffff0000) r += 16; |
249 | #endif |
516 | #endif |
250 | |
517 | |
251 | return r; |
518 | return r; |
|
|
519 | #endif |
252 | } |
520 | } |
253 | |
521 | |
254 | ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const; |
522 | ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); |
255 | ecb_function_ int |
523 | ecb_function_ ecb_const int |
256 | ecb_ctz64 (uint64_t x) |
524 | ecb_ctz64 (uint64_t x) |
257 | { |
525 | { |
|
|
526 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
|
|
527 | unsigned long r; |
|
|
528 | _BitScanForward64 (&r, x); |
|
|
529 | return (int)r; |
|
|
530 | #else |
258 | int shift = x & 0xffffffffU ? 0 : 32; |
531 | int shift = x & 0xffffffff ? 0 : 32; |
259 | return ecb_ctz32 (x >> shift) + shift; |
532 | return ecb_ctz32 (x >> shift) + shift; |
|
|
533 | #endif |
260 | } |
534 | } |
261 | |
535 | |
|
|
536 | ecb_function_ ecb_const int ecb_clz32 (uint32_t x); |
|
|
537 | ecb_function_ ecb_const int |
|
|
538 | ecb_clz32 (uint32_t x) |
|
|
539 | { |
|
|
540 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
|
|
541 | unsigned long r; |
|
|
542 | _BitScanReverse (&r, x); |
|
|
543 | return (int)r; |
|
|
544 | #else |
|
|
545 | |
|
|
546 | /* Robert Harley's algorithm from comp.arch 1996-12-07 */ |
|
|
547 | /* This happens to return 32 for x == 0, but the API does not support this */ |
|
|
548 | |
|
|
549 | /* -0 marks unused table elements */ |
|
|
550 | static unsigned char table[64] = |
|
|
551 | { |
|
|
552 | 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0, |
|
|
553 | -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0, |
|
|
554 | 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18, |
|
|
555 | 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0 |
|
|
556 | }; |
|
|
557 | |
|
|
558 | /* propagate leftmost 1 bit to the right */ |
|
|
559 | x |= x >> 1; |
|
|
560 | x |= x >> 2; |
|
|
561 | x |= x >> 4; |
|
|
562 | x |= x >> 8; |
|
|
563 | x |= x >> 16; |
|
|
564 | |
|
|
565 | /* magic constant results in 33 unique values in the upper 6 bits */ |
|
|
566 | x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */ |
|
|
567 | |
|
|
568 | return table [x >> 26]; |
|
|
569 | #endif |
|
|
570 | } |
|
|
571 | |
|
|
572 | ecb_function_ ecb_const int ecb_clz64 (uint64_t x); |
|
|
573 | ecb_function_ ecb_const int |
|
|
574 | ecb_clz64 (uint64_t x) |
|
|
575 | { |
|
|
576 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
|
|
577 | unsigned long r; |
|
|
578 | _BitScanReverse64 (&r, x); |
|
|
579 | return (int)r; |
|
|
580 | #else |
|
|
581 | uint32_t l = x >> 32; |
|
|
582 | int shift = l ? 0 : 32; |
|
|
583 | return ecb_clz32 (l ? l : x) + shift; |
|
|
584 | #endif |
|
|
585 | } |
|
|
586 | |
262 | ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const; |
587 | ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); |
263 | ecb_function_ int |
588 | ecb_function_ ecb_const int |
264 | ecb_popcount32 (uint32_t x) |
589 | ecb_popcount32 (uint32_t x) |
265 | { |
590 | { |
266 | x -= (x >> 1) & 0x55555555; |
591 | x -= (x >> 1) & 0x55555555; |
267 | x = ((x >> 2) & 0x33333333) + (x & 0x33333333); |
592 | x = ((x >> 2) & 0x33333333) + (x & 0x33333333); |
268 | x = ((x >> 4) + x) & 0x0f0f0f0f; |
593 | x = ((x >> 4) + x) & 0x0f0f0f0f; |
269 | x *= 0x01010101; |
594 | x *= 0x01010101; |
270 | |
595 | |
271 | return x >> 24; |
596 | return x >> 24; |
272 | } |
597 | } |
273 | |
598 | |
274 | ecb_function_ int ecb_ld32 (uint32_t x) ecb_const; |
599 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x); |
275 | ecb_function_ int ecb_ld32 (uint32_t x) |
600 | ecb_function_ ecb_const int ecb_ld32 (uint32_t x) |
276 | { |
601 | { |
|
|
602 | #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
|
|
603 | unsigned long r; |
|
|
604 | _BitScanReverse (&r, x); |
|
|
605 | return (int)r; |
|
|
606 | #else |
277 | int r = 0; |
607 | int r = 0; |
278 | |
608 | |
279 | if (x >> 16) { x >>= 16; r += 16; } |
609 | if (x >> 16) { x >>= 16; r += 16; } |
280 | if (x >> 8) { x >>= 8; r += 8; } |
610 | if (x >> 8) { x >>= 8; r += 8; } |
281 | if (x >> 4) { x >>= 4; r += 4; } |
611 | if (x >> 4) { x >>= 4; r += 4; } |
282 | if (x >> 2) { x >>= 2; r += 2; } |
612 | if (x >> 2) { x >>= 2; r += 2; } |
283 | if (x >> 1) { r += 1; } |
613 | if (x >> 1) { r += 1; } |
284 | |
614 | |
285 | return r; |
615 | return r; |
|
|
616 | #endif |
286 | } |
617 | } |
287 | |
618 | |
288 | ecb_function_ int ecb_ld64 (uint64_t x) ecb_const; |
619 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x); |
289 | ecb_function_ int ecb_ld64 (uint64_t x) |
620 | ecb_function_ ecb_const int ecb_ld64 (uint64_t x) |
290 | { |
621 | { |
|
|
622 | #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
|
|
623 | unsigned long r; |
|
|
624 | _BitScanReverse64 (&r, x); |
|
|
625 | return (int)r; |
|
|
626 | #else |
291 | int r = 0; |
627 | int r = 0; |
292 | |
628 | |
293 | if (x >> 32) { x >>= 32; r += 32; } |
629 | if (x >> 32) { x >>= 32; r += 32; } |
294 | |
630 | |
295 | return r + ecb_ld32 (x); |
631 | return r + ecb_ld32 (x); |
296 | } |
|
|
297 | #endif |
632 | #endif |
|
|
633 | } |
|
|
634 | #endif |
298 | |
635 | |
299 | /* popcount64 is only available on 64 bit cpus as gcc builtin */ |
636 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); |
300 | /* so for this version we are lazy */ |
637 | ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } |
|
|
638 | ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); |
|
|
639 | ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } |
|
|
640 | |
|
|
641 | ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); |
|
|
642 | ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) |
|
|
643 | { |
|
|
644 | return ( (x * 0x0802U & 0x22110U) |
|
|
645 | | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; |
|
|
646 | } |
|
|
647 | |
|
|
648 | ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); |
|
|
649 | ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) |
|
|
650 | { |
|
|
651 | x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); |
|
|
652 | x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); |
|
|
653 | x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); |
|
|
654 | x = ( x >> 8 ) | ( x << 8); |
|
|
655 | |
|
|
656 | return x; |
|
|
657 | } |
|
|
658 | |
|
|
659 | ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); |
|
|
660 | ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) |
|
|
661 | { |
|
|
662 | x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); |
|
|
663 | x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); |
|
|
664 | x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); |
|
|
665 | x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); |
|
|
666 | x = ( x >> 16 ) | ( x << 16); |
|
|
667 | |
|
|
668 | return x; |
|
|
669 | } |
|
|
670 | |
301 | ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const; |
671 | ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); |
302 | ecb_function_ int |
672 | ecb_function_ ecb_const int |
303 | ecb_popcount64 (uint64_t x) |
673 | ecb_popcount64 (uint64_t x) |
304 | { |
674 | { |
|
|
675 | /* popcount64 is only available on 64 bit cpus as gcc builtin. */ |
|
|
676 | /* also, gcc/clang make this surprisingly difficult to use */ |
|
|
677 | #if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl)) |
|
|
678 | return __builtin_popcountl (x); |
|
|
679 | #else |
305 | return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); |
680 | return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); |
|
|
681 | #endif |
306 | } |
682 | } |
307 | |
683 | |
308 | ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const; |
684 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count); |
309 | ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const; |
685 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count); |
310 | ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const; |
686 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count); |
311 | ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const; |
687 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count); |
312 | ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const; |
688 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count); |
313 | ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const; |
689 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count); |
314 | ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const; |
690 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count); |
315 | ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const; |
691 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count); |
316 | |
692 | |
317 | ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); } |
693 | ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } |
318 | ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); } |
694 | ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } |
319 | ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); } |
695 | ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } |
320 | ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); } |
696 | ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } |
321 | ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); } |
697 | ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } |
322 | ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); } |
698 | ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } |
323 | ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); } |
699 | ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } |
324 | ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); } |
700 | ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } |
325 | |
701 | |
326 | #if ECB_GCC_VERSION(4,3) |
702 | #if ECB_CPP |
|
|
703 | |
|
|
704 | inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } |
|
|
705 | inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } |
|
|
706 | inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); } |
|
|
707 | inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); } |
|
|
708 | |
|
|
709 | inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); } |
|
|
710 | inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); } |
|
|
711 | inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); } |
|
|
712 | inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); } |
|
|
713 | |
|
|
714 | inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); } |
|
|
715 | inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); } |
|
|
716 | inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); } |
|
|
717 | inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); } |
|
|
718 | |
|
|
719 | inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); } |
|
|
720 | inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); } |
|
|
721 | inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); } |
|
|
722 | inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); } |
|
|
723 | |
|
|
724 | inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); } |
|
|
725 | inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); } |
|
|
726 | inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); } |
|
|
727 | |
|
|
728 | inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); } |
|
|
729 | inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); } |
|
|
730 | inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); } |
|
|
731 | inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); } |
|
|
732 | |
|
|
733 | inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); } |
|
|
734 | inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); } |
|
|
735 | inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); } |
|
|
736 | inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); } |
|
|
737 | |
|
|
738 | #endif |
|
|
739 | |
|
|
740 | #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) |
|
|
741 | #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) |
|
|
742 | #define ecb_bswap16(x) __builtin_bswap16 (x) |
|
|
743 | #else |
327 | #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) |
744 | #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) |
|
|
745 | #endif |
328 | #define ecb_bswap32(x) __builtin_bswap32 (x) |
746 | #define ecb_bswap32(x) __builtin_bswap32 (x) |
329 | #define ecb_bswap64(x) __builtin_bswap64 (x) |
747 | #define ecb_bswap64(x) __builtin_bswap64 (x) |
|
|
748 | #elif _MSC_VER |
|
|
749 | #include <stdlib.h> |
|
|
750 | #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) |
|
|
751 | #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) |
|
|
752 | #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) |
330 | #else |
753 | #else |
331 | ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const; |
754 | ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); |
332 | ecb_function_ uint16_t |
755 | ecb_function_ ecb_const uint16_t |
333 | ecb_bswap16 (uint16_t x) |
756 | ecb_bswap16 (uint16_t x) |
334 | { |
757 | { |
335 | return ecb_rotl16 (x, 8); |
758 | return ecb_rotl16 (x, 8); |
336 | } |
759 | } |
337 | |
760 | |
338 | ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const; |
761 | ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); |
339 | ecb_function_ uint32_t |
762 | ecb_function_ ecb_const uint32_t |
340 | ecb_bswap32 (uint32_t x) |
763 | ecb_bswap32 (uint32_t x) |
341 | { |
764 | { |
342 | return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); |
765 | return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); |
343 | } |
766 | } |
344 | |
767 | |
345 | ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const; |
768 | ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); |
346 | ecb_function_ uint64_t |
769 | ecb_function_ ecb_const uint64_t |
347 | ecb_bswap64 (uint64_t x) |
770 | ecb_bswap64 (uint64_t x) |
348 | { |
771 | { |
349 | return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); |
772 | return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); |
350 | } |
773 | } |
351 | #endif |
774 | #endif |
352 | |
775 | |
353 | #if ECB_GCC_VERSION(4,5) |
776 | #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) |
354 | #define ecb_unreachable() __builtin_unreachable () |
777 | #define ecb_unreachable() __builtin_unreachable () |
355 | #else |
778 | #else |
356 | /* this seems to work fine, but gcc always emits a warning for it :/ */ |
779 | /* this seems to work fine, but gcc always emits a warning for it :/ */ |
357 | ecb_function_ void ecb_unreachable (void) ecb_noreturn; |
780 | ecb_inline ecb_noreturn void ecb_unreachable (void); |
358 | ecb_function_ void ecb_unreachable (void) { } |
781 | ecb_inline ecb_noreturn void ecb_unreachable (void) { } |
359 | #endif |
782 | #endif |
360 | |
783 | |
361 | /* try to tell the compiler that some condition is definitely true */ |
784 | /* try to tell the compiler that some condition is definitely true */ |
362 | #define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0) |
785 | #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 |
363 | |
786 | |
364 | ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const; |
787 | ecb_inline ecb_const uint32_t ecb_byteorder_helper (void); |
365 | ecb_function_ unsigned char |
788 | ecb_inline ecb_const uint32_t |
366 | ecb_byteorder_helper (void) |
789 | ecb_byteorder_helper (void) |
367 | { |
790 | { |
368 | const uint32_t u = 0x11223344; |
791 | /* the union code still generates code under pressure in gcc, */ |
369 | return *(unsigned char *)&u; |
792 | /* but less than using pointers, and always seems to */ |
|
|
793 | /* successfully return a constant. */ |
|
|
794 | /* the reason why we have this horrible preprocessor mess */ |
|
|
795 | /* is to avoid it in all cases, at least on common architectures */ |
|
|
796 | /* or when using a recent enough gcc version (>= 4.6) */ |
|
|
797 | #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
|
|
798 | || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) |
|
|
799 | #define ECB_LITTLE_ENDIAN 1 |
|
|
800 | return 0x44332211; |
|
|
801 | #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ |
|
|
802 | || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) |
|
|
803 | #define ECB_BIG_ENDIAN 1 |
|
|
804 | return 0x11223344; |
|
|
805 | #else |
|
|
806 | union |
|
|
807 | { |
|
|
808 | uint8_t c[4]; |
|
|
809 | uint32_t u; |
|
|
810 | } u = { 0x11, 0x22, 0x33, 0x44 }; |
|
|
811 | return u.u; |
|
|
812 | #endif |
370 | } |
813 | } |
371 | |
814 | |
372 | ecb_function_ ecb_bool ecb_big_endian (void) ecb_const; |
815 | ecb_inline ecb_const ecb_bool ecb_big_endian (void); |
373 | ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; } |
816 | ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } |
374 | ecb_function_ ecb_bool ecb_little_endian (void) ecb_const; |
817 | ecb_inline ecb_const ecb_bool ecb_little_endian (void); |
375 | ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; } |
818 | ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } |
|
|
819 | |
|
|
820 | /*****************************************************************************/ |
|
|
821 | /* unaligned load/store */ |
|
|
822 | |
|
|
823 | ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
|
|
824 | ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
|
|
825 | ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
|
|
826 | |
|
|
827 | ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
|
|
828 | ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
|
|
829 | ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
|
|
830 | |
|
|
831 | ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
832 | ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
833 | ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
834 | |
|
|
835 | ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); } |
|
|
836 | ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); } |
|
|
837 | ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); } |
|
|
838 | |
|
|
839 | ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); } |
|
|
840 | ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); } |
|
|
841 | ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); } |
|
|
842 | |
|
|
843 | ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
|
|
844 | ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
|
|
845 | ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
|
|
846 | |
|
|
847 | ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
|
|
848 | ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
|
|
849 | ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
|
|
850 | |
|
|
851 | ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
852 | ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
853 | ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
854 | |
|
|
855 | ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } |
|
|
856 | ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } |
|
|
857 | ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } |
|
|
858 | |
|
|
859 | ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } |
|
|
860 | ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } |
|
|
861 | ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } |
|
|
862 | |
|
|
863 | #if ECB_CPP |
|
|
864 | |
|
|
865 | inline uint8_t ecb_bswap (uint8_t v) { return v; } |
|
|
866 | inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); } |
|
|
867 | inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); } |
|
|
868 | inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); } |
|
|
869 | |
|
|
870 | template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
|
|
871 | template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
|
|
872 | template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; } |
|
|
873 | template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); } |
|
|
874 | template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); } |
|
|
875 | template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; } |
|
|
876 | template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); } |
|
|
877 | template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); } |
|
|
878 | |
|
|
879 | template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
|
|
880 | template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
|
|
881 | template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; } |
|
|
882 | template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); } |
|
|
883 | template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); } |
|
|
884 | template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); } |
|
|
885 | template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); } |
|
|
886 | template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } |
|
|
887 | |
|
|
888 | #endif |
|
|
889 | |
|
|
890 | /*****************************************************************************/ |
|
|
891 | /* pointer/integer hashing */ |
|
|
892 | |
|
|
893 | /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ |
|
|
894 | ecb_function_ uint32_t ecb_mix32 (uint32_t v); |
|
|
895 | ecb_function_ uint32_t ecb_mix32 (uint32_t v) |
|
|
896 | { |
|
|
897 | v ^= v >> 16; v *= 0x7feb352dU; |
|
|
898 | v ^= v >> 15; v *= 0x846ca68bU; |
|
|
899 | v ^= v >> 16; |
|
|
900 | return v; |
|
|
901 | } |
|
|
902 | |
|
|
903 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v); |
|
|
904 | ecb_function_ uint32_t ecb_unmix32 (uint32_t v) |
|
|
905 | { |
|
|
906 | v ^= v >> 16 ; v *= 0x43021123U; |
|
|
907 | v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; |
|
|
908 | v ^= v >> 16 ; |
|
|
909 | return v; |
|
|
910 | } |
|
|
911 | |
|
|
912 | /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ |
|
|
913 | ecb_function_ uint64_t ecb_mix64 (uint64_t v); |
|
|
914 | ecb_function_ uint64_t ecb_mix64 (uint64_t v) |
|
|
915 | { |
|
|
916 | v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; |
|
|
917 | v ^= v >> 27; v *= 0x94d049bb133111ebU; |
|
|
918 | v ^= v >> 31; |
|
|
919 | return v; |
|
|
920 | } |
|
|
921 | |
|
|
922 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v); |
|
|
923 | ecb_function_ uint64_t ecb_unmix64 (uint64_t v) |
|
|
924 | { |
|
|
925 | v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; |
|
|
926 | v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; |
|
|
927 | v ^= v >> 30 ^ v >> 60; |
|
|
928 | return v; |
|
|
929 | } |
|
|
930 | |
|
|
931 | ecb_function_ uintptr_t ecb_ptrmix (void *p); |
|
|
932 | ecb_function_ uintptr_t ecb_ptrmix (void *p) |
|
|
933 | { |
|
|
934 | #if ECB_PTRSIZE <= 4 |
|
|
935 | return ecb_mix32 ((uint32_t)p); |
|
|
936 | #else |
|
|
937 | return ecb_mix64 ((uint64_t)p); |
|
|
938 | #endif |
|
|
939 | } |
|
|
940 | |
|
|
941 | ecb_function_ void *ecb_ptrunmix (uintptr_t v); |
|
|
942 | ecb_function_ void *ecb_ptrunmix (uintptr_t v) |
|
|
943 | { |
|
|
944 | #if ECB_PTRSIZE <= 4 |
|
|
945 | return (void *)ecb_unmix32 (v); |
|
|
946 | #else |
|
|
947 | return (void *)ecb_unmix64 (v); |
|
|
948 | #endif |
|
|
949 | } |
|
|
950 | |
|
|
951 | #if ECB_CPP |
|
|
952 | |
|
|
953 | template<typename T> |
|
|
954 | inline uintptr_t ecb_ptrmix (T *p) |
|
|
955 | { |
|
|
956 | return ecb_ptrmix (static_cast<void *>(p)); |
|
|
957 | } |
|
|
958 | |
|
|
959 | template<typename T> |
|
|
960 | inline T *ecb_ptrunmix (uintptr_t v) |
|
|
961 | { |
|
|
962 | return static_cast<T *>(ecb_ptrunmix (v)); |
|
|
963 | } |
|
|
964 | |
|
|
965 | #endif |
|
|
966 | |
|
|
967 | /*****************************************************************************/ |
|
|
968 | /* gray code */ |
|
|
969 | |
|
|
970 | ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); } |
|
|
971 | ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); } |
|
|
972 | ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); } |
|
|
973 | ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); } |
|
|
974 | |
|
|
975 | ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g); |
|
|
976 | ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g) |
|
|
977 | { |
|
|
978 | g ^= g >> 1; |
|
|
979 | g ^= g >> 2; |
|
|
980 | g ^= g >> 4; |
|
|
981 | |
|
|
982 | return g; |
|
|
983 | } |
|
|
984 | |
|
|
985 | ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g); |
|
|
986 | ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g) |
|
|
987 | { |
|
|
988 | g ^= g >> 1; |
|
|
989 | g ^= g >> 2; |
|
|
990 | g ^= g >> 4; |
|
|
991 | g ^= g >> 8; |
|
|
992 | |
|
|
993 | return g; |
|
|
994 | } |
|
|
995 | |
|
|
996 | ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g); |
|
|
997 | ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g) |
|
|
998 | { |
|
|
999 | g ^= g >> 1; |
|
|
1000 | g ^= g >> 2; |
|
|
1001 | g ^= g >> 4; |
|
|
1002 | g ^= g >> 8; |
|
|
1003 | g ^= g >> 16; |
|
|
1004 | |
|
|
1005 | return g; |
|
|
1006 | } |
|
|
1007 | |
|
|
1008 | ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g); |
|
|
1009 | ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g) |
|
|
1010 | { |
|
|
1011 | g ^= g >> 1; |
|
|
1012 | g ^= g >> 2; |
|
|
1013 | g ^= g >> 4; |
|
|
1014 | g ^= g >> 8; |
|
|
1015 | g ^= g >> 16; |
|
|
1016 | g ^= g >> 32; |
|
|
1017 | |
|
|
1018 | return g; |
|
|
1019 | } |
|
|
1020 | |
|
|
1021 | #if ECB_CPP |
|
|
1022 | |
|
|
1023 | ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); } |
|
|
1024 | ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); } |
|
|
1025 | ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); } |
|
|
1026 | ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); } |
|
|
1027 | |
|
|
1028 | ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); } |
|
|
1029 | ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); } |
|
|
1030 | ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); } |
|
|
1031 | ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); } |
|
|
1032 | |
|
|
1033 | #endif |
|
|
1034 | |
|
|
1035 | /*****************************************************************************/ |
|
|
1036 | /* 2d hilbert curves */ |
|
|
1037 | |
|
|
1038 | /* algorithm from the book Hacker's Delight, modified to not */ |
|
|
1039 | /* run into undefined behaviour for n==16 */ |
|
|
1040 | static uint32_t |
|
|
1041 | ecb_hilbert2d_index_to_coord32 (int n, uint32_t s) |
|
|
1042 | { |
|
|
1043 | uint32_t comp, swap, cs, t, sr; |
|
|
1044 | |
|
|
1045 | /* pad s on the left (unused) bits with 01 (no change groups) */ |
|
|
1046 | s |= 0x55555555U << n << n; |
|
|
1047 | /* "s shift right" */ |
|
|
1048 | sr = (s >> 1) & 0x55555555U; |
|
|
1049 | /* compute complement and swap info in two-bit groups */ |
|
|
1050 | cs = ((s & 0x55555555U) + sr) ^ 0x55555555U; |
|
|
1051 | |
|
|
1052 | /* parallel prefix xor op to propagate both complement |
|
|
1053 | * and swap info together from left to right (there is |
|
|
1054 | * no step "cs ^= cs >> 1", so in effect it computes |
|
|
1055 | * two independent parallel prefix operations on two |
|
|
1056 | * interleaved sets of sixteen bits). |
|
|
1057 | */ |
|
|
1058 | cs ^= cs >> 2; |
|
|
1059 | cs ^= cs >> 4; |
|
|
1060 | cs ^= cs >> 8; |
|
|
1061 | cs ^= cs >> 16; |
|
|
1062 | |
|
|
1063 | /* separate swap and complement bits */ |
|
|
1064 | swap = cs & 0x55555555U; |
|
|
1065 | comp = (cs >> 1) & 0x55555555U; |
|
|
1066 | |
|
|
1067 | /* calculate coordinates in odd and even bit positions */ |
|
|
1068 | t = (s & swap) ^ comp; |
|
|
1069 | s = s ^ sr ^ t ^ (t << 1); |
|
|
1070 | |
|
|
1071 | /* unpad/clear out any junk on the left */ |
|
|
1072 | s = s & ((1 << n << n) - 1); |
|
|
1073 | |
|
|
1074 | /* Now "unshuffle" to separate the x and y bits. */ |
|
|
1075 | t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1); |
|
|
1076 | t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2); |
|
|
1077 | t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4); |
|
|
1078 | t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8); |
|
|
1079 | |
|
|
1080 | /* now s contains two 16-bit coordinates */ |
|
|
1081 | return s; |
|
|
1082 | } |
|
|
1083 | |
|
|
1084 | /* 64 bit, a straightforward extension to the 32 bit case */ |
|
|
1085 | static uint64_t |
|
|
1086 | ecb_hilbert2d_index_to_coord64 (int n, uint64_t s) |
|
|
1087 | { |
|
|
1088 | uint64_t comp, swap, cs, t, sr; |
|
|
1089 | |
|
|
1090 | /* pad s on the left (unused) bits with 01 (no change groups) */ |
|
|
1091 | s |= 0x5555555555555555U << n << n; |
|
|
1092 | /* "s shift right" */ |
|
|
1093 | sr = (s >> 1) & 0x5555555555555555U; |
|
|
1094 | /* compute complement and swap info in two-bit groups */ |
|
|
1095 | cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U; |
|
|
1096 | |
|
|
1097 | /* parallel prefix xor op to propagate both complement |
|
|
1098 | * and swap info together from left to right (there is |
|
|
1099 | * no step "cs ^= cs >> 1", so in effect it computes |
|
|
1100 | * two independent parallel prefix operations on two |
|
|
1101 | * interleaved sets of thirty-two bits). |
|
|
1102 | */ |
|
|
1103 | cs ^= cs >> 2; |
|
|
1104 | cs ^= cs >> 4; |
|
|
1105 | cs ^= cs >> 8; |
|
|
1106 | cs ^= cs >> 16; |
|
|
1107 | cs ^= cs >> 32; |
|
|
1108 | |
|
|
1109 | /* separate swap and complement bits */ |
|
|
1110 | swap = cs & 0x5555555555555555U; |
|
|
1111 | comp = (cs >> 1) & 0x5555555555555555U; |
|
|
1112 | |
|
|
1113 | /* calculate coordinates in odd and even bit positions */ |
|
|
1114 | t = (s & swap) ^ comp; |
|
|
1115 | s = s ^ sr ^ t ^ (t << 1); |
|
|
1116 | |
|
|
1117 | /* unpad/clear out any junk on the left */ |
|
|
1118 | s = s & ((1 << n << n) - 1); |
|
|
1119 | |
|
|
1120 | /* Now "unshuffle" to separate the x and y bits. */ |
|
|
1121 | t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1); |
|
|
1122 | t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2); |
|
|
1123 | t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4); |
|
|
1124 | t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8); |
|
|
1125 | t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16); |
|
|
1126 | |
|
|
1127 | /* now s contains two 32-bit coordinates */ |
|
|
1128 | return s; |
|
|
1129 | } |
|
|
1130 | |
|
|
1131 | /* algorithm from the book Hacker's Delight, but a similar algorithm*/ |
|
|
1132 | /* is given in https://doi.org/10.1002/spe.4380160103 */ |
|
|
1133 | /* this has been slightly improved over the original version */ |
|
|
1134 | ecb_function_ uint32_t |
|
|
1135 | ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy) |
|
|
1136 | { |
|
|
1137 | uint32_t row; |
|
|
1138 | uint32_t state = 0; |
|
|
1139 | uint32_t s = 0; |
|
|
1140 | |
|
|
1141 | do |
|
|
1142 | { |
|
|
1143 | --n; |
|
|
1144 | |
|
|
1145 | row = 4 * state |
|
|
1146 | | (2 & (xy >> n >> 15)) |
|
|
1147 | | (1 & (xy >> n )); |
|
|
1148 | |
|
|
1149 | /* these funky constants are lookup tables for two-bit values */ |
|
|
1150 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
|
|
1151 | state = (0x8fe65831U >> 2 * row) & 3; |
|
|
1152 | } |
|
|
1153 | while (n > 0); |
|
|
1154 | |
|
|
1155 | return s; |
|
|
1156 | } |
|
|
1157 | |
|
|
1158 | /* 64 bit, essentially the same as 32 bit */ |
|
|
1159 | ecb_function_ uint64_t |
|
|
1160 | ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy) |
|
|
1161 | { |
|
|
1162 | uint32_t row; |
|
|
1163 | uint32_t state = 0; |
|
|
1164 | uint64_t s = 0; |
|
|
1165 | |
|
|
1166 | do |
|
|
1167 | { |
|
|
1168 | --n; |
|
|
1169 | |
|
|
1170 | row = 4 * state |
|
|
1171 | | (2 & (xy >> n >> 31)) |
|
|
1172 | | (1 & (xy >> n )); |
|
|
1173 | |
|
|
1174 | /* these funky constants are lookup tables for two-bit values */ |
|
|
1175 | s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
|
|
1176 | state = (0x8fe65831U >> 2 * row) & 3; |
|
|
1177 | } |
|
|
1178 | while (n > 0); |
|
|
1179 | |
|
|
1180 | return s; |
|
|
1181 | } |
|
|
1182 | |
|
|
1183 | /*****************************************************************************/ |
|
|
1184 | /* division */ |
376 | |
1185 | |
377 | #if ECB_GCC_VERSION(3,0) || ECB_C99 |
1186 | #if ECB_GCC_VERSION(3,0) || ECB_C99 |
|
|
1187 | /* C99 tightened the definition of %, so we can use a more efficient version */ |
378 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |
1188 | #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |
379 | #else |
1189 | #else |
380 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |
1190 | #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |
381 | #endif |
1191 | #endif |
|
|
1192 | |
|
|
1193 | #if ECB_CPP |
|
|
1194 | template<typename T> |
|
|
1195 | static inline T ecb_div_rd (T val, T div) |
|
|
1196 | { |
|
|
1197 | return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; |
|
|
1198 | } |
|
|
1199 | template<typename T> |
|
|
1200 | static inline T ecb_div_ru (T val, T div) |
|
|
1201 | { |
|
|
1202 | return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; |
|
|
1203 | } |
|
|
1204 | #else |
|
|
1205 | #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) |
|
|
1206 | #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) |
|
|
1207 | #endif |
|
|
1208 | |
|
|
1209 | /*****************************************************************************/ |
|
|
1210 | /* array length */ |
382 | |
1211 | |
383 | #if ecb_cplusplus_does_not_suck |
1212 | #if ecb_cplusplus_does_not_suck |
384 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |
1213 | /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |
385 | template<typename T, int N> |
1214 | template<typename T, int N> |
386 | static inline int ecb_array_length (const T (&arr)[N]) |
1215 | static inline int ecb_array_length (const T (&arr)[N]) |
… | |
… | |
389 | } |
1218 | } |
390 | #else |
1219 | #else |
391 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |
1220 | #define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |
392 | #endif |
1221 | #endif |
393 | |
1222 | |
|
|
1223 | /*****************************************************************************/ |
|
|
1224 | /* IEEE 754-2008 half float conversions */ |
|
|
1225 | |
|
|
1226 | ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); |
|
|
1227 | ecb_function_ ecb_const uint32_t |
|
|
1228 | ecb_binary16_to_binary32 (uint32_t x) |
|
|
1229 | { |
|
|
1230 | unsigned int s = (x & 0x8000) << (31 - 15); |
|
|
1231 | int e = (x >> 10) & 0x001f; |
|
|
1232 | unsigned int m = x & 0x03ff; |
|
|
1233 | |
|
|
1234 | if (ecb_expect_false (e == 31)) |
|
|
1235 | /* infinity or NaN */ |
|
|
1236 | e = 255 - (127 - 15); |
|
|
1237 | else if (ecb_expect_false (!e)) |
|
|
1238 | { |
|
|
1239 | if (ecb_expect_true (!m)) |
|
|
1240 | /* zero, handled by code below by forcing e to 0 */ |
|
|
1241 | e = 0 - (127 - 15); |
|
|
1242 | else |
|
|
1243 | { |
|
|
1244 | /* subnormal, renormalise */ |
|
|
1245 | unsigned int s = 10 - ecb_ld32 (m); |
|
|
1246 | |
|
|
1247 | m = (m << s) & 0x3ff; /* mask implicit bit */ |
|
|
1248 | e -= s - 1; |
|
|
1249 | } |
|
|
1250 | } |
|
|
1251 | |
|
|
1252 | /* e and m now are normalised, or zero, (or inf or nan) */ |
|
|
1253 | e += 127 - 15; |
|
|
1254 | |
|
|
1255 | return s | (e << 23) | (m << (23 - 10)); |
|
|
1256 | } |
|
|
1257 | |
|
|
1258 | ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); |
|
|
1259 | ecb_function_ ecb_const uint16_t |
|
|
1260 | ecb_binary32_to_binary16 (uint32_t x) |
|
|
1261 | { |
|
|
1262 | unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ |
|
|
1263 | int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ |
|
|
1264 | unsigned int m = x & 0x007fffff; |
|
|
1265 | |
|
|
1266 | x &= 0x7fffffff; |
|
|
1267 | |
|
|
1268 | /* if it's within range of binary16 normals, use fast path */ |
|
|
1269 | if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) |
|
|
1270 | { |
|
|
1271 | /* mantissa round-to-even */ |
|
|
1272 | m += 0x00000fff + ((m >> (23 - 10)) & 1); |
|
|
1273 | |
|
|
1274 | /* handle overflow */ |
|
|
1275 | if (ecb_expect_false (m >= 0x00800000)) |
|
|
1276 | { |
|
|
1277 | m >>= 1; |
|
|
1278 | e += 1; |
|
|
1279 | } |
|
|
1280 | |
|
|
1281 | return s | (e << 10) | (m >> (23 - 10)); |
|
|
1282 | } |
|
|
1283 | |
|
|
1284 | /* handle large numbers and infinity */ |
|
|
1285 | if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) |
|
|
1286 | return s | 0x7c00; |
|
|
1287 | |
|
|
1288 | /* handle zero, subnormals and small numbers */ |
|
|
1289 | if (ecb_expect_true (x < 0x38800000)) |
|
|
1290 | { |
|
|
1291 | /* zero */ |
|
|
1292 | if (ecb_expect_true (!x)) |
|
|
1293 | return s; |
|
|
1294 | |
|
|
1295 | /* handle subnormals */ |
|
|
1296 | |
|
|
1297 | /* too small, will be zero */ |
|
|
1298 | if (e < (14 - 24)) /* might not be sharp, but is good enough */ |
|
|
1299 | return s; |
|
|
1300 | |
|
|
1301 | m |= 0x00800000; /* make implicit bit explicit */ |
|
|
1302 | |
|
|
1303 | /* very tricky - we need to round to the nearest e (+10) bit value */ |
|
|
1304 | { |
|
|
1305 | unsigned int bits = 14 - e; |
|
|
1306 | unsigned int half = (1 << (bits - 1)) - 1; |
|
|
1307 | unsigned int even = (m >> bits) & 1; |
|
|
1308 | |
|
|
1309 | /* if this overflows, we will end up with a normalised number */ |
|
|
1310 | m = (m + half + even) >> bits; |
|
|
1311 | } |
|
|
1312 | |
|
|
1313 | return s | m; |
|
|
1314 | } |
|
|
1315 | |
|
|
1316 | /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ |
|
|
1317 | m >>= 13; |
|
|
1318 | |
|
|
1319 | return s | 0x7c00 | m | !m; |
|
|
1320 | } |
|
|
1321 | |
|
|
1322 | /*******************************************************************************/ |
|
|
1323 | /* fast integer to ascii */ |
|
|
1324 | |
|
|
1325 | /* |
|
|
1326 | * This code is pretty complicated because it is general. The idea behind it, |
|
|
1327 | * however, is pretty simple: first, the number is multiplied with a scaling |
|
|
1328 | * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point |
|
|
1329 | * number with the first digit in the upper bits. |
|
|
1330 | * Then this digit is converted to text and masked out. The resulting number |
|
|
1331 | * is then multiplied by 10, by multiplying the fixed point representation |
|
|
1332 | * by 5 and shifting the (binary) decimal point one to the right, so a 4.28 |
|
|
1333 | * format becomes 5.27, 6.26 and so on. |
|
|
1334 | * The rest involves only advancing the pointer if we already generated a |
|
|
1335 | * non-zero digit, so leading zeroes are overwritten. |
|
|
1336 | */ |
|
|
1337 | |
|
|
1338 | /* simply return a mask with "bits" bits set */ |
|
|
1339 | #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) |
|
|
1340 | |
|
|
1341 | /* oputput a single digit. maskvalue is 10**digitidx */ |
|
|
1342 | #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ |
|
|
1343 | if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ |
|
|
1344 | { \ |
|
|
1345 | char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ |
|
|
1346 | *ptr = digit + '0'; /* output it */ \ |
|
|
1347 | nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ |
|
|
1348 | ptr += nz; /* output digit only if non-zero digit seen */ \ |
|
|
1349 | x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ |
|
|
1350 | } |
|
|
1351 | |
|
|
1352 | /* convert integer to fixed point format and multiply out digits, highest first */ |
|
|
1353 | /* requires magic constants: max. digits and number of bits after the decimal point */ |
|
|
1354 | #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ |
|
|
1355 | ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ |
|
|
1356 | { \ |
|
|
1357 | char nz = lz; /* non-zero digit seen? */ \ |
|
|
1358 | /* convert to x.bits fixed-point */ \ |
|
|
1359 | type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \ |
|
|
1360 | /* output up to 10 digits */ \ |
|
|
1361 | ecb_i2a_digit (type,bits,digitmask, 1, 0); \ |
|
|
1362 | ecb_i2a_digit (type,bits,digitmask, 10, 1); \ |
|
|
1363 | ecb_i2a_digit (type,bits,digitmask, 100, 2); \ |
|
|
1364 | ecb_i2a_digit (type,bits,digitmask, 1000, 3); \ |
|
|
1365 | ecb_i2a_digit (type,bits,digitmask, 10000, 4); \ |
|
|
1366 | ecb_i2a_digit (type,bits,digitmask, 100000, 5); \ |
|
|
1367 | ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \ |
|
|
1368 | ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \ |
|
|
1369 | ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ |
|
|
1370 | ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ |
|
|
1371 | return ptr; \ |
|
|
1372 | } |
|
|
1373 | |
|
|
1374 | /* predefined versions of the above, for various digits */ |
|
|
1375 | /* ecb_i2a_xN = almost N digits, limit defined by macro */ |
|
|
1376 | /* ecb_i2a_N = up to N digits, leading zeroes suppressed */ |
|
|
1377 | /* ecb_i2a_0N = exactly N digits, including leading zeroes */ |
|
|
1378 | |
|
|
1379 | /* non-leading-zero versions, limited range */ |
|
|
1380 | #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */ |
|
|
1381 | #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */ |
|
|
1382 | ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) |
|
|
1383 | ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) |
|
|
1384 | |
|
|
1385 | /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */ |
|
|
1386 | ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) |
|
|
1387 | ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) |
|
|
1388 | ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) |
|
|
1389 | ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) |
|
|
1390 | ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) |
|
|
1391 | ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) |
|
|
1392 | ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) |
|
|
1393 | ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) |
|
|
1394 | |
|
|
1395 | /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */ |
|
|
1396 | ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) |
|
|
1397 | ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) |
|
|
1398 | ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) |
|
|
1399 | ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) |
|
|
1400 | ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) |
|
|
1401 | ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1) |
|
|
1402 | ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1) |
|
|
1403 | ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1) |
|
|
1404 | |
|
|
1405 | #define ECB_I2A_I32_DIGITS 11 |
|
|
1406 | #define ECB_I2A_U32_DIGITS 10 |
|
|
1407 | #define ECB_I2A_I64_DIGITS 20 |
|
|
1408 | #define ECB_I2A_U64_DIGITS 21 |
|
|
1409 | #define ECB_I2A_MAX_DIGITS 21 |
|
|
1410 | |
|
|
1411 | ecb_inline char * |
|
|
1412 | ecb_i2a_u32 (char *ptr, uint32_t u) |
|
|
1413 | { |
|
|
1414 | #if ECB_64BIT_NATIVE |
|
|
1415 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1416 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1417 | else /* x10 almost, but not fully, covers 32 bit */ |
|
|
1418 | { |
|
|
1419 | uint32_t u1 = u % 1000000000; |
|
|
1420 | uint32_t u2 = u / 1000000000; |
|
|
1421 | |
|
|
1422 | *ptr++ = u2 + '0'; |
|
|
1423 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1424 | } |
|
|
1425 | #else |
|
|
1426 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
|
|
1427 | ecb_i2a_x5 (ptr, u); |
|
|
1428 | else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000)) |
|
|
1429 | { |
|
|
1430 | uint32_t u1 = u % 10000; |
|
|
1431 | uint32_t u2 = u / 10000; |
|
|
1432 | |
|
|
1433 | ptr = ecb_i2a_x5 (ptr, u2); |
|
|
1434 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1435 | } |
|
|
1436 | else |
|
|
1437 | { |
|
|
1438 | uint32_t u1 = u % 10000; |
|
|
1439 | uint32_t ua = u / 10000; |
|
|
1440 | uint32_t u2 = ua % 10000; |
|
|
1441 | uint32_t u3 = ua / 10000; |
|
|
1442 | |
|
|
1443 | ptr = ecb_i2a_2 (ptr, u3); |
|
|
1444 | ptr = ecb_i2a_04 (ptr, u2); |
|
|
1445 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1446 | } |
394 | #endif |
1447 | #endif |
395 | |
1448 | |
|
|
1449 | return ptr; |
|
|
1450 | } |
|
|
1451 | |
|
|
1452 | ecb_inline char * |
|
|
1453 | ecb_i2a_i32 (char *ptr, int32_t v) |
|
|
1454 | { |
|
|
1455 | *ptr = '-'; ptr += v < 0; |
|
|
1456 | uint32_t u = v < 0 ? -(uint32_t)v : v; |
|
|
1457 | |
|
|
1458 | #if ECB_64BIT_NATIVE |
|
|
1459 | ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */ |
|
|
1460 | #else |
|
|
1461 | ptr = ecb_i2a_u32 (ptr, u); |
|
|
1462 | #endif |
|
|
1463 | |
|
|
1464 | return ptr; |
|
|
1465 | } |
|
|
1466 | |
|
|
1467 | ecb_inline char * |
|
|
1468 | ecb_i2a_u64 (char *ptr, uint64_t u) |
|
|
1469 | { |
|
|
1470 | #if ECB_64BIT_NATIVE |
|
|
1471 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1472 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1473 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
|
|
1474 | { |
|
|
1475 | uint64_t u1 = u % 1000000000; |
|
|
1476 | uint64_t u2 = u / 1000000000; |
|
|
1477 | |
|
|
1478 | ptr = ecb_i2a_x10 (ptr, u2); |
|
|
1479 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1480 | } |
|
|
1481 | else |
|
|
1482 | { |
|
|
1483 | uint64_t u1 = u % 1000000000; |
|
|
1484 | uint64_t ua = u / 1000000000; |
|
|
1485 | uint64_t u2 = ua % 1000000000; |
|
|
1486 | uint64_t u3 = ua / 1000000000; |
|
|
1487 | |
|
|
1488 | ptr = ecb_i2a_2 (ptr, u3); |
|
|
1489 | ptr = ecb_i2a_09 (ptr, u2); |
|
|
1490 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1491 | } |
|
|
1492 | #else |
|
|
1493 | if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
|
|
1494 | ptr = ecb_i2a_x5 (ptr, u); |
|
|
1495 | else |
|
|
1496 | { |
|
|
1497 | uint64_t u1 = u % 10000; |
|
|
1498 | uint64_t u2 = u / 10000; |
|
|
1499 | |
|
|
1500 | ptr = ecb_i2a_u64 (ptr, u2); |
|
|
1501 | ptr = ecb_i2a_04 (ptr, u1); |
|
|
1502 | } |
|
|
1503 | #endif |
|
|
1504 | |
|
|
1505 | return ptr; |
|
|
1506 | } |
|
|
1507 | |
|
|
1508 | ecb_inline char * |
|
|
1509 | ecb_i2a_i64 (char *ptr, int64_t v) |
|
|
1510 | { |
|
|
1511 | *ptr = '-'; ptr += v < 0; |
|
|
1512 | uint64_t u = v < 0 ? -(uint64_t)v : v; |
|
|
1513 | |
|
|
1514 | #if ECB_64BIT_NATIVE |
|
|
1515 | if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
|
|
1516 | ptr = ecb_i2a_x10 (ptr, u); |
|
|
1517 | else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
|
|
1518 | { |
|
|
1519 | uint64_t u1 = u % 1000000000; |
|
|
1520 | uint64_t u2 = u / 1000000000; |
|
|
1521 | |
|
|
1522 | ptr = ecb_i2a_x10 (ptr, u2); |
|
|
1523 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1524 | } |
|
|
1525 | else |
|
|
1526 | { |
|
|
1527 | uint64_t u1 = u % 1000000000; |
|
|
1528 | uint64_t ua = u / 1000000000; |
|
|
1529 | uint64_t u2 = ua % 1000000000; |
|
|
1530 | uint64_t u3 = ua / 1000000000; |
|
|
1531 | |
|
|
1532 | /* 2**31 is 19 digits, so the top is exactly one digit */ |
|
|
1533 | *ptr++ = u3 + '0'; |
|
|
1534 | ptr = ecb_i2a_09 (ptr, u2); |
|
|
1535 | ptr = ecb_i2a_09 (ptr, u1); |
|
|
1536 | } |
|
|
1537 | #else |
|
|
1538 | ptr = ecb_i2a_u64 (ptr, u); |
|
|
1539 | #endif |
|
|
1540 | |
|
|
1541 | return ptr; |
|
|
1542 | } |
|
|
1543 | |
|
|
1544 | /*******************************************************************************/ |
|
|
1545 | /* floating point stuff, can be disabled by defining ECB_NO_LIBM */ |
|
|
1546 | |
|
|
1547 | /* basically, everything uses "ieee pure-endian" floating point numbers */ |
|
|
1548 | /* the only noteworthy exception is ancient armle, which uses order 43218765 */ |
|
|
1549 | #if 0 \ |
|
|
1550 | || __i386 || __i386__ \ |
|
|
1551 | || ECB_GCC_AMD64 \ |
|
|
1552 | || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ |
|
|
1553 | || defined __s390__ || defined __s390x__ \ |
|
|
1554 | || defined __mips__ \ |
|
|
1555 | || defined __alpha__ \ |
|
|
1556 | || defined __hppa__ \ |
|
|
1557 | || defined __ia64__ \ |
|
|
1558 | || defined __m68k__ \ |
|
|
1559 | || defined __m88k__ \ |
|
|
1560 | || defined __sh__ \ |
|
|
1561 | || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ |
|
|
1562 | || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ |
|
|
1563 | || defined __aarch64__ |
|
|
1564 | #define ECB_STDFP 1 |
|
|
1565 | #else |
|
|
1566 | #define ECB_STDFP 0 |
|
|
1567 | #endif |
|
|
1568 | |
|
|
1569 | #ifndef ECB_NO_LIBM |
|
|
1570 | |
|
|
1571 | #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */ |
|
|
1572 | |
|
|
1573 | /* only the oldest of old doesn't have this one. solaris. */ |
|
|
1574 | #ifdef INFINITY |
|
|
1575 | #define ECB_INFINITY INFINITY |
|
|
1576 | #else |
|
|
1577 | #define ECB_INFINITY HUGE_VAL |
|
|
1578 | #endif |
|
|
1579 | |
|
|
1580 | #ifdef NAN |
|
|
1581 | #define ECB_NAN NAN |
|
|
1582 | #else |
|
|
1583 | #define ECB_NAN ECB_INFINITY |
|
|
1584 | #endif |
|
|
1585 | |
|
|
1586 | #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L |
|
|
1587 | #define ecb_ldexpf(x,e) ldexpf ((x), (e)) |
|
|
1588 | #define ecb_frexpf(x,e) frexpf ((x), (e)) |
|
|
1589 | #else |
|
|
1590 | #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) |
|
|
1591 | #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) |
|
|
1592 | #endif |
|
|
1593 | |
|
|
1594 | /* convert a float to ieee single/binary32 */ |
|
|
1595 | ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); |
|
|
1596 | ecb_function_ ecb_const uint32_t |
|
|
1597 | ecb_float_to_binary32 (float x) |
|
|
1598 | { |
|
|
1599 | uint32_t r; |
|
|
1600 | |
|
|
1601 | #if ECB_STDFP |
|
|
1602 | memcpy (&r, &x, 4); |
|
|
1603 | #else |
|
|
1604 | /* slow emulation, works for anything but -0 */ |
|
|
1605 | uint32_t m; |
|
|
1606 | int e; |
|
|
1607 | |
|
|
1608 | if (x == 0e0f ) return 0x00000000U; |
|
|
1609 | if (x > +3.40282346638528860e+38f) return 0x7f800000U; |
|
|
1610 | if (x < -3.40282346638528860e+38f) return 0xff800000U; |
|
|
1611 | if (x != x ) return 0x7fbfffffU; |
|
|
1612 | |
|
|
1613 | m = ecb_frexpf (x, &e) * 0x1000000U; |
|
|
1614 | |
|
|
1615 | r = m & 0x80000000U; |
|
|
1616 | |
|
|
1617 | if (r) |
|
|
1618 | m = -m; |
|
|
1619 | |
|
|
1620 | if (e <= -126) |
|
|
1621 | { |
|
|
1622 | m &= 0xffffffU; |
|
|
1623 | m >>= (-125 - e); |
|
|
1624 | e = -126; |
|
|
1625 | } |
|
|
1626 | |
|
|
1627 | r |= (e + 126) << 23; |
|
|
1628 | r |= m & 0x7fffffU; |
|
|
1629 | #endif |
|
|
1630 | |
|
|
1631 | return r; |
|
|
1632 | } |
|
|
1633 | |
|
|
1634 | /* converts an ieee single/binary32 to a float */ |
|
|
1635 | ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); |
|
|
1636 | ecb_function_ ecb_const float |
|
|
1637 | ecb_binary32_to_float (uint32_t x) |
|
|
1638 | { |
|
|
1639 | float r; |
|
|
1640 | |
|
|
1641 | #if ECB_STDFP |
|
|
1642 | memcpy (&r, &x, 4); |
|
|
1643 | #else |
|
|
1644 | /* emulation, only works for normals and subnormals and +0 */ |
|
|
1645 | int neg = x >> 31; |
|
|
1646 | int e = (x >> 23) & 0xffU; |
|
|
1647 | |
|
|
1648 | x &= 0x7fffffU; |
|
|
1649 | |
|
|
1650 | if (e) |
|
|
1651 | x |= 0x800000U; |
|
|
1652 | else |
|
|
1653 | e = 1; |
|
|
1654 | |
|
|
1655 | /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ |
|
|
1656 | r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); |
|
|
1657 | |
|
|
1658 | r = neg ? -r : r; |
|
|
1659 | #endif |
|
|
1660 | |
|
|
1661 | return r; |
|
|
1662 | } |
|
|
1663 | |
|
|
1664 | /* convert a double to ieee double/binary64 */ |
|
|
1665 | ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); |
|
|
1666 | ecb_function_ ecb_const uint64_t |
|
|
1667 | ecb_double_to_binary64 (double x) |
|
|
1668 | { |
|
|
1669 | uint64_t r; |
|
|
1670 | |
|
|
1671 | #if ECB_STDFP |
|
|
1672 | memcpy (&r, &x, 8); |
|
|
1673 | #else |
|
|
1674 | /* slow emulation, works for anything but -0 */ |
|
|
1675 | uint64_t m; |
|
|
1676 | int e; |
|
|
1677 | |
|
|
1678 | if (x == 0e0 ) return 0x0000000000000000U; |
|
|
1679 | if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; |
|
|
1680 | if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; |
|
|
1681 | if (x != x ) return 0X7ff7ffffffffffffU; |
|
|
1682 | |
|
|
1683 | m = frexp (x, &e) * 0x20000000000000U; |
|
|
1684 | |
|
|
1685 | r = m & 0x8000000000000000;; |
|
|
1686 | |
|
|
1687 | if (r) |
|
|
1688 | m = -m; |
|
|
1689 | |
|
|
1690 | if (e <= -1022) |
|
|
1691 | { |
|
|
1692 | m &= 0x1fffffffffffffU; |
|
|
1693 | m >>= (-1021 - e); |
|
|
1694 | e = -1022; |
|
|
1695 | } |
|
|
1696 | |
|
|
1697 | r |= ((uint64_t)(e + 1022)) << 52; |
|
|
1698 | r |= m & 0xfffffffffffffU; |
|
|
1699 | #endif |
|
|
1700 | |
|
|
1701 | return r; |
|
|
1702 | } |
|
|
1703 | |
|
|
1704 | /* converts an ieee double/binary64 to a double */ |
|
|
1705 | ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); |
|
|
1706 | ecb_function_ ecb_const double |
|
|
1707 | ecb_binary64_to_double (uint64_t x) |
|
|
1708 | { |
|
|
1709 | double r; |
|
|
1710 | |
|
|
1711 | #if ECB_STDFP |
|
|
1712 | memcpy (&r, &x, 8); |
|
|
1713 | #else |
|
|
1714 | /* emulation, only works for normals and subnormals and +0 */ |
|
|
1715 | int neg = x >> 63; |
|
|
1716 | int e = (x >> 52) & 0x7ffU; |
|
|
1717 | |
|
|
1718 | x &= 0xfffffffffffffU; |
|
|
1719 | |
|
|
1720 | if (e) |
|
|
1721 | x |= 0x10000000000000U; |
|
|
1722 | else |
|
|
1723 | e = 1; |
|
|
1724 | |
|
|
1725 | /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ |
|
|
1726 | r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); |
|
|
1727 | |
|
|
1728 | r = neg ? -r : r; |
|
|
1729 | #endif |
|
|
1730 | |
|
|
1731 | return r; |
|
|
1732 | } |
|
|
1733 | |
|
|
1734 | /* convert a float to ieee half/binary16 */ |
|
|
1735 | ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); |
|
|
1736 | ecb_function_ ecb_const uint16_t |
|
|
1737 | ecb_float_to_binary16 (float x) |
|
|
1738 | { |
|
|
1739 | return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); |
|
|
1740 | } |
|
|
1741 | |
|
|
1742 | /* convert an ieee half/binary16 to float */ |
|
|
1743 | ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); |
|
|
1744 | ecb_function_ ecb_const float |
|
|
1745 | ecb_binary16_to_float (uint16_t x) |
|
|
1746 | { |
|
|
1747 | return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); |
|
|
1748 | } |
|
|
1749 | |
|
|
1750 | #endif |
|
|
1751 | |
|
|
1752 | #endif |
|
|
1753 | |