ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
Revision: 1.210
Committed: Fri Mar 25 15:28:08 2022 UTC (2 years, 3 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.209: +23 -17 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libecb - http://software.schmorp.de/pkg/libecb
3 *
4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright notice,
12 * this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
20 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
21 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
22 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Alternatively, the contents of this file may be used under the terms of
30 * the GNU General Public License ("GPL") version 2 or any later version,
31 * in which case the provisions of the GPL are applicable instead of
32 * the above. If you wish to allow the use of your version of this file
33 * only under the terms of the GPL and not to allow others to use your
34 * version of this file under the BSD license, indicate your decision
35 * by deleting the provisions above and replace them with the notice
36 * and other provisions required by the GPL. If you do not delete the
37 * provisions above, a recipient may use your version of this file under
38 * either the BSD or the GPL.
39 */
40
41 #ifndef ECB_H
42 #define ECB_H
43
44 /* 16 bits major, 16 bits minor */
45 #define ECB_VERSION 0x0001000c
46
47 #include <string.h> /* for memcpy */
48
49 #if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t;
51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
54 typedef signed short int16_t;
55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
58 typedef signed int int32_t;
59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
62 #if __GNUC__
63 typedef signed long long int64_t;
64 typedef unsigned long long uint64_t;
65 #else /* _MSC_VER || __BORLANDC__ */
66 typedef signed __int64 int64_t;
67 typedef unsigned __int64 uint64_t;
68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
71 #ifdef _WIN64
72 #define ECB_PTRSIZE 8
73 typedef uint64_t uintptr_t;
74 typedef int64_t intptr_t;
75 #else
76 #define ECB_PTRSIZE 4
77 typedef uint32_t uintptr_t;
78 typedef int32_t intptr_t;
79 #endif
80 #else
81 #include <inttypes.h>
82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 #define ECB_PTRSIZE 8
84 #else
85 #define ECB_PTRSIZE 4
86 #endif
87 #endif
88
89 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92 #ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98 #endif
99
100 /* work around x32 idiocy by defining proper macros */
101 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 #if _ILP32
103 #define ECB_AMD64_X32 1
104 #else
105 #define ECB_AMD64 1
106 #endif
107 #endif
108
109 #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111 #else
112 #define ECB_64BIT_NATIVE 0
113 #endif
114
115 /* many compilers define _GNUC_ to some versions but then only implement
116 * what their idiot authors think are the "more important" extensions,
117 * causing enormous grief in return for some better fake benchmark numbers.
118 * or so.
119 * we try to detect these and simply assume they are not gcc - if they have
120 * an issue with that they should have done it right in the first place.
121 */
122 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
123 #define ECB_GCC_VERSION(major,minor) 0
124 #else
125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
126 #endif
127
128 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129
130 #if __clang__ && defined __has_builtin
131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132 #else
133 #define ECB_CLANG_BUILTIN(x) 0
134 #endif
135
136 #if __clang__ && defined __has_extension
137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138 #else
139 #define ECB_CLANG_EXTENSION(x) 0
140 #endif
141
142 #define ECB_CPP (__cplusplus+0)
143 #define ECB_CPP11 (__cplusplus >= 201103L)
144 #define ECB_CPP14 (__cplusplus >= 201402L)
145 #define ECB_CPP17 (__cplusplus >= 201703L)
146
147 #if ECB_CPP
148 #define ECB_C 0
149 #define ECB_STDC_VERSION 0
150 #else
151 #define ECB_C 1
152 #define ECB_STDC_VERSION __STDC_VERSION__
153 #endif
154
155 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158
159 #if ECB_CPP
160 #define ECB_EXTERN_C extern "C"
161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162 #define ECB_EXTERN_C_END }
163 #else
164 #define ECB_EXTERN_C extern
165 #define ECB_EXTERN_C_BEG
166 #define ECB_EXTERN_C_END
167 #endif
168
169 /*****************************************************************************/
170
171 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
172 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
173
174 #if ECB_NO_THREADS
175 #define ECB_NO_SMP 1
176 #endif
177
178 #if ECB_NO_SMP
179 #define ECB_MEMORY_FENCE do { } while (0)
180 #endif
181
182 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183 #if __xlC__ && ECB_CPP
184 #include <builtins.h>
185 #endif
186
187 #if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189 #endif
190
191 #ifndef ECB_MEMORY_FENCE
192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
194 #if __i386 || __i386__
195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
198 #elif ECB_GCC_AMD64
199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
218 #elif __aarch64__
219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
224 #elif defined __s390__ || defined __s390x__
225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 #elif defined __mips__
227 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 #elif defined __alpha__
231 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232 #elif defined __hppa__
233 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235 #elif defined __ia64__
236 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 #elif defined __m68k__
238 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239 #elif defined __m88k__
240 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241 #elif defined __sh__
242 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
243 #endif
244 #endif
245 #endif
246
247 #ifndef ECB_MEMORY_FENCE
248 #if ECB_GCC_VERSION(4,7)
249 /* see comment below (stdatomic.h) about the C11 memory model. */
250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255
256 #elif ECB_CLANG_EXTENSION(c_atomic)
257 /* see comment below (stdatomic.h) about the C11 memory model. */
258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263
264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
265 #define ECB_MEMORY_FENCE __sync_synchronize ()
266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
272 #elif _MSC_VER >= 1400 /* VC++ 2005 */
273 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
274 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
275 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
276 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
277 #elif defined _WIN32
278 #include <WinNT.h>
279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
281 #include <mbarrier.h>
282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 #elif __xlC__
287 #define ECB_MEMORY_FENCE __sync ()
288 #endif
289 #endif
290
291 #ifndef ECB_MEMORY_FENCE
292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293 /* we assume that these memory fences work on all variables/all memory accesses, */
294 /* not just C11 atomics and atomic accesses */
295 #include <stdatomic.h>
296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
299 #endif
300 #endif
301
302 #ifndef ECB_MEMORY_FENCE
303 #if !ECB_AVOID_PTHREADS
304 /*
305 * if you get undefined symbol references to pthread_mutex_lock,
306 * or failure to find pthread.h, then you should implement
307 * the ECB_MEMORY_FENCE operations for your cpu/compiler
308 * OR provide pthread.h and link against the posix thread library
309 * of your system.
310 */
311 #include <pthread.h>
312 #define ECB_NEEDS_PTHREADS 1
313 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
314
315 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
316 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
317 #endif
318 #endif
319
320 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
321 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
322 #endif
323
324 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
326 #endif
327
328 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330 #endif
331
332 /*****************************************************************************/
333
334 #if ECB_CPP
335 #define ecb_inline static inline
336 #elif ECB_GCC_VERSION(2,5)
337 #define ecb_inline static __inline__
338 #elif ECB_C99
339 #define ecb_inline static inline
340 #else
341 #define ecb_inline static
342 #endif
343
344 #if ECB_GCC_VERSION(3,3)
345 #define ecb_restrict __restrict__
346 #elif ECB_C99
347 #define ecb_restrict restrict
348 #else
349 #define ecb_restrict
350 #endif
351
352 typedef int ecb_bool;
353
354 #define ECB_CONCAT_(a, b) a ## b
355 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356 #define ECB_STRINGIFY_(a) # a
357 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359
360 /* This marks larger functions that do not neccessarily need to be inlined */
361 /* TODO: popssibly static would be best for these at the moment? */
362 #define ecb_function_ ecb_inline
363
364 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
365 #define ecb_attribute(attrlist) __attribute__ (attrlist)
366 #else
367 #define ecb_attribute(attrlist)
368 #endif
369
370 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
371 #define ecb_is_constant(expr) __builtin_constant_p (expr)
372 #else
373 /* possible C11 impl for integral types
374 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
375 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
376
377 #define ecb_is_constant(expr) 0
378 #endif
379
380 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
381 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
382 #else
383 #define ecb_expect(expr,value) (expr)
384 #endif
385
386 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
387 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
388 #else
389 #define ecb_prefetch(addr,rw,locality)
390 #endif
391
392 /* no emulation for ecb_decltype */
393 #if ECB_CPP11
394 // older implementations might have problems with decltype(x)::type, work around it
395 template<class T> struct ecb_decltype_t { typedef T type; };
396 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
397 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
398 #define ecb_decltype(x) __typeof__ (x)
399 #endif
400
401 #if _MSC_VER >= 1300
402 #define ecb_deprecated __declspec (deprecated)
403 #else
404 #define ecb_deprecated ecb_attribute ((__deprecated__))
405 #endif
406
407 #if _MSC_VER >= 1500
408 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
409 #elif ECB_GCC_VERSION(4,5)
410 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
411 #else
412 #define ecb_deprecated_message(msg) ecb_deprecated
413 #endif
414
415 #if _MSC_VER >= 1400
416 #define ecb_noinline __declspec (noinline)
417 #else
418 #define ecb_noinline ecb_attribute ((__noinline__))
419 #endif
420
421 #define ecb_unused ecb_attribute ((__unused__))
422 #define ecb_const ecb_attribute ((__const__))
423 #define ecb_pure ecb_attribute ((__pure__))
424
425 #if ECB_C11 || __IBMC_NORETURN
426 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
427 #define ecb_noreturn _Noreturn
428 #elif ECB_CPP11
429 #define ecb_noreturn [[noreturn]]
430 #elif _MSC_VER >= 1200
431 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
432 #define ecb_noreturn __declspec (noreturn)
433 #else
434 #define ecb_noreturn ecb_attribute ((__noreturn__))
435 #endif
436
437 #if ECB_GCC_VERSION(4,3)
438 #define ecb_artificial ecb_attribute ((__artificial__))
439 #define ecb_hot ecb_attribute ((__hot__))
440 #define ecb_cold ecb_attribute ((__cold__))
441 #else
442 #define ecb_artificial
443 #define ecb_hot
444 #define ecb_cold
445 #endif
446
447 /* put around conditional expressions if you are very sure that the */
448 /* expression is mostly true or mostly false. note that these return */
449 /* booleans, not the expression. */
450 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
451 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
452 /* for compatibility to the rest of the world */
453 #define ecb_likely(expr) ecb_expect_true (expr)
454 #define ecb_unlikely(expr) ecb_expect_false (expr)
455
456 /* count trailing zero bits and count # of one bits */
457 #if ECB_GCC_VERSION(3,4) \
458 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
459 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
460 && ECB_CLANG_BUILTIN(__builtin_popcount))
461 #define ecb_ctz32(x) __builtin_ctz (x)
462 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
463 #define ecb_clz32(x) __builtin_clz (x)
464 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
465 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
466 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
467 #define ecb_popcount32(x) __builtin_popcount (x)
468 /* ecb_popcount64 is more difficult, see below */
469 #else
470 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
471 ecb_function_ ecb_const int
472 ecb_ctz32 (uint32_t x)
473 {
474 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
475 unsigned long r;
476 _BitScanForward (&r, x);
477 return (int)r;
478 #else
479 int r;
480
481 x &= ~x + 1; /* this isolates the lowest bit */
482
483 #if 1
484 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
485 /* This happens to return 32 for x == 0, but the API does not support this */
486
487 /* -0 marks unused entries */
488 static unsigned char table[64] =
489 {
490 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
491 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
492 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
493 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
494 };
495
496 /* magic constant results in 33 unique values in the upper 6 bits */
497 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
498
499 r = table [x >> 26];
500 #elif 0 /* branchless on i386, typically */
501 r = 0;
502 r += !!(x & 0xaaaaaaaa) << 0;
503 r += !!(x & 0xcccccccc) << 1;
504 r += !!(x & 0xf0f0f0f0) << 2;
505 r += !!(x & 0xff00ff00) << 3;
506 r += !!(x & 0xffff0000) << 4;
507 #else /* branchless on modern compilers, typically */
508 r = 0;
509 if (x & 0xaaaaaaaa) r += 1;
510 if (x & 0xcccccccc) r += 2;
511 if (x & 0xf0f0f0f0) r += 4;
512 if (x & 0xff00ff00) r += 8;
513 if (x & 0xffff0000) r += 16;
514 #endif
515
516 return r;
517 #endif
518 }
519
520 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
521 ecb_function_ ecb_const int
522 ecb_ctz64 (uint64_t x)
523 {
524 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
525 unsigned long r;
526 _BitScanForward64 (&r, x);
527 return (int)r;
528 #else
529 int shift = x & 0xffffffff ? 0 : 32;
530 return ecb_ctz32 (x >> shift) + shift;
531 #endif
532 }
533
534 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
535 ecb_function_ ecb_const int
536 ecb_clz32 (uint32_t x)
537 {
538 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
539 unsigned long r;
540 _BitScanReverse (&r, x);
541 return (int)r;
542 #else
543
544 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
545 /* This happens to return 32 for x == 0, but the API does not support this */
546
547 /* -0 marks unused table elements */
548 static unsigned char table[64] =
549 {
550 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
551 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
552 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
553 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
554 };
555
556 /* propagate leftmost 1 bit to the right */
557 x |= x >> 1;
558 x |= x >> 2;
559 x |= x >> 4;
560 x |= x >> 8;
561 x |= x >> 16;
562
563 /* magic constant results in 33 unique values in the upper 6 bits */
564 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
565
566 return table [x >> 26];
567 #endif
568 }
569
570 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
571 ecb_function_ ecb_const int
572 ecb_clz64 (uint64_t x)
573 {
574 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
575 unsigned long r;
576 _BitScanReverse64 (&r, x);
577 return (int)r;
578 #else
579 uint32_t l = x >> 32;
580 int shift = l ? 0 : 32;
581 return ecb_clz32 (l ? l : x) + shift;
582 #endif
583 }
584
585 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
586 ecb_function_ ecb_const int
587 ecb_popcount32 (uint32_t x)
588 {
589 x -= (x >> 1) & 0x55555555;
590 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
591 x = ((x >> 4) + x) & 0x0f0f0f0f;
592 x *= 0x01010101;
593
594 return x >> 24;
595 }
596
597 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
598 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
599 {
600 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
601 unsigned long r;
602 _BitScanReverse (&r, x);
603 return (int)r;
604 #else
605 int r = 0;
606
607 if (x >> 16) { x >>= 16; r += 16; }
608 if (x >> 8) { x >>= 8; r += 8; }
609 if (x >> 4) { x >>= 4; r += 4; }
610 if (x >> 2) { x >>= 2; r += 2; }
611 if (x >> 1) { r += 1; }
612
613 return r;
614 #endif
615 }
616
617 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
618 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
619 {
620 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
621 unsigned long r;
622 _BitScanReverse64 (&r, x);
623 return (int)r;
624 #else
625 int r = 0;
626
627 if (x >> 32) { x >>= 32; r += 32; }
628
629 return r + ecb_ld32 (x);
630 #endif
631 }
632 #endif
633
634 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
635 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
636 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
637 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
638
639 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
640 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
641 {
642 return ( (x * 0x0802U & 0x22110U)
643 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
644 }
645
646 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
647 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
648 {
649 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
650 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
651 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
652 x = ( x >> 8 ) | ( x << 8);
653
654 return x;
655 }
656
657 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
658 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
659 {
660 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
661 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
662 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
663 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
664 x = ( x >> 16 ) | ( x << 16);
665
666 return x;
667 }
668
669 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
670 ecb_function_ ecb_const int
671 ecb_popcount64 (uint64_t x)
672 {
673 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
674 /* also, gcc/clang make this surprisingly difficult to use */
675 #if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
676 return __builtin_popcountl (x);
677 #else
678 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
679 #endif
680 }
681
682 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
683 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
684 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
685 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
686 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
687 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
688 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
689 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
690
691 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
692 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
693 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
694 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
695 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
696 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
697 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
698 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
699
700 #if ECB_CPP
701
702 inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
703 inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
704 inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
705 inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
706
707 inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
708 inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
709 inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
710 inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
711
712 inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
713 inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
714 inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
715 inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
716
717 inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
718 inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
719 inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
720 inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
721
722 inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
723 inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
724 inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
725
726 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
727 inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
728 inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
729 inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
730
731 inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
732 inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
733 inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
734 inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
735
736 #endif
737
738 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
739 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
740 #define ecb_bswap16(x) __builtin_bswap16 (x)
741 #else
742 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
743 #endif
744 #define ecb_bswap32(x) __builtin_bswap32 (x)
745 #define ecb_bswap64(x) __builtin_bswap64 (x)
746 #elif _MSC_VER
747 #include <stdlib.h>
748 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
749 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
750 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
751 #else
752 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
753 ecb_function_ ecb_const uint16_t
754 ecb_bswap16 (uint16_t x)
755 {
756 return ecb_rotl16 (x, 8);
757 }
758
759 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
760 ecb_function_ ecb_const uint32_t
761 ecb_bswap32 (uint32_t x)
762 {
763 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
764 }
765
766 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
767 ecb_function_ ecb_const uint64_t
768 ecb_bswap64 (uint64_t x)
769 {
770 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
771 }
772 #endif
773
774 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
775 #define ecb_unreachable() __builtin_unreachable ()
776 #else
777 /* this seems to work fine, but gcc always emits a warning for it :/ */
778 ecb_inline ecb_noreturn void ecb_unreachable (void);
779 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
780 #endif
781
782 /* try to tell the compiler that some condition is definitely true */
783 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
784
785 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
786 ecb_inline ecb_const uint32_t
787 ecb_byteorder_helper (void)
788 {
789 /* the union code still generates code under pressure in gcc, */
790 /* but less than using pointers, and always seems to */
791 /* successfully return a constant. */
792 /* the reason why we have this horrible preprocessor mess */
793 /* is to avoid it in all cases, at least on common architectures */
794 /* or when using a recent enough gcc version (>= 4.6) */
795 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
796 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
797 #define ECB_LITTLE_ENDIAN 1
798 return 0x44332211;
799 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
800 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
801 #define ECB_BIG_ENDIAN 1
802 return 0x11223344;
803 #else
804 union
805 {
806 uint8_t c[4];
807 uint32_t u;
808 } u = { 0x11, 0x22, 0x33, 0x44 };
809 return u.u;
810 #endif
811 }
812
813 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
814 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
815 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
816 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
817
818 /*****************************************************************************/
819 /* unaligned load/store */
820
821 ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
822 ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
823 ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
824
825 ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
826 ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
827 ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
828
829 ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
830 ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
831 ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
832
833 ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
834 ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
835 ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
836
837 ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
838 ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
839 ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
840
841 ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
842 ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
843 ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
844
845 ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
846 ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
847 ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
848
849 ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
850 ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
851 ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
852
853 ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
854 ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
855 ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
856
857 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
858 ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
859 ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
860
861 #if ECB_CPP
862
863 inline uint8_t ecb_bswap (uint8_t v) { return v; }
864 inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
865 inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
866 inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
867
868 template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
869 template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
870 template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
871 template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
872 template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
873 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
874 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
875 template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
876
877 template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
878 template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
879 template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
880 template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
881 template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
882 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
883 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
884 template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
885
886 #endif
887
888 /*****************************************************************************/
889 /* pointer/integer hashing */
890
891 /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
892 ecb_function_ uint32_t ecb_mix32 (uint32_t v);
893 ecb_function_ uint32_t ecb_mix32 (uint32_t v)
894 {
895 v ^= v >> 16; v *= 0x7feb352dU;
896 v ^= v >> 15; v *= 0x846ca68bU;
897 v ^= v >> 16;
898 return v;
899 }
900
901 ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
902 ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
903 {
904 v ^= v >> 16 ; v *= 0x43021123U;
905 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
906 v ^= v >> 16 ;
907 return v;
908 }
909
910 /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
911 ecb_function_ uint64_t ecb_mix64 (uint64_t v);
912 ecb_function_ uint64_t ecb_mix64 (uint64_t v)
913 {
914 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
915 v ^= v >> 27; v *= 0x94d049bb133111ebU;
916 v ^= v >> 31;
917 return v;
918 }
919
920 ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
921 ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
922 {
923 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
924 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
925 v ^= v >> 30 ^ v >> 60;
926 return v;
927 }
928
929 ecb_function_ uintptr_t ecb_ptrmix (void *p);
930 ecb_function_ uintptr_t ecb_ptrmix (void *p)
931 {
932 #if ECB_PTRSIZE <= 4
933 return ecb_mix32 ((uint32_t)p);
934 #else
935 return ecb_mix64 ((uint64_t)p);
936 #endif
937 }
938
939 ecb_function_ void *ecb_ptrunmix (uintptr_t v);
940 ecb_function_ void *ecb_ptrunmix (uintptr_t v)
941 {
942 #if ECB_PTRSIZE <= 4
943 return (void *)ecb_unmix32 (v);
944 #else
945 return (void *)ecb_unmix64 (v);
946 #endif
947 }
948
949 #if ECB_CPP
950
951 template<typename T>
952 inline uintptr_t ecb_ptrmix (T *p)
953 {
954 return ecb_ptrmix (static_cast<void *>(p));
955 }
956
957 template<typename T>
958 inline T *ecb_ptrunmix (uintptr_t v)
959 {
960 return static_cast<T *>(ecb_ptrunmix (v));
961 }
962
963 #endif
964
965 /*****************************************************************************/
966 /* gray code */
967
968 ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
969 ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
970 ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
971 ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
972
973 ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g);
974 ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g)
975 {
976 g ^= g >> 1;
977 g ^= g >> 2;
978 g ^= g >> 4;
979
980 return g;
981 }
982
983 ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g);
984 ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g)
985 {
986 g ^= g >> 1;
987 g ^= g >> 2;
988 g ^= g >> 4;
989 g ^= g >> 8;
990
991 return g;
992 }
993
994 ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g);
995 ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g)
996 {
997 g ^= g >> 1;
998 g ^= g >> 2;
999 g ^= g >> 4;
1000 g ^= g >> 8;
1001 g ^= g >> 16;
1002
1003 return g;
1004 }
1005
1006 ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g);
1007 ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g)
1008 {
1009 g ^= g >> 1;
1010 g ^= g >> 2;
1011 g ^= g >> 4;
1012 g ^= g >> 8;
1013 g ^= g >> 16;
1014 g ^= g >> 32;
1015
1016 return g;
1017 }
1018
1019 #if ECB_CPP
1020
1021 ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1022 ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1023 ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1024 ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1025
1026 ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1027 ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1028 ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1029 ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1030
1031 #endif
1032
1033 /*****************************************************************************/
1034 /* 2d hilbert curves */
1035
1036 /* algorithm from the book Hacker's Delight, modified to not */
1037 /* run into undefined behaviour for n==16 */
1038 static uint32_t
1039 ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1040 {
1041 uint32_t comp, swap, cs, t, sr;
1042
1043 /* pad s on the left (unused) bits with 01 (no change groups) */
1044 s |= 0x55555555U << n << n;
1045 /* "s shift right" */
1046 sr = (s >> 1) & 0x55555555U;
1047 /* compute complement and swap info in two-bit groups */
1048 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1049
1050 /* parallel prefix xor op to propagate both complement
1051 * and swap info together from left to right (there is
1052 * no step "cs ^= cs >> 1", so in effect it computes
1053 * two independent parallel prefix operations on two
1054 * interleaved sets of sixteen bits).
1055 */
1056 cs ^= cs >> 2;
1057 cs ^= cs >> 4;
1058 cs ^= cs >> 8;
1059 cs ^= cs >> 16;
1060
1061 /* separate swap and complement bits */
1062 swap = cs & 0x55555555U;
1063 comp = (cs >> 1) & 0x55555555U;
1064
1065 /* calculate coordinates in odd and even bit positions */
1066 t = (s & swap) ^ comp;
1067 s = s ^ sr ^ t ^ (t << 1);
1068
1069 /* unpad/clear out any junk on the left */
1070 s = s & ((1 << n << n) - 1);
1071
1072 /* Now "unshuffle" to separate the x and y bits. */
1073 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1074 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1075 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1076 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1077
1078 /* now s contains two 16-bit coordinates */
1079 return s;
1080 }
1081
1082 /* 64 bit, a straightforward extension to the 32 bit case */
1083 static uint64_t
1084 ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1085 {
1086 uint64_t comp, swap, cs, t, sr;
1087
1088 /* pad s on the left (unused) bits with 01 (no change groups) */
1089 s |= 0x5555555555555555U << n << n;
1090 /* "s shift right" */
1091 sr = (s >> 1) & 0x5555555555555555U;
1092 /* compute complement and swap info in two-bit groups */
1093 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1094
1095 /* parallel prefix xor op to propagate both complement
1096 * and swap info together from left to right (there is
1097 * no step "cs ^= cs >> 1", so in effect it computes
1098 * two independent parallel prefix operations on two
1099 * interleaved sets of thirty-two bits).
1100 */
1101 cs ^= cs >> 2;
1102 cs ^= cs >> 4;
1103 cs ^= cs >> 8;
1104 cs ^= cs >> 16;
1105 cs ^= cs >> 32;
1106
1107 /* separate swap and complement bits */
1108 swap = cs & 0x5555555555555555U;
1109 comp = (cs >> 1) & 0x5555555555555555U;
1110
1111 /* calculate coordinates in odd and even bit positions */
1112 t = (s & swap) ^ comp;
1113 s = s ^ sr ^ t ^ (t << 1);
1114
1115 /* unpad/clear out any junk on the left */
1116 s = s & ((1 << n << n) - 1);
1117
1118 /* Now "unshuffle" to separate the x and y bits. */
1119 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1120 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1121 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1122 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1123 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1124
1125 /* now s contains two 32-bit coordinates */
1126 return s;
1127 }
1128
1129 /* algorithm from the book Hacker's Delight, but a similar algorithm*/
1130 /* is given in https://doi.org/10.1002/spe.4380160103 */
1131 /* this has been slightly improved over the original version */
1132 ecb_function_ uint32_t
1133 ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1134 {
1135 uint32_t row;
1136 uint32_t state = 0;
1137 uint32_t s = 0;
1138
1139 do
1140 {
1141 --n;
1142
1143 row = 4 * state
1144 | (2 & (xy >> n >> 15))
1145 | (1 & (xy >> n ));
1146
1147 /* these funky constants are lookup tables for two-bit values */
1148 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1149 state = (0x8fe65831U >> 2 * row) & 3;
1150 }
1151 while (n > 0);
1152
1153 return s;
1154 }
1155
1156 /* 64 bit, essentially the same as 32 bit */
1157 ecb_function_ uint64_t
1158 ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1159 {
1160 uint32_t row;
1161 uint32_t state = 0;
1162 uint64_t s = 0;
1163
1164 do
1165 {
1166 --n;
1167
1168 row = 4 * state
1169 | (2 & (xy >> n >> 31))
1170 | (1 & (xy >> n ));
1171
1172 /* these funky constants are lookup tables for two-bit values */
1173 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1174 state = (0x8fe65831U >> 2 * row) & 3;
1175 }
1176 while (n > 0);
1177
1178 return s;
1179 }
1180
1181 /*****************************************************************************/
1182 /* division */
1183
1184 #if ECB_GCC_VERSION(3,0) || ECB_C99
1185 /* C99 tightened the definition of %, so we can use a more efficient version */
1186 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1187 #else
1188 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1189 #endif
1190
1191 #if ECB_CPP
1192 template<typename T>
1193 static inline T ecb_div_rd (T val, T div)
1194 {
1195 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1196 }
1197 template<typename T>
1198 static inline T ecb_div_ru (T val, T div)
1199 {
1200 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1201 }
1202 #else
1203 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1204 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1205 #endif
1206
1207 /*****************************************************************************/
1208 /* array length */
1209
1210 #if ecb_cplusplus_does_not_suck
1211 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1212 template<typename T, int N>
1213 static inline int ecb_array_length (const T (&arr)[N])
1214 {
1215 return N;
1216 }
1217 #else
1218 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1219 #endif
1220
1221 /*****************************************************************************/
1222 /* IEEE 754-2008 half float conversions */
1223
1224 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1225 ecb_function_ ecb_const uint32_t
1226 ecb_binary16_to_binary32 (uint32_t x)
1227 {
1228 unsigned int s = (x & 0x8000) << (31 - 15);
1229 int e = (x >> 10) & 0x001f;
1230 unsigned int m = x & 0x03ff;
1231
1232 if (ecb_expect_false (e == 31))
1233 /* infinity or NaN */
1234 e = 255 - (127 - 15);
1235 else if (ecb_expect_false (!e))
1236 {
1237 if (ecb_expect_true (!m))
1238 /* zero, handled by code below by forcing e to 0 */
1239 e = 0 - (127 - 15);
1240 else
1241 {
1242 /* subnormal, renormalise */
1243 unsigned int s = 10 - ecb_ld32 (m);
1244
1245 m = (m << s) & 0x3ff; /* mask implicit bit */
1246 e -= s - 1;
1247 }
1248 }
1249
1250 /* e and m now are normalised, or zero, (or inf or nan) */
1251 e += 127 - 15;
1252
1253 return s | (e << 23) | (m << (23 - 10));
1254 }
1255
1256 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1257 ecb_function_ ecb_const uint16_t
1258 ecb_binary32_to_binary16 (uint32_t x)
1259 {
1260 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1261 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1262 unsigned int m = x & 0x007fffff;
1263
1264 x &= 0x7fffffff;
1265
1266 /* if it's within range of binary16 normals, use fast path */
1267 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1268 {
1269 /* mantissa round-to-even */
1270 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1271
1272 /* handle overflow */
1273 if (ecb_expect_false (m >= 0x00800000))
1274 {
1275 m >>= 1;
1276 e += 1;
1277 }
1278
1279 return s | (e << 10) | (m >> (23 - 10));
1280 }
1281
1282 /* handle large numbers and infinity */
1283 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1284 return s | 0x7c00;
1285
1286 /* handle zero, subnormals and small numbers */
1287 if (ecb_expect_true (x < 0x38800000))
1288 {
1289 /* zero */
1290 if (ecb_expect_true (!x))
1291 return s;
1292
1293 /* handle subnormals */
1294
1295 /* too small, will be zero */
1296 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1297 return s;
1298
1299 m |= 0x00800000; /* make implicit bit explicit */
1300
1301 /* very tricky - we need to round to the nearest e (+10) bit value */
1302 {
1303 unsigned int bits = 14 - e;
1304 unsigned int half = (1 << (bits - 1)) - 1;
1305 unsigned int even = (m >> bits) & 1;
1306
1307 /* if this overflows, we will end up with a normalised number */
1308 m = (m + half + even) >> bits;
1309 }
1310
1311 return s | m;
1312 }
1313
1314 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1315 m >>= 13;
1316
1317 return s | 0x7c00 | m | !m;
1318 }
1319
1320 /*******************************************************************************/
1321 /* fast integer to ascii */
1322
1323 /*
1324 * This code is pretty complicated because it is general. The idea behind it,
1325 * however, is pretty simple: first, the number is multiplied with a scaling
1326 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1327 * number with the first digit in the upper bits.
1328 * Then this digit is converted to text and masked out. The resulting number
1329 * is then multiplied by 10, by multiplying the fixed point representation
1330 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1331 * format becomes 5.27, 6.26 and so on.
1332 * The rest involves only advancing the pointer if we already generated a
1333 * non-zero digit, so leading zeroes are overwritten.
1334 */
1335
1336 /* simply return a mask with "bits" bits set */
1337 #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1338
1339 /* oputput a single digit. maskvalue is 10**digitidx */
1340 #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1341 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1342 { \
1343 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1344 *ptr = digit + '0'; /* output it */ \
1345 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1346 ptr += nz; /* output digit only if non-zero digit seen */ \
1347 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1348 }
1349
1350 /* convert integer to fixed point format and multiply out digits, highest first */
1351 /* requires magic constants: max. digits and number of bits after the decimal point */
1352 #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1353 ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1354 { \
1355 char nz = lz; /* non-zero digit seen? */ \
1356 /* convert to x.bits fixed-point */ \
1357 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1358 /* output up to 10 digits */ \
1359 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1360 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1361 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1362 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1363 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1364 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1365 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1366 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1367 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1368 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1369 return ptr; \
1370 }
1371
1372 /* predefined versions of the above, for various digits */
1373 /* ecb_i2a_xN = almost N digits, limit defined by macro */
1374 /* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1375 /* ecb_i2a_0N = exactly N digits, including leading zeroes */
1376
1377 /* non-leading-zero versions, limited range */
1378 #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1379 #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1380 ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1381 ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1382
1383 /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1384 ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1385 ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1386 ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1387 ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1388 ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1389 ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1390 ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1391 ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1392
1393 /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1394 ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1395 ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1396 ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1397 ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1398 ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1399 ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1400 ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1401 ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1402
1403 #define ECB_I2A_I32_DIGITS 11
1404 #define ECB_I2A_U32_DIGITS 10
1405 #define ECB_I2A_I64_DIGITS 20
1406 #define ECB_I2A_U64_DIGITS 21
1407 #define ECB_I2A_MAX_DIGITS 21
1408
1409 ecb_inline char *
1410 ecb_i2a_u32 (char *ptr, uint32_t u)
1411 {
1412 #if ECB_64BIT_NATIVE
1413 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1414 ptr = ecb_i2a_x10 (ptr, u);
1415 else /* x10 almost, but not fully, covers 32 bit */
1416 {
1417 uint32_t u1 = u % 1000000000;
1418 uint32_t u2 = u / 1000000000;
1419
1420 *ptr++ = u2 + '0';
1421 ptr = ecb_i2a_09 (ptr, u1);
1422 }
1423 #else
1424 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1425 ecb_i2a_x5 (ptr, u);
1426 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1427 {
1428 uint32_t u1 = u % 10000;
1429 uint32_t u2 = u / 10000;
1430
1431 ptr = ecb_i2a_x5 (ptr, u2);
1432 ptr = ecb_i2a_04 (ptr, u1);
1433 }
1434 else
1435 {
1436 uint32_t u1 = u % 10000;
1437 uint32_t ua = u / 10000;
1438 uint32_t u2 = ua % 10000;
1439 uint32_t u3 = ua / 10000;
1440
1441 ptr = ecb_i2a_2 (ptr, u3);
1442 ptr = ecb_i2a_04 (ptr, u2);
1443 ptr = ecb_i2a_04 (ptr, u1);
1444 }
1445 #endif
1446
1447 return ptr;
1448 }
1449
1450 ecb_inline char *
1451 ecb_i2a_i32 (char *ptr, int32_t v)
1452 {
1453 *ptr = '-'; ptr += v < 0;
1454 uint32_t u = v < 0 ? -(uint32_t)v : v;
1455
1456 #if ECB_64BIT_NATIVE
1457 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1458 #else
1459 ptr = ecb_i2a_u32 (ptr, u);
1460 #endif
1461
1462 return ptr;
1463 }
1464
1465 ecb_inline char *
1466 ecb_i2a_u64 (char *ptr, uint64_t u)
1467 {
1468 #if ECB_64BIT_NATIVE
1469 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1470 ptr = ecb_i2a_x10 (ptr, u);
1471 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1472 {
1473 uint64_t u1 = u % 1000000000;
1474 uint64_t u2 = u / 1000000000;
1475
1476 ptr = ecb_i2a_x10 (ptr, u2);
1477 ptr = ecb_i2a_09 (ptr, u1);
1478 }
1479 else
1480 {
1481 uint64_t u1 = u % 1000000000;
1482 uint64_t ua = u / 1000000000;
1483 uint64_t u2 = ua % 1000000000;
1484 uint64_t u3 = ua / 1000000000;
1485
1486 ptr = ecb_i2a_2 (ptr, u3);
1487 ptr = ecb_i2a_09 (ptr, u2);
1488 ptr = ecb_i2a_09 (ptr, u1);
1489 }
1490 #else
1491 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1492 ptr = ecb_i2a_x5 (ptr, u);
1493 else
1494 {
1495 uint64_t u1 = u % 10000;
1496 uint64_t u2 = u / 10000;
1497
1498 ptr = ecb_i2a_u64 (ptr, u2);
1499 ptr = ecb_i2a_04 (ptr, u1);
1500 }
1501 #endif
1502
1503 return ptr;
1504 }
1505
1506 ecb_inline char *
1507 ecb_i2a_i64 (char *ptr, int64_t v)
1508 {
1509 *ptr = '-'; ptr += v < 0;
1510 uint64_t u = v < 0 ? -(uint64_t)v : v;
1511
1512 #if ECB_64BIT_NATIVE
1513 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1514 ptr = ecb_i2a_x10 (ptr, u);
1515 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1516 {
1517 uint64_t u1 = u % 1000000000;
1518 uint64_t u2 = u / 1000000000;
1519
1520 ptr = ecb_i2a_x10 (ptr, u2);
1521 ptr = ecb_i2a_09 (ptr, u1);
1522 }
1523 else
1524 {
1525 uint64_t u1 = u % 1000000000;
1526 uint64_t ua = u / 1000000000;
1527 uint64_t u2 = ua % 1000000000;
1528 uint64_t u3 = ua / 1000000000;
1529
1530 /* 2**31 is 19 digits, so the top is exactly one digit */
1531 *ptr++ = u3 + '0';
1532 ptr = ecb_i2a_09 (ptr, u2);
1533 ptr = ecb_i2a_09 (ptr, u1);
1534 }
1535 #else
1536 ptr = ecb_i2a_u64 (ptr, u);
1537 #endif
1538
1539 return ptr;
1540 }
1541
1542 /*******************************************************************************/
1543 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1544
1545 /* basically, everything uses "ieee pure-endian" floating point numbers */
1546 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1547 #if 0 \
1548 || __i386 || __i386__ \
1549 || ECB_GCC_AMD64 \
1550 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1551 || defined __s390__ || defined __s390x__ \
1552 || defined __mips__ \
1553 || defined __alpha__ \
1554 || defined __hppa__ \
1555 || defined __ia64__ \
1556 || defined __m68k__ \
1557 || defined __m88k__ \
1558 || defined __sh__ \
1559 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1560 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1561 || defined __aarch64__
1562 #define ECB_STDFP 1
1563 #else
1564 #define ECB_STDFP 0
1565 #endif
1566
1567 #ifndef ECB_NO_LIBM
1568
1569 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1570
1571 /* only the oldest of old doesn't have this one. solaris. */
1572 #ifdef INFINITY
1573 #define ECB_INFINITY INFINITY
1574 #else
1575 #define ECB_INFINITY HUGE_VAL
1576 #endif
1577
1578 #ifdef NAN
1579 #define ECB_NAN NAN
1580 #else
1581 #define ECB_NAN ECB_INFINITY
1582 #endif
1583
1584 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1585 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1586 #define ecb_frexpf(x,e) frexpf ((x), (e))
1587 #else
1588 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1589 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1590 #endif
1591
1592 /* convert a float to ieee single/binary32 */
1593 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1594 ecb_function_ ecb_const uint32_t
1595 ecb_float_to_binary32 (float x)
1596 {
1597 uint32_t r;
1598
1599 #if ECB_STDFP
1600 memcpy (&r, &x, 4);
1601 #else
1602 /* slow emulation, works for anything but -0 */
1603 uint32_t m;
1604 int e;
1605
1606 if (x == 0e0f ) return 0x00000000U;
1607 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1608 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1609 if (x != x ) return 0x7fbfffffU;
1610
1611 m = ecb_frexpf (x, &e) * 0x1000000U;
1612
1613 r = m & 0x80000000U;
1614
1615 if (r)
1616 m = -m;
1617
1618 if (e <= -126)
1619 {
1620 m &= 0xffffffU;
1621 m >>= (-125 - e);
1622 e = -126;
1623 }
1624
1625 r |= (e + 126) << 23;
1626 r |= m & 0x7fffffU;
1627 #endif
1628
1629 return r;
1630 }
1631
1632 /* converts an ieee single/binary32 to a float */
1633 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1634 ecb_function_ ecb_const float
1635 ecb_binary32_to_float (uint32_t x)
1636 {
1637 float r;
1638
1639 #if ECB_STDFP
1640 memcpy (&r, &x, 4);
1641 #else
1642 /* emulation, only works for normals and subnormals and +0 */
1643 int neg = x >> 31;
1644 int e = (x >> 23) & 0xffU;
1645
1646 x &= 0x7fffffU;
1647
1648 if (e)
1649 x |= 0x800000U;
1650 else
1651 e = 1;
1652
1653 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1654 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1655
1656 r = neg ? -r : r;
1657 #endif
1658
1659 return r;
1660 }
1661
1662 /* convert a double to ieee double/binary64 */
1663 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1664 ecb_function_ ecb_const uint64_t
1665 ecb_double_to_binary64 (double x)
1666 {
1667 uint64_t r;
1668
1669 #if ECB_STDFP
1670 memcpy (&r, &x, 8);
1671 #else
1672 /* slow emulation, works for anything but -0 */
1673 uint64_t m;
1674 int e;
1675
1676 if (x == 0e0 ) return 0x0000000000000000U;
1677 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1678 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1679 if (x != x ) return 0X7ff7ffffffffffffU;
1680
1681 m = frexp (x, &e) * 0x20000000000000U;
1682
1683 r = m & 0x8000000000000000;;
1684
1685 if (r)
1686 m = -m;
1687
1688 if (e <= -1022)
1689 {
1690 m &= 0x1fffffffffffffU;
1691 m >>= (-1021 - e);
1692 e = -1022;
1693 }
1694
1695 r |= ((uint64_t)(e + 1022)) << 52;
1696 r |= m & 0xfffffffffffffU;
1697 #endif
1698
1699 return r;
1700 }
1701
1702 /* converts an ieee double/binary64 to a double */
1703 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1704 ecb_function_ ecb_const double
1705 ecb_binary64_to_double (uint64_t x)
1706 {
1707 double r;
1708
1709 #if ECB_STDFP
1710 memcpy (&r, &x, 8);
1711 #else
1712 /* emulation, only works for normals and subnormals and +0 */
1713 int neg = x >> 63;
1714 int e = (x >> 52) & 0x7ffU;
1715
1716 x &= 0xfffffffffffffU;
1717
1718 if (e)
1719 x |= 0x10000000000000U;
1720 else
1721 e = 1;
1722
1723 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1724 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1725
1726 r = neg ? -r : r;
1727 #endif
1728
1729 return r;
1730 }
1731
1732 /* convert a float to ieee half/binary16 */
1733 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1734 ecb_function_ ecb_const uint16_t
1735 ecb_float_to_binary16 (float x)
1736 {
1737 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1738 }
1739
1740 /* convert an ieee half/binary16 to float */
1741 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1742 ecb_function_ ecb_const float
1743 ecb_binary16_to_float (uint16_t x)
1744 {
1745 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1746 }
1747
1748 #endif
1749
1750 #endif
1751