ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.h
Revision: 1.213
Committed: Fri Mar 25 15:34:12 2022 UTC (2 years, 2 months ago) by root
Content type: text/plain
Branch: MAIN
Changes since 1.212: +25 -42 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 /*
2 * libecb - http://software.schmorp.de/pkg/libecb
3 *
4 * Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
5 * Copyright (©) 2011 Emanuele Giaquinta
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without modifica-
9 * tion, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright notice,
12 * this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
20 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
21 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
22 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
26 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
27 * OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Alternatively, the contents of this file may be used under the terms of
30 * the GNU General Public License ("GPL") version 2 or any later version,
31 * in which case the provisions of the GPL are applicable instead of
32 * the above. If you wish to allow the use of your version of this file
33 * only under the terms of the GPL and not to allow others to use your
34 * version of this file under the BSD license, indicate your decision
35 * by deleting the provisions above and replace them with the notice
36 * and other provisions required by the GPL. If you do not delete the
37 * provisions above, a recipient may use your version of this file under
38 * either the BSD or the GPL.
39 */
40
41 #ifndef ECB_H
42 #define ECB_H
43
44 /* 16 bits major, 16 bits minor */
45 #define ECB_VERSION 0x0001000c
46
47 #include <string.h> /* for memcpy */
48
49 #if defined (_WIN32) && !defined (__MINGW32__)
50 typedef signed char int8_t;
51 typedef unsigned char uint8_t;
52 typedef signed char int_fast8_t;
53 typedef unsigned char uint_fast8_t;
54 typedef signed short int16_t;
55 typedef unsigned short uint16_t;
56 typedef signed int int_fast16_t;
57 typedef unsigned int uint_fast16_t;
58 typedef signed int int32_t;
59 typedef unsigned int uint32_t;
60 typedef signed int int_fast32_t;
61 typedef unsigned int uint_fast32_t;
62 #if __GNUC__
63 typedef signed long long int64_t;
64 typedef unsigned long long uint64_t;
65 #else /* _MSC_VER || __BORLANDC__ */
66 typedef signed __int64 int64_t;
67 typedef unsigned __int64 uint64_t;
68 #endif
69 typedef int64_t int_fast64_t;
70 typedef uint64_t uint_fast64_t;
71 #ifdef _WIN64
72 #define ECB_PTRSIZE 8
73 typedef uint64_t uintptr_t;
74 typedef int64_t intptr_t;
75 #else
76 #define ECB_PTRSIZE 4
77 typedef uint32_t uintptr_t;
78 typedef int32_t intptr_t;
79 #endif
80 #else
81 #include <inttypes.h>
82 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
83 #define ECB_PTRSIZE 8
84 #else
85 #define ECB_PTRSIZE 4
86 #endif
87 #endif
88
89 #define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
90 #define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
91
92 #ifndef ECB_OPTIMIZE_SIZE
93 #if __OPTIMIZE_SIZE__
94 #define ECB_OPTIMIZE_SIZE 1
95 #else
96 #define ECB_OPTIMIZE_SIZE 0
97 #endif
98 #endif
99
100 /* work around x32 idiocy by defining proper macros */
101 #if ECB_GCC_AMD64 || ECB_MSVC_AMD64
102 #if _ILP32
103 #define ECB_AMD64_X32 1
104 #else
105 #define ECB_AMD64 1
106 #endif
107 #endif
108
109 #if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
110 #define ECB_64BIT_NATIVE 1
111 #else
112 #define ECB_64BIT_NATIVE 0
113 #endif
114
115 /* many compilers define _GNUC_ to some versions but then only implement
116 * what their idiot authors think are the "more important" extensions,
117 * causing enormous grief in return for some better fake benchmark numbers.
118 * or so.
119 * we try to detect these and simply assume they are not gcc - if they have
120 * an issue with that they should have done it right in the first place.
121 */
122 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
123 #define ECB_GCC_VERSION(major,minor) 0
124 #else
125 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
126 #endif
127
128 #define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
129
130 #if __clang__ && defined __has_builtin
131 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
132 #else
133 #define ECB_CLANG_BUILTIN(x) 0
134 #endif
135
136 #if __clang__ && defined __has_extension
137 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
138 #else
139 #define ECB_CLANG_EXTENSION(x) 0
140 #endif
141
142 #define ECB_CPP (__cplusplus+0)
143 #define ECB_CPP11 (__cplusplus >= 201103L)
144 #define ECB_CPP14 (__cplusplus >= 201402L)
145 #define ECB_CPP17 (__cplusplus >= 201703L)
146
147 #if ECB_CPP
148 #define ECB_C 0
149 #define ECB_STDC_VERSION 0
150 #else
151 #define ECB_C 1
152 #define ECB_STDC_VERSION __STDC_VERSION__
153 #endif
154
155 #define ECB_C99 (ECB_STDC_VERSION >= 199901L)
156 #define ECB_C11 (ECB_STDC_VERSION >= 201112L)
157 #define ECB_C17 (ECB_STDC_VERSION >= 201710L)
158
159 #if ECB_CPP
160 #define ECB_EXTERN_C extern "C"
161 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
162 #define ECB_EXTERN_C_END }
163 #else
164 #define ECB_EXTERN_C extern
165 #define ECB_EXTERN_C_BEG
166 #define ECB_EXTERN_C_END
167 #endif
168
169 /*****************************************************************************/
170
171 /* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
172 /* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
173
174 #if ECB_NO_THREADS
175 #define ECB_NO_SMP 1
176 #endif
177
178 #if ECB_NO_SMP
179 #define ECB_MEMORY_FENCE do { } while (0)
180 #endif
181
182 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
183 #if __xlC__ && ECB_CPP
184 #include <builtins.h>
185 #endif
186
187 #if 1400 <= _MSC_VER
188 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
189 #endif
190
191 #ifndef ECB_MEMORY_FENCE
192 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
193 #define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
194 #if __i386 || __i386__
195 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
196 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
197 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
198 #elif ECB_GCC_AMD64
199 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
200 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
201 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
202 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
203 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
204 #elif defined __ARM_ARCH_2__ \
205 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
206 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
207 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
208 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
209 || defined __ARM_ARCH_5TEJ__
210 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
211 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
212 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
213 || defined __ARM_ARCH_6T2__
214 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
215 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
216 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
217 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
218 #elif __aarch64__
219 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
220 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
221 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
222 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
223 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
224 #elif defined __s390__ || defined __s390x__
225 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
226 #elif defined __mips__
227 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
228 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
229 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
230 #elif defined __alpha__
231 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
232 #elif defined __hppa__
233 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
234 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
235 #elif defined __ia64__
236 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
237 #elif defined __m68k__
238 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
239 #elif defined __m88k__
240 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
241 #elif defined __sh__
242 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
243 #endif
244 #endif
245 #endif
246
247 #ifndef ECB_MEMORY_FENCE
248 #if ECB_GCC_VERSION(4,7)
249 /* see comment below (stdatomic.h) about the C11 memory model. */
250 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
251 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
252 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
253 #undef ECB_MEMORY_FENCE_RELAXED
254 #define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
255
256 #elif ECB_CLANG_EXTENSION(c_atomic)
257 /* see comment below (stdatomic.h) about the C11 memory model. */
258 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
259 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
260 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
261 #undef ECB_MEMORY_FENCE_RELAXED
262 #define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
263
264 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
265 #define ECB_MEMORY_FENCE __sync_synchronize ()
266 #elif _MSC_VER >= 1500 /* VC++ 2008 */
267 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
268 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
269 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
270 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
271 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
272 #elif _MSC_VER >= 1400 /* VC++ 2005 */
273 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
274 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
275 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
276 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
277 #elif defined _WIN32
278 #include <WinNT.h>
279 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
280 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
281 #include <mbarrier.h>
282 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
283 #define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
284 #define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
285 #define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
286 #elif __xlC__
287 #define ECB_MEMORY_FENCE __sync ()
288 #endif
289 #endif
290
291 #ifndef ECB_MEMORY_FENCE
292 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
293 /* we assume that these memory fences work on all variables/all memory accesses, */
294 /* not just C11 atomics and atomic accesses */
295 #include <stdatomic.h>
296 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
297 #define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
298 #define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
299 #endif
300 #endif
301
302 #ifndef ECB_MEMORY_FENCE
303 #if !ECB_AVOID_PTHREADS
304 /*
305 * if you get undefined symbol references to pthread_mutex_lock,
306 * or failure to find pthread.h, then you should implement
307 * the ECB_MEMORY_FENCE operations for your cpu/compiler
308 * OR provide pthread.h and link against the posix thread library
309 * of your system.
310 */
311 #include <pthread.h>
312 #define ECB_NEEDS_PTHREADS 1
313 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
314
315 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
316 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
317 #endif
318 #endif
319
320 #if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
321 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
322 #endif
323
324 #if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
325 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
326 #endif
327
328 #if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
329 #define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
330 #endif
331
332 /*****************************************************************************/
333
334 #if ECB_CPP
335 #define ecb_inline static inline
336 #elif ECB_GCC_VERSION(2,5)
337 #define ecb_inline static __inline__
338 #elif ECB_C99
339 #define ecb_inline static inline
340 #else
341 #define ecb_inline static
342 #endif
343
344 #if ECB_GCC_VERSION(3,3)
345 #define ecb_restrict __restrict__
346 #elif ECB_C99
347 #define ecb_restrict restrict
348 #else
349 #define ecb_restrict
350 #endif
351
352 typedef int ecb_bool;
353
354 #define ECB_CONCAT_(a, b) a ## b
355 #define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
356 #define ECB_STRINGIFY_(a) # a
357 #define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
358 #define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
359
360 /* This marks larger functions that do not neccessarily need to be inlined */
361 /* The idea is to possibly compile the header twice, */
362 /* once exposing only the declarations, another time to define external functions */
363 /* TODO: possibly static would be best for these at the moment? */
364 #define ecb_function_ ecb_inline
365
366 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
367 #define ecb_attribute(attrlist) __attribute__ (attrlist)
368 #else
369 #define ecb_attribute(attrlist)
370 #endif
371
372 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
373 #define ecb_is_constant(expr) __builtin_constant_p (expr)
374 #else
375 /* possible C11 impl for integral types
376 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
377 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
378
379 #define ecb_is_constant(expr) 0
380 #endif
381
382 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
383 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
384 #else
385 #define ecb_expect(expr,value) (expr)
386 #endif
387
388 #if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
389 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
390 #else
391 #define ecb_prefetch(addr,rw,locality)
392 #endif
393
394 /* no emulation for ecb_decltype */
395 #if ECB_CPP11
396 // older implementations might have problems with decltype(x)::type, work around it
397 template<class T> struct ecb_decltype_t { typedef T type; };
398 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
399 #elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
400 #define ecb_decltype(x) __typeof__ (x)
401 #endif
402
403 #if _MSC_VER >= 1300
404 #define ecb_deprecated __declspec (deprecated)
405 #else
406 #define ecb_deprecated ecb_attribute ((__deprecated__))
407 #endif
408
409 #if _MSC_VER >= 1500
410 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
411 #elif ECB_GCC_VERSION(4,5)
412 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
413 #else
414 #define ecb_deprecated_message(msg) ecb_deprecated
415 #endif
416
417 #if _MSC_VER >= 1400
418 #define ecb_noinline __declspec (noinline)
419 #else
420 #define ecb_noinline ecb_attribute ((__noinline__))
421 #endif
422
423 #define ecb_unused ecb_attribute ((__unused__))
424 #define ecb_const ecb_attribute ((__const__))
425 #define ecb_pure ecb_attribute ((__pure__))
426
427 #if ECB_C11 || __IBMC_NORETURN
428 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
429 #define ecb_noreturn _Noreturn
430 #elif ECB_CPP11
431 #define ecb_noreturn [[noreturn]]
432 #elif _MSC_VER >= 1200
433 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
434 #define ecb_noreturn __declspec (noreturn)
435 #else
436 #define ecb_noreturn ecb_attribute ((__noreturn__))
437 #endif
438
439 #if ECB_GCC_VERSION(4,3)
440 #define ecb_artificial ecb_attribute ((__artificial__))
441 #define ecb_hot ecb_attribute ((__hot__))
442 #define ecb_cold ecb_attribute ((__cold__))
443 #else
444 #define ecb_artificial
445 #define ecb_hot
446 #define ecb_cold
447 #endif
448
449 /* put around conditional expressions if you are very sure that the */
450 /* expression is mostly true or mostly false. note that these return */
451 /* booleans, not the expression. */
452 #define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
453 #define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
454 /* for compatibility to the rest of the world */
455 #define ecb_likely(expr) ecb_expect_true (expr)
456 #define ecb_unlikely(expr) ecb_expect_false (expr)
457
458 /* count trailing zero bits and count # of one bits */
459 #if ECB_GCC_VERSION(3,4) \
460 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
461 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
462 && ECB_CLANG_BUILTIN(__builtin_popcount))
463 #define ecb_ctz32(x) __builtin_ctz (x)
464 #define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x))
465 #define ecb_clz32(x) __builtin_clz (x)
466 #define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x))
467 #define ecb_ld32(x) (ecb_clz32 (x) ^ 31)
468 #define ecb_ld64(x) (ecb_clz64 (x) ^ 63)
469 #define ecb_popcount32(x) __builtin_popcount (x)
470 /* ecb_popcount64 is more difficult, see below */
471 #else
472 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
473 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x)
474 {
475 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
476 unsigned long r;
477 _BitScanForward (&r, x);
478 return (int)r;
479 #else
480 int r;
481
482 x &= ~x + 1; /* this isolates the lowest bit */
483
484 #if 1
485 /* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */
486 /* This happens to return 32 for x == 0, but the API does not support this */
487
488 /* -0 marks unused entries */
489 static unsigned char table[64] =
490 {
491 32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14,
492 10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15,
493 31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26,
494 30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0
495 };
496
497 /* magic constant results in 33 unique values in the upper 6 bits */
498 x *= 0x0450fbafU; /* == 17 * 65 * 65535 */
499
500 r = table [x >> 26];
501 #elif 0 /* branchless on i386, typically */
502 r = 0;
503 r += !!(x & 0xaaaaaaaa) << 0;
504 r += !!(x & 0xcccccccc) << 1;
505 r += !!(x & 0xf0f0f0f0) << 2;
506 r += !!(x & 0xff00ff00) << 3;
507 r += !!(x & 0xffff0000) << 4;
508 #else /* branchless on modern compilers, typically */
509 r = 0;
510 if (x & 0xaaaaaaaa) r += 1;
511 if (x & 0xcccccccc) r += 2;
512 if (x & 0xf0f0f0f0) r += 4;
513 if (x & 0xff00ff00) r += 8;
514 if (x & 0xffff0000) r += 16;
515 #endif
516
517 return r;
518 #endif
519 }
520
521 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
522 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x)
523 {
524 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
525 unsigned long r;
526 _BitScanForward64 (&r, x);
527 return (int)r;
528 #else
529 int shift = x & 0xffffffff ? 0 : 32;
530 return ecb_ctz32 (x >> shift) + shift;
531 #endif
532 }
533
534 ecb_function_ ecb_const int ecb_clz32 (uint32_t x);
535 ecb_function_ ecb_const int ecb_clz32 (uint32_t x)
536 {
537 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
538 unsigned long r;
539 _BitScanReverse (&r, x);
540 return (int)r;
541 #else
542
543 /* Robert Harley's algorithm from comp.arch 1996-12-07 */
544 /* This happens to return 32 for x == 0, but the API does not support this */
545
546 /* -0 marks unused table elements */
547 static unsigned char table[64] =
548 {
549 32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0,
550 -0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0,
551 17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18,
552 5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0
553 };
554
555 /* propagate leftmost 1 bit to the right */
556 x |= x >> 1;
557 x |= x >> 2;
558 x |= x >> 4;
559 x |= x >> 8;
560 x |= x >> 16;
561
562 /* magic constant results in 33 unique values in the upper 6 bits */
563 x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */
564
565 return table [x >> 26];
566 #endif
567 }
568
569 ecb_function_ ecb_const int ecb_clz64 (uint64_t x);
570 ecb_function_ ecb_const int ecb_clz64 (uint64_t x)
571 {
572 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
573 unsigned long r;
574 _BitScanReverse64 (&r, x);
575 return (int)r;
576 #else
577 uint32_t l = x >> 32;
578 int shift = l ? 0 : 32;
579 return ecb_clz32 (l ? l : x) + shift;
580 #endif
581 }
582
583 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
584 ecb_function_ ecb_const int
585 ecb_popcount32 (uint32_t x)
586 {
587 x -= (x >> 1) & 0x55555555;
588 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
589 x = ((x >> 4) + x) & 0x0f0f0f0f;
590 x *= 0x01010101;
591
592 return x >> 24;
593 }
594
595 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
596 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
597 {
598 #if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
599 unsigned long r;
600 _BitScanReverse (&r, x);
601 return (int)r;
602 #else
603 int r = 0;
604
605 if (x >> 16) { x >>= 16; r += 16; }
606 if (x >> 8) { x >>= 8; r += 8; }
607 if (x >> 4) { x >>= 4; r += 4; }
608 if (x >> 2) { x >>= 2; r += 2; }
609 if (x >> 1) { r += 1; }
610
611 return r;
612 #endif
613 }
614
615 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
616 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
617 {
618 #if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
619 unsigned long r;
620 _BitScanReverse64 (&r, x);
621 return (int)r;
622 #else
623 int r = 0;
624
625 if (x >> 32) { x >>= 32; r += 32; }
626
627 return r + ecb_ld32 (x);
628 #endif
629 }
630 #endif
631
632 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
633 ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
634 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
635 ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
636
637 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
638 ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
639 {
640 return ( (x * 0x0802U & 0x22110U)
641 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
642 }
643
644 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
645 ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
646 {
647 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
648 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
649 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
650 x = ( x >> 8 ) | ( x << 8);
651
652 return x;
653 }
654
655 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
656 ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
657 {
658 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
659 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
660 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
661 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
662 x = ( x >> 16 ) | ( x << 16);
663
664 return x;
665 }
666
667 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
668 ecb_function_ ecb_const int ecb_popcount64 (uint64_t x)
669 {
670 /* popcount64 is only available on 64 bit cpus as gcc builtin. */
671 /* also, gcc/clang make this surprisingly difficult to use */
672 #if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl))
673 return __builtin_popcountl (x);
674 #else
675 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
676 #endif
677 }
678
679 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
680 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
681 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
682 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
683 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
684 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
685 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
686 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
687
688 ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); }
689 ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); }
690 ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); }
691 ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); }
692 ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); }
693 ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); }
694 ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); }
695 ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); }
696
697 #if ECB_CPP
698
699 inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
700 inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
701 inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
702 inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
703
704 inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
705 inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
706 inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
707 inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
708
709 inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
710 inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
711 inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
712 inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
713
714 inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
715 inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
716 inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
717 inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
718
719 inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
720 inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
721 inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
722
723 inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
724 inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
725 inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
726 inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
727
728 inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
729 inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
730 inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
731 inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
732
733 #endif
734
735 #if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
736 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
737 #define ecb_bswap16(x) __builtin_bswap16 (x)
738 #else
739 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
740 #endif
741 #define ecb_bswap32(x) __builtin_bswap32 (x)
742 #define ecb_bswap64(x) __builtin_bswap64 (x)
743 #elif _MSC_VER
744 #include <stdlib.h>
745 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
746 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
747 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
748 #else
749 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
750 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x)
751 {
752 return ecb_rotl16 (x, 8);
753 }
754
755 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
756 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x)
757 {
758 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
759 }
760
761 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
762 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x)
763 {
764 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
765 }
766 #endif
767
768 #if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
769 #define ecb_unreachable() __builtin_unreachable ()
770 #else
771 /* this seems to work fine, but gcc always emits a warning for it :/ */
772 ecb_inline ecb_noreturn void ecb_unreachable (void);
773 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
774 #endif
775
776 /* try to tell the compiler that some condition is definitely true */
777 #define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
778
779 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
780 ecb_inline ecb_const uint32_t ecb_byteorder_helper (void)
781 {
782 /* the union code still generates code under pressure in gcc, */
783 /* but less than using pointers, and always seems to */
784 /* successfully return a constant. */
785 /* the reason why we have this horrible preprocessor mess */
786 /* is to avoid it in all cases, at least on common architectures */
787 /* or when using a recent enough gcc version (>= 4.6) */
788 #if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
789 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
790 #define ECB_LITTLE_ENDIAN 1
791 return 0x44332211;
792 #elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
793 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
794 #define ECB_BIG_ENDIAN 1
795 return 0x11223344;
796 #else
797 union
798 {
799 uint8_t c[4];
800 uint32_t u;
801 } u = { 0x11, 0x22, 0x33, 0x44 };
802 return u.u;
803 #endif
804 }
805
806 ecb_inline ecb_const ecb_bool ecb_big_endian (void);
807 ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
808 ecb_inline ecb_const ecb_bool ecb_little_endian (void);
809 ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
810
811 /*****************************************************************************/
812 /* unaligned load/store */
813
814 ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
815 ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
816 ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
817
818 ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
819 ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
820 ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
821
822 ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
823 ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
824 ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
825
826 ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
827 ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
828 ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
829
830 ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
831 ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
832 ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
833
834 ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
835 ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
836 ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
837
838 ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
839 ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
840 ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
841
842 ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
843 ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
844 ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
845
846 ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
847 ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
848 ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
849
850 ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
851 ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
852 ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
853
854 #if ECB_CPP
855
856 inline uint8_t ecb_bswap (uint8_t v) { return v; }
857 inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
858 inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
859 inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
860
861 template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
862 template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
863 template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
864 template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
865 template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
866 template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
867 template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
868 template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
869
870 template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
871 template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
872 template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
873 template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
874 template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
875 template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
876 template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
877 template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
878
879 #endif
880
881 /*****************************************************************************/
882 /* pointer/integer hashing */
883
884 /* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */
885 ecb_function_ uint32_t ecb_mix32 (uint32_t v);
886 ecb_function_ uint32_t ecb_mix32 (uint32_t v)
887 {
888 v ^= v >> 16; v *= 0x7feb352dU;
889 v ^= v >> 15; v *= 0x846ca68bU;
890 v ^= v >> 16;
891 return v;
892 }
893
894 ecb_function_ uint32_t ecb_unmix32 (uint32_t v);
895 ecb_function_ uint32_t ecb_unmix32 (uint32_t v)
896 {
897 v ^= v >> 16 ; v *= 0x43021123U;
898 v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U;
899 v ^= v >> 16 ;
900 return v;
901 }
902
903 /* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */
904 ecb_function_ uint64_t ecb_mix64 (uint64_t v);
905 ecb_function_ uint64_t ecb_mix64 (uint64_t v)
906 {
907 v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U;
908 v ^= v >> 27; v *= 0x94d049bb133111ebU;
909 v ^= v >> 31;
910 return v;
911 }
912
913 ecb_function_ uint64_t ecb_unmix64 (uint64_t v);
914 ecb_function_ uint64_t ecb_unmix64 (uint64_t v)
915 {
916 v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U;
917 v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U;
918 v ^= v >> 30 ^ v >> 60;
919 return v;
920 }
921
922 ecb_function_ uintptr_t ecb_ptrmix (void *p);
923 ecb_function_ uintptr_t ecb_ptrmix (void *p)
924 {
925 #if ECB_PTRSIZE <= 4
926 return ecb_mix32 ((uint32_t)p);
927 #else
928 return ecb_mix64 ((uint64_t)p);
929 #endif
930 }
931
932 ecb_function_ void *ecb_ptrunmix (uintptr_t v);
933 ecb_function_ void *ecb_ptrunmix (uintptr_t v)
934 {
935 #if ECB_PTRSIZE <= 4
936 return (void *)ecb_unmix32 (v);
937 #else
938 return (void *)ecb_unmix64 (v);
939 #endif
940 }
941
942 #if ECB_CPP
943
944 template<typename T>
945 inline uintptr_t ecb_ptrmix (T *p)
946 {
947 return ecb_ptrmix (static_cast<void *>(p));
948 }
949
950 template<typename T>
951 inline T *ecb_ptrunmix (uintptr_t v)
952 {
953 return static_cast<T *>(ecb_ptrunmix (v));
954 }
955
956 #endif
957
958 /*****************************************************************************/
959 /* gray code */
960
961 ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); }
962 ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); }
963 ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); }
964 ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); }
965
966 ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g);
967 ecb_function_ uint8_t ecb_gray_decode8 (uint8_t g)
968 {
969 g ^= g >> 1;
970 g ^= g >> 2;
971 g ^= g >> 4;
972
973 return g;
974 }
975
976 ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g);
977 ecb_function_ uint16_t ecb_gray_decode16 (uint16_t g)
978 {
979 g ^= g >> 1;
980 g ^= g >> 2;
981 g ^= g >> 4;
982 g ^= g >> 8;
983
984 return g;
985 }
986
987 ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g);
988 ecb_function_ uint32_t ecb_gray_decode32 (uint32_t g)
989 {
990 g ^= g >> 1;
991 g ^= g >> 2;
992 g ^= g >> 4;
993 g ^= g >> 8;
994 g ^= g >> 16;
995
996 return g;
997 }
998
999 ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g);
1000 ecb_function_ uint64_t ecb_gray_decode64 (uint64_t g)
1001 {
1002 g ^= g >> 1;
1003 g ^= g >> 2;
1004 g ^= g >> 4;
1005 g ^= g >> 8;
1006 g ^= g >> 16;
1007 g ^= g >> 32;
1008
1009 return g;
1010 }
1011
1012 #if ECB_CPP
1013
1014 ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); }
1015 ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); }
1016 ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); }
1017 ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); }
1018
1019 ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); }
1020 ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); }
1021 ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); }
1022 ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); }
1023
1024 #endif
1025
1026 /*****************************************************************************/
1027 /* 2d hilbert curves */
1028
1029 /* algorithm from the book Hacker's Delight, modified to not */
1030 /* run into undefined behaviour for n==16 */
1031 static uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s);
1032 static uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s)
1033 {
1034 uint32_t comp, swap, cs, t, sr;
1035
1036 /* pad s on the left (unused) bits with 01 (no change groups) */
1037 s |= 0x55555555U << n << n;
1038 /* "s shift right" */
1039 sr = (s >> 1) & 0x55555555U;
1040 /* compute complement and swap info in two-bit groups */
1041 cs = ((s & 0x55555555U) + sr) ^ 0x55555555U;
1042
1043 /* parallel prefix xor op to propagate both complement
1044 * and swap info together from left to right (there is
1045 * no step "cs ^= cs >> 1", so in effect it computes
1046 * two independent parallel prefix operations on two
1047 * interleaved sets of sixteen bits).
1048 */
1049 cs ^= cs >> 2;
1050 cs ^= cs >> 4;
1051 cs ^= cs >> 8;
1052 cs ^= cs >> 16;
1053
1054 /* separate swap and complement bits */
1055 swap = cs & 0x55555555U;
1056 comp = (cs >> 1) & 0x55555555U;
1057
1058 /* calculate coordinates in odd and even bit positions */
1059 t = (s & swap) ^ comp;
1060 s = s ^ sr ^ t ^ (t << 1);
1061
1062 /* unpad/clear out any junk on the left */
1063 s = s & ((1 << n << n) - 1);
1064
1065 /* Now "unshuffle" to separate the x and y bits. */
1066 t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1);
1067 t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2);
1068 t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4);
1069 t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8);
1070
1071 /* now s contains two 16-bit coordinates */
1072 return s;
1073 }
1074
1075 /* 64 bit, a straightforward extension to the 32 bit case */
1076 static uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s);
1077 static uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s)
1078 {
1079 uint64_t comp, swap, cs, t, sr;
1080
1081 /* pad s on the left (unused) bits with 01 (no change groups) */
1082 s |= 0x5555555555555555U << n << n;
1083 /* "s shift right" */
1084 sr = (s >> 1) & 0x5555555555555555U;
1085 /* compute complement and swap info in two-bit groups */
1086 cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U;
1087
1088 /* parallel prefix xor op to propagate both complement
1089 * and swap info together from left to right (there is
1090 * no step "cs ^= cs >> 1", so in effect it computes
1091 * two independent parallel prefix operations on two
1092 * interleaved sets of thirty-two bits).
1093 */
1094 cs ^= cs >> 2;
1095 cs ^= cs >> 4;
1096 cs ^= cs >> 8;
1097 cs ^= cs >> 16;
1098 cs ^= cs >> 32;
1099
1100 /* separate swap and complement bits */
1101 swap = cs & 0x5555555555555555U;
1102 comp = (cs >> 1) & 0x5555555555555555U;
1103
1104 /* calculate coordinates in odd and even bit positions */
1105 t = (s & swap) ^ comp;
1106 s = s ^ sr ^ t ^ (t << 1);
1107
1108 /* unpad/clear out any junk on the left */
1109 s = s & ((1 << n << n) - 1);
1110
1111 /* Now "unshuffle" to separate the x and y bits. */
1112 t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1);
1113 t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2);
1114 t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4);
1115 t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8);
1116 t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16);
1117
1118 /* now s contains two 32-bit coordinates */
1119 return s;
1120 }
1121
1122 /* algorithm from the book Hacker's Delight, but a similar algorithm*/
1123 /* is given in https://doi.org/10.1002/spe.4380160103 */
1124 /* this has been slightly improved over the original version */
1125 ecb_function_ uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy);
1126 ecb_function_ uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy)
1127 {
1128 uint32_t row;
1129 uint32_t state = 0;
1130 uint32_t s = 0;
1131
1132 do
1133 {
1134 --n;
1135
1136 row = 4 * state
1137 | (2 & (xy >> n >> 15))
1138 | (1 & (xy >> n ));
1139
1140 /* these funky constants are lookup tables for two-bit values */
1141 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1142 state = (0x8fe65831U >> 2 * row) & 3;
1143 }
1144 while (n > 0);
1145
1146 return s;
1147 }
1148
1149 /* 64 bit, essentially the same as 32 bit */
1150 ecb_function_ uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy);
1151 ecb_function_ uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy)
1152 {
1153 uint32_t row;
1154 uint32_t state = 0;
1155 uint64_t s = 0;
1156
1157 do
1158 {
1159 --n;
1160
1161 row = 4 * state
1162 | (2 & (xy >> n >> 31))
1163 | (1 & (xy >> n ));
1164
1165 /* these funky constants are lookup tables for two-bit values */
1166 s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3;
1167 state = (0x8fe65831U >> 2 * row) & 3;
1168 }
1169 while (n > 0);
1170
1171 return s;
1172 }
1173
1174 /*****************************************************************************/
1175 /* division */
1176
1177 #if ECB_GCC_VERSION(3,0) || ECB_C99
1178 /* C99 tightened the definition of %, so we can use a more efficient version */
1179 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1180 #else
1181 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1182 #endif
1183
1184 #if ECB_CPP
1185 template<typename T>
1186 static inline T ecb_div_rd (T val, T div)
1187 {
1188 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1189 }
1190 template<typename T>
1191 static inline T ecb_div_ru (T val, T div)
1192 {
1193 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1194 }
1195 #else
1196 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1197 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1198 #endif
1199
1200 /*****************************************************************************/
1201 /* array length */
1202
1203 #if ecb_cplusplus_does_not_suck
1204 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1205 template<typename T, int N>
1206 static inline int ecb_array_length (const T (&arr)[N])
1207 {
1208 return N;
1209 }
1210 #else
1211 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1212 #endif
1213
1214 /*****************************************************************************/
1215 /* IEEE 754-2008 half float conversions */
1216
1217 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1218 ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x)
1219 {
1220 unsigned int s = (x & 0x8000) << (31 - 15);
1221 int e = (x >> 10) & 0x001f;
1222 unsigned int m = x & 0x03ff;
1223
1224 if (ecb_expect_false (e == 31))
1225 /* infinity or NaN */
1226 e = 255 - (127 - 15);
1227 else if (ecb_expect_false (!e))
1228 {
1229 if (ecb_expect_true (!m))
1230 /* zero, handled by code below by forcing e to 0 */
1231 e = 0 - (127 - 15);
1232 else
1233 {
1234 /* subnormal, renormalise */
1235 unsigned int s = 10 - ecb_ld32 (m);
1236
1237 m = (m << s) & 0x3ff; /* mask implicit bit */
1238 e -= s - 1;
1239 }
1240 }
1241
1242 /* e and m now are normalised, or zero, (or inf or nan) */
1243 e += 127 - 15;
1244
1245 return s | (e << 23) | (m << (23 - 10));
1246 }
1247
1248 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1249 ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x)
1250 {
1251 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1252 int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1253 unsigned int m = x & 0x007fffff;
1254
1255 x &= 0x7fffffff;
1256
1257 /* if it's within range of binary16 normals, use fast path */
1258 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1259 {
1260 /* mantissa round-to-even */
1261 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1262
1263 /* handle overflow */
1264 if (ecb_expect_false (m >= 0x00800000))
1265 {
1266 m >>= 1;
1267 e += 1;
1268 }
1269
1270 return s | (e << 10) | (m >> (23 - 10));
1271 }
1272
1273 /* handle large numbers and infinity */
1274 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1275 return s | 0x7c00;
1276
1277 /* handle zero, subnormals and small numbers */
1278 if (ecb_expect_true (x < 0x38800000))
1279 {
1280 /* zero */
1281 if (ecb_expect_true (!x))
1282 return s;
1283
1284 /* handle subnormals */
1285
1286 /* too small, will be zero */
1287 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1288 return s;
1289
1290 m |= 0x00800000; /* make implicit bit explicit */
1291
1292 /* very tricky - we need to round to the nearest e (+10) bit value */
1293 {
1294 unsigned int bits = 14 - e;
1295 unsigned int half = (1 << (bits - 1)) - 1;
1296 unsigned int even = (m >> bits) & 1;
1297
1298 /* if this overflows, we will end up with a normalised number */
1299 m = (m + half + even) >> bits;
1300 }
1301
1302 return s | m;
1303 }
1304
1305 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1306 m >>= 13;
1307
1308 return s | 0x7c00 | m | !m;
1309 }
1310
1311 /*******************************************************************************/
1312 /* fast integer to ascii */
1313
1314 /*
1315 * This code is pretty complicated because it is general. The idea behind it,
1316 * however, is pretty simple: first, the number is multiplied with a scaling
1317 * factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
1318 * number with the first digit in the upper bits.
1319 * Then this digit is converted to text and masked out. The resulting number
1320 * is then multiplied by 10, by multiplying the fixed point representation
1321 * by 5 and shifting the (binary) decimal point one to the right, so a 4.28
1322 * format becomes 5.27, 6.26 and so on.
1323 * The rest involves only advancing the pointer if we already generated a
1324 * non-zero digit, so leading zeroes are overwritten.
1325 */
1326
1327 /* simply return a mask with "bits" bits set */
1328 #define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
1329
1330 /* oputput a single digit. maskvalue is 10**digitidx */
1331 #define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
1332 if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
1333 { \
1334 char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
1335 *ptr = digit + '0'; /* output it */ \
1336 nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
1337 ptr += nz; /* output digit only if non-zero digit seen */ \
1338 x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
1339 }
1340
1341 /* convert integer to fixed point format and multiply out digits, highest first */
1342 /* requires magic constants: max. digits and number of bits after the decimal point */
1343 #define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
1344 ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
1345 { \
1346 char nz = lz; /* non-zero digit seen? */ \
1347 /* convert to x.bits fixed-point */ \
1348 type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
1349 /* output up to 10 digits */ \
1350 ecb_i2a_digit (type,bits,digitmask, 1, 0); \
1351 ecb_i2a_digit (type,bits,digitmask, 10, 1); \
1352 ecb_i2a_digit (type,bits,digitmask, 100, 2); \
1353 ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
1354 ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
1355 ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
1356 ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
1357 ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
1358 ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
1359 ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
1360 return ptr; \
1361 }
1362
1363 /* predefined versions of the above, for various digits */
1364 /* ecb_i2a_xN = almost N digits, limit defined by macro */
1365 /* ecb_i2a_N = up to N digits, leading zeroes suppressed */
1366 /* ecb_i2a_0N = exactly N digits, including leading zeroes */
1367
1368 /* non-leading-zero versions, limited range */
1369 #define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */
1370 #define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */
1371 ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
1372 ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
1373
1374 /* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */
1375 ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
1376 ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
1377 ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
1378 ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
1379 ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
1380 ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
1381 ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
1382 ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
1383
1384 /* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */
1385 ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
1386 ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
1387 ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
1388 ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
1389 ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
1390 ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
1391 ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
1392 ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
1393
1394 #define ECB_I2A_I32_DIGITS 11
1395 #define ECB_I2A_U32_DIGITS 10
1396 #define ECB_I2A_I64_DIGITS 20
1397 #define ECB_I2A_U64_DIGITS 21
1398 #define ECB_I2A_MAX_DIGITS 21
1399
1400 ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u)
1401 ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u)
1402 {
1403 #if ECB_64BIT_NATIVE
1404 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1405 ptr = ecb_i2a_x10 (ptr, u);
1406 else /* x10 almost, but not fully, covers 32 bit */
1407 {
1408 uint32_t u1 = u % 1000000000;
1409 uint32_t u2 = u / 1000000000;
1410
1411 *ptr++ = u2 + '0';
1412 ptr = ecb_i2a_09 (ptr, u1);
1413 }
1414 #else
1415 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1416 ecb_i2a_x5 (ptr, u);
1417 else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
1418 {
1419 uint32_t u1 = u % 10000;
1420 uint32_t u2 = u / 10000;
1421
1422 ptr = ecb_i2a_x5 (ptr, u2);
1423 ptr = ecb_i2a_04 (ptr, u1);
1424 }
1425 else
1426 {
1427 uint32_t u1 = u % 10000;
1428 uint32_t ua = u / 10000;
1429 uint32_t u2 = ua % 10000;
1430 uint32_t u3 = ua / 10000;
1431
1432 ptr = ecb_i2a_2 (ptr, u3);
1433 ptr = ecb_i2a_04 (ptr, u2);
1434 ptr = ecb_i2a_04 (ptr, u1);
1435 }
1436 #endif
1437
1438 return ptr;
1439 }
1440
1441 ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v);
1442 ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v)
1443 {
1444 *ptr = '-'; ptr += v < 0;
1445 uint32_t u = v < 0 ? -(uint32_t)v : v;
1446
1447 #if ECB_64BIT_NATIVE
1448 ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */
1449 #else
1450 ptr = ecb_i2a_u32 (ptr, u);
1451 #endif
1452
1453 return ptr;
1454 }
1455
1456 ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u);
1457 ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u)
1458 {
1459 #if ECB_64BIT_NATIVE
1460 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1461 ptr = ecb_i2a_x10 (ptr, u);
1462 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1463 {
1464 uint64_t u1 = u % 1000000000;
1465 uint64_t u2 = u / 1000000000;
1466
1467 ptr = ecb_i2a_x10 (ptr, u2);
1468 ptr = ecb_i2a_09 (ptr, u1);
1469 }
1470 else
1471 {
1472 uint64_t u1 = u % 1000000000;
1473 uint64_t ua = u / 1000000000;
1474 uint64_t u2 = ua % 1000000000;
1475 uint64_t u3 = ua / 1000000000;
1476
1477 ptr = ecb_i2a_2 (ptr, u3);
1478 ptr = ecb_i2a_09 (ptr, u2);
1479 ptr = ecb_i2a_09 (ptr, u1);
1480 }
1481 #else
1482 if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
1483 ptr = ecb_i2a_x5 (ptr, u);
1484 else
1485 {
1486 uint64_t u1 = u % 10000;
1487 uint64_t u2 = u / 10000;
1488
1489 ptr = ecb_i2a_u64 (ptr, u2);
1490 ptr = ecb_i2a_04 (ptr, u1);
1491 }
1492 #endif
1493
1494 return ptr;
1495 }
1496
1497 ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v)
1498 ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v)
1499 {
1500 *ptr = '-'; ptr += v < 0;
1501 uint64_t u = v < 0 ? -(uint64_t)v : v;
1502
1503 #if ECB_64BIT_NATIVE
1504 if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
1505 ptr = ecb_i2a_x10 (ptr, u);
1506 else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
1507 {
1508 uint64_t u1 = u % 1000000000;
1509 uint64_t u2 = u / 1000000000;
1510
1511 ptr = ecb_i2a_x10 (ptr, u2);
1512 ptr = ecb_i2a_09 (ptr, u1);
1513 }
1514 else
1515 {
1516 uint64_t u1 = u % 1000000000;
1517 uint64_t ua = u / 1000000000;
1518 uint64_t u2 = ua % 1000000000;
1519 uint64_t u3 = ua / 1000000000;
1520
1521 /* 2**31 is 19 digits, so the top is exactly one digit */
1522 *ptr++ = u3 + '0';
1523 ptr = ecb_i2a_09 (ptr, u2);
1524 ptr = ecb_i2a_09 (ptr, u1);
1525 }
1526 #else
1527 ptr = ecb_i2a_u64 (ptr, u);
1528 #endif
1529
1530 return ptr;
1531 }
1532
1533 /*******************************************************************************/
1534 /* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1535
1536 /* basically, everything uses "ieee pure-endian" floating point numbers */
1537 /* the only noteworthy exception is ancient armle, which uses order 43218765 */
1538 #if 0 \
1539 || __i386 || __i386__ \
1540 || ECB_GCC_AMD64 \
1541 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1542 || defined __s390__ || defined __s390x__ \
1543 || defined __mips__ \
1544 || defined __alpha__ \
1545 || defined __hppa__ \
1546 || defined __ia64__ \
1547 || defined __m68k__ \
1548 || defined __m88k__ \
1549 || defined __sh__ \
1550 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1551 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1552 || defined __aarch64__
1553 #define ECB_STDFP 1
1554 #else
1555 #define ECB_STDFP 0
1556 #endif
1557
1558 #ifndef ECB_NO_LIBM
1559
1560 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1561
1562 /* only the oldest of old doesn't have this one. solaris. */
1563 #ifdef INFINITY
1564 #define ECB_INFINITY INFINITY
1565 #else
1566 #define ECB_INFINITY HUGE_VAL
1567 #endif
1568
1569 #ifdef NAN
1570 #define ECB_NAN NAN
1571 #else
1572 #define ECB_NAN ECB_INFINITY
1573 #endif
1574
1575 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1576 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1577 #define ecb_frexpf(x,e) frexpf ((x), (e))
1578 #else
1579 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1580 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1581 #endif
1582
1583 /* convert a float to ieee single/binary32 */
1584 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1585 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x)
1586 {
1587 uint32_t r;
1588
1589 #if ECB_STDFP
1590 memcpy (&r, &x, 4);
1591 #else
1592 /* slow emulation, works for anything but -0 */
1593 uint32_t m;
1594 int e;
1595
1596 if (x == 0e0f ) return 0x00000000U;
1597 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1598 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1599 if (x != x ) return 0x7fbfffffU;
1600
1601 m = ecb_frexpf (x, &e) * 0x1000000U;
1602
1603 r = m & 0x80000000U;
1604
1605 if (r)
1606 m = -m;
1607
1608 if (e <= -126)
1609 {
1610 m &= 0xffffffU;
1611 m >>= (-125 - e);
1612 e = -126;
1613 }
1614
1615 r |= (e + 126) << 23;
1616 r |= m & 0x7fffffU;
1617 #endif
1618
1619 return r;
1620 }
1621
1622 /* converts an ieee single/binary32 to a float */
1623 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1624 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x)
1625 {
1626 float r;
1627
1628 #if ECB_STDFP
1629 memcpy (&r, &x, 4);
1630 #else
1631 /* emulation, only works for normals and subnormals and +0 */
1632 int neg = x >> 31;
1633 int e = (x >> 23) & 0xffU;
1634
1635 x &= 0x7fffffU;
1636
1637 if (e)
1638 x |= 0x800000U;
1639 else
1640 e = 1;
1641
1642 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1643 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1644
1645 r = neg ? -r : r;
1646 #endif
1647
1648 return r;
1649 }
1650
1651 /* convert a double to ieee double/binary64 */
1652 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1653 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x)
1654 {
1655 uint64_t r;
1656
1657 #if ECB_STDFP
1658 memcpy (&r, &x, 8);
1659 #else
1660 /* slow emulation, works for anything but -0 */
1661 uint64_t m;
1662 int e;
1663
1664 if (x == 0e0 ) return 0x0000000000000000U;
1665 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1666 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1667 if (x != x ) return 0X7ff7ffffffffffffU;
1668
1669 m = frexp (x, &e) * 0x20000000000000U;
1670
1671 r = m & 0x8000000000000000;;
1672
1673 if (r)
1674 m = -m;
1675
1676 if (e <= -1022)
1677 {
1678 m &= 0x1fffffffffffffU;
1679 m >>= (-1021 - e);
1680 e = -1022;
1681 }
1682
1683 r |= ((uint64_t)(e + 1022)) << 52;
1684 r |= m & 0xfffffffffffffU;
1685 #endif
1686
1687 return r;
1688 }
1689
1690 /* converts an ieee double/binary64 to a double */
1691 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1692 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x)
1693 {
1694 double r;
1695
1696 #if ECB_STDFP
1697 memcpy (&r, &x, 8);
1698 #else
1699 /* emulation, only works for normals and subnormals and +0 */
1700 int neg = x >> 63;
1701 int e = (x >> 52) & 0x7ffU;
1702
1703 x &= 0xfffffffffffffU;
1704
1705 if (e)
1706 x |= 0x10000000000000U;
1707 else
1708 e = 1;
1709
1710 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1711 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1712
1713 r = neg ? -r : r;
1714 #endif
1715
1716 return r;
1717 }
1718
1719 /* convert a float to ieee half/binary16 */
1720 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1721 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x)
1722 {
1723 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1724 }
1725
1726 /* convert an ieee half/binary16 to float */
1727 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1728 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x)
1729 {
1730 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1731 }
1732
1733 #endif
1734
1735 #endif
1736