1 |
/* |
2 |
* libecb - http://software.schmorp.de/pkg/libecb |
3 |
* |
4 |
* Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de> |
5 |
* Copyright (©) 2011 Emanuele Giaquinta |
6 |
* All rights reserved. |
7 |
* |
8 |
* Redistribution and use in source and binary forms, with or without modifica- |
9 |
* tion, are permitted provided that the following conditions are met: |
10 |
* |
11 |
* 1. Redistributions of source code must retain the above copyright notice, |
12 |
* this list of conditions and the following disclaimer. |
13 |
* |
14 |
* 2. Redistributions in binary form must reproduce the above copyright |
15 |
* notice, this list of conditions and the following disclaimer in the |
16 |
* documentation and/or other materials provided with the distribution. |
17 |
* |
18 |
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED |
19 |
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- |
20 |
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO |
21 |
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- |
22 |
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
23 |
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
24 |
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
25 |
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- |
26 |
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
27 |
* OF THE POSSIBILITY OF SUCH DAMAGE. |
28 |
* |
29 |
* Alternatively, the contents of this file may be used under the terms of |
30 |
* the GNU General Public License ("GPL") version 2 or any later version, |
31 |
* in which case the provisions of the GPL are applicable instead of |
32 |
* the above. If you wish to allow the use of your version of this file |
33 |
* only under the terms of the GPL and not to allow others to use your |
34 |
* version of this file under the BSD license, indicate your decision |
35 |
* by deleting the provisions above and replace them with the notice |
36 |
* and other provisions required by the GPL. If you do not delete the |
37 |
* provisions above, a recipient may use your version of this file under |
38 |
* either the BSD or the GPL. |
39 |
*/ |
40 |
|
41 |
#ifndef ECB_H |
42 |
#define ECB_H |
43 |
|
44 |
/* 16 bits major, 16 bits minor */ |
45 |
#define ECB_VERSION 0x0001000c |
46 |
|
47 |
#include <string.h> /* for memcpy */ |
48 |
|
49 |
#if defined (_WIN32) && !defined (__MINGW32__) |
50 |
typedef signed char int8_t; |
51 |
typedef unsigned char uint8_t; |
52 |
typedef signed char int_fast8_t; |
53 |
typedef unsigned char uint_fast8_t; |
54 |
typedef signed short int16_t; |
55 |
typedef unsigned short uint16_t; |
56 |
typedef signed int int_fast16_t; |
57 |
typedef unsigned int uint_fast16_t; |
58 |
typedef signed int int32_t; |
59 |
typedef unsigned int uint32_t; |
60 |
typedef signed int int_fast32_t; |
61 |
typedef unsigned int uint_fast32_t; |
62 |
#if __GNUC__ |
63 |
typedef signed long long int64_t; |
64 |
typedef unsigned long long uint64_t; |
65 |
#else /* _MSC_VER || __BORLANDC__ */ |
66 |
typedef signed __int64 int64_t; |
67 |
typedef unsigned __int64 uint64_t; |
68 |
#endif |
69 |
typedef int64_t int_fast64_t; |
70 |
typedef uint64_t uint_fast64_t; |
71 |
#ifdef _WIN64 |
72 |
#define ECB_PTRSIZE 8 |
73 |
typedef uint64_t uintptr_t; |
74 |
typedef int64_t intptr_t; |
75 |
#else |
76 |
#define ECB_PTRSIZE 4 |
77 |
typedef uint32_t uintptr_t; |
78 |
typedef int32_t intptr_t; |
79 |
#endif |
80 |
#else |
81 |
#include <inttypes.h> |
82 |
#if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU |
83 |
#define ECB_PTRSIZE 8 |
84 |
#else |
85 |
#define ECB_PTRSIZE 4 |
86 |
#endif |
87 |
#endif |
88 |
|
89 |
#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__) |
90 |
#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64) |
91 |
|
92 |
#ifndef ECB_OPTIMIZE_SIZE |
93 |
#if __OPTIMIZE_SIZE__ |
94 |
#define ECB_OPTIMIZE_SIZE 1 |
95 |
#else |
96 |
#define ECB_OPTIMIZE_SIZE 0 |
97 |
#endif |
98 |
#endif |
99 |
|
100 |
/* work around x32 idiocy by defining proper macros */ |
101 |
#if ECB_GCC_AMD64 || ECB_MSVC_AMD64 |
102 |
#if _ILP32 |
103 |
#define ECB_AMD64_X32 1 |
104 |
#else |
105 |
#define ECB_AMD64 1 |
106 |
#endif |
107 |
#endif |
108 |
|
109 |
#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32 |
110 |
#define ECB_64BIT_NATIVE 1 |
111 |
#else |
112 |
#define ECB_64BIT_NATIVE 0 |
113 |
#endif |
114 |
|
115 |
/* many compilers define _GNUC_ to some versions but then only implement |
116 |
* what their idiot authors think are the "more important" extensions, |
117 |
* causing enormous grief in return for some better fake benchmark numbers. |
118 |
* or so. |
119 |
* we try to detect these and simply assume they are not gcc - if they have |
120 |
* an issue with that they should have done it right in the first place. |
121 |
*/ |
122 |
#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__ |
123 |
#define ECB_GCC_VERSION(major,minor) 0 |
124 |
#else |
125 |
#define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor))) |
126 |
#endif |
127 |
|
128 |
#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor))) |
129 |
|
130 |
#if __clang__ && defined __has_builtin |
131 |
#define ECB_CLANG_BUILTIN(x) __has_builtin (x) |
132 |
#else |
133 |
#define ECB_CLANG_BUILTIN(x) 0 |
134 |
#endif |
135 |
|
136 |
#if __clang__ && defined __has_extension |
137 |
#define ECB_CLANG_EXTENSION(x) __has_extension (x) |
138 |
#else |
139 |
#define ECB_CLANG_EXTENSION(x) 0 |
140 |
#endif |
141 |
|
142 |
#define ECB_CPP (__cplusplus+0) |
143 |
#define ECB_CPP11 (__cplusplus >= 201103L) |
144 |
#define ECB_CPP14 (__cplusplus >= 201402L) |
145 |
#define ECB_CPP17 (__cplusplus >= 201703L) |
146 |
|
147 |
#if ECB_CPP |
148 |
#define ECB_C 0 |
149 |
#define ECB_STDC_VERSION 0 |
150 |
#else |
151 |
#define ECB_C 1 |
152 |
#define ECB_STDC_VERSION __STDC_VERSION__ |
153 |
#endif |
154 |
|
155 |
#define ECB_C99 (ECB_STDC_VERSION >= 199901L) |
156 |
#define ECB_C11 (ECB_STDC_VERSION >= 201112L) |
157 |
#define ECB_C17 (ECB_STDC_VERSION >= 201710L) |
158 |
|
159 |
#if ECB_CPP |
160 |
#define ECB_EXTERN_C extern "C" |
161 |
#define ECB_EXTERN_C_BEG ECB_EXTERN_C { |
162 |
#define ECB_EXTERN_C_END } |
163 |
#else |
164 |
#define ECB_EXTERN_C extern |
165 |
#define ECB_EXTERN_C_BEG |
166 |
#define ECB_EXTERN_C_END |
167 |
#endif |
168 |
|
169 |
/*****************************************************************************/ |
170 |
|
171 |
/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */ |
172 |
/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */ |
173 |
|
174 |
#if ECB_NO_THREADS |
175 |
#define ECB_NO_SMP 1 |
176 |
#endif |
177 |
|
178 |
#if ECB_NO_SMP |
179 |
#define ECB_MEMORY_FENCE do { } while (0) |
180 |
#endif |
181 |
|
182 |
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */ |
183 |
#if __xlC__ && ECB_CPP |
184 |
#include <builtins.h> |
185 |
#endif |
186 |
|
187 |
#if 1400 <= _MSC_VER |
188 |
#include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */ |
189 |
#endif |
190 |
|
191 |
#ifndef ECB_MEMORY_FENCE |
192 |
#if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
193 |
#define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory") |
194 |
#if __i386 || __i386__ |
195 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory") |
196 |
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
197 |
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
198 |
#elif ECB_GCC_AMD64 |
199 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory") |
200 |
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory") |
201 |
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory") |
202 |
#elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ |
203 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory") |
204 |
#elif defined __ARM_ARCH_2__ \ |
205 |
|| defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \ |
206 |
|| defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \ |
207 |
|| defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \ |
208 |
|| defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \ |
209 |
|| defined __ARM_ARCH_5TEJ__ |
210 |
/* should not need any, unless running old code on newer cpu - arm doesn't support that */ |
211 |
#elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \ |
212 |
|| defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \ |
213 |
|| defined __ARM_ARCH_6T2__ |
214 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory") |
215 |
#elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \ |
216 |
|| defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__ |
217 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory") |
218 |
#elif __aarch64__ |
219 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory") |
220 |
#elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8) |
221 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory") |
222 |
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory") |
223 |
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore") |
224 |
#elif defined __s390__ || defined __s390x__ |
225 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory") |
226 |
#elif defined __mips__ |
227 |
/* GNU/Linux emulates sync on mips1 architectures, so we force its use */ |
228 |
/* anybody else who still uses mips1 is supposed to send in their version, with detection code. */ |
229 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory") |
230 |
#elif defined __alpha__ |
231 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory") |
232 |
#elif defined __hppa__ |
233 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
234 |
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("") |
235 |
#elif defined __ia64__ |
236 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory") |
237 |
#elif defined __m68k__ |
238 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
239 |
#elif defined __m88k__ |
240 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory") |
241 |
#elif defined __sh__ |
242 |
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory") |
243 |
#endif |
244 |
#endif |
245 |
#endif |
246 |
|
247 |
#ifndef ECB_MEMORY_FENCE |
248 |
#if ECB_GCC_VERSION(4,7) |
249 |
/* see comment below (stdatomic.h) about the C11 memory model. */ |
250 |
#define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST) |
251 |
#define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE) |
252 |
#define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE) |
253 |
#undef ECB_MEMORY_FENCE_RELAXED |
254 |
#define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED) |
255 |
|
256 |
#elif ECB_CLANG_EXTENSION(c_atomic) |
257 |
/* see comment below (stdatomic.h) about the C11 memory model. */ |
258 |
#define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST) |
259 |
#define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE) |
260 |
#define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE) |
261 |
#undef ECB_MEMORY_FENCE_RELAXED |
262 |
#define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED) |
263 |
|
264 |
#elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__ |
265 |
#define ECB_MEMORY_FENCE __sync_synchronize () |
266 |
#elif _MSC_VER >= 1500 /* VC++ 2008 */ |
267 |
/* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */ |
268 |
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) |
269 |
#define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier() |
270 |
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */ |
271 |
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier() |
272 |
#elif _MSC_VER >= 1400 /* VC++ 2005 */ |
273 |
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier) |
274 |
#define ECB_MEMORY_FENCE _ReadWriteBarrier () |
275 |
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */ |
276 |
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier () |
277 |
#elif defined _WIN32 |
278 |
#include <WinNT.h> |
279 |
#define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */ |
280 |
#elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110 |
281 |
#include <mbarrier.h> |
282 |
#define ECB_MEMORY_FENCE __machine_rw_barrier () |
283 |
#define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier () |
284 |
#define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier () |
285 |
#define ECB_MEMORY_FENCE_RELAXED __compiler_barrier () |
286 |
#elif __xlC__ |
287 |
#define ECB_MEMORY_FENCE __sync () |
288 |
#endif |
289 |
#endif |
290 |
|
291 |
#ifndef ECB_MEMORY_FENCE |
292 |
#if ECB_C11 && !defined __STDC_NO_ATOMICS__ |
293 |
/* we assume that these memory fences work on all variables/all memory accesses, */ |
294 |
/* not just C11 atomics and atomic accesses */ |
295 |
#include <stdatomic.h> |
296 |
#define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst) |
297 |
#define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire) |
298 |
#define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release) |
299 |
#endif |
300 |
#endif |
301 |
|
302 |
#ifndef ECB_MEMORY_FENCE |
303 |
#if !ECB_AVOID_PTHREADS |
304 |
/* |
305 |
* if you get undefined symbol references to pthread_mutex_lock, |
306 |
* or failure to find pthread.h, then you should implement |
307 |
* the ECB_MEMORY_FENCE operations for your cpu/compiler |
308 |
* OR provide pthread.h and link against the posix thread library |
309 |
* of your system. |
310 |
*/ |
311 |
#include <pthread.h> |
312 |
#define ECB_NEEDS_PTHREADS 1 |
313 |
#define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1 |
314 |
|
315 |
static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER; |
316 |
#define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0) |
317 |
#endif |
318 |
#endif |
319 |
|
320 |
#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE |
321 |
#define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE |
322 |
#endif |
323 |
|
324 |
#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE |
325 |
#define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE |
326 |
#endif |
327 |
|
328 |
#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE |
329 |
#define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */ |
330 |
#endif |
331 |
|
332 |
/*****************************************************************************/ |
333 |
|
334 |
#if ECB_CPP |
335 |
#define ecb_inline static inline |
336 |
#elif ECB_GCC_VERSION(2,5) |
337 |
#define ecb_inline static __inline__ |
338 |
#elif ECB_C99 |
339 |
#define ecb_inline static inline |
340 |
#else |
341 |
#define ecb_inline static |
342 |
#endif |
343 |
|
344 |
#if ECB_GCC_VERSION(3,3) |
345 |
#define ecb_restrict __restrict__ |
346 |
#elif ECB_C99 |
347 |
#define ecb_restrict restrict |
348 |
#else |
349 |
#define ecb_restrict |
350 |
#endif |
351 |
|
352 |
typedef int ecb_bool; |
353 |
|
354 |
#define ECB_CONCAT_(a, b) a ## b |
355 |
#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b) |
356 |
#define ECB_STRINGIFY_(a) # a |
357 |
#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a) |
358 |
#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr)) |
359 |
|
360 |
/* This marks larger functions that do not neccessarily need to be inlined */ |
361 |
/* The idea is to possibly compile the header twice, */ |
362 |
/* once exposing only the declarations, another time to define external functions */ |
363 |
/* TODO: possibly static would be best for these at the moment? */ |
364 |
#define ecb_function_ ecb_inline |
365 |
|
366 |
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8) |
367 |
#define ecb_attribute(attrlist) __attribute__ (attrlist) |
368 |
#else |
369 |
#define ecb_attribute(attrlist) |
370 |
#endif |
371 |
|
372 |
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p) |
373 |
#define ecb_is_constant(expr) __builtin_constant_p (expr) |
374 |
#else |
375 |
/* possible C11 impl for integral types |
376 |
typedef struct ecb_is_constant_struct ecb_is_constant_struct; |
377 |
#define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */ |
378 |
|
379 |
#define ecb_is_constant(expr) 0 |
380 |
#endif |
381 |
|
382 |
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect) |
383 |
#define ecb_expect(expr,value) __builtin_expect ((expr),(value)) |
384 |
#else |
385 |
#define ecb_expect(expr,value) (expr) |
386 |
#endif |
387 |
|
388 |
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch) |
389 |
#define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality) |
390 |
#else |
391 |
#define ecb_prefetch(addr,rw,locality) |
392 |
#endif |
393 |
|
394 |
/* no emulation for ecb_decltype */ |
395 |
#if ECB_CPP11 |
396 |
// older implementations might have problems with decltype(x)::type, work around it |
397 |
template<class T> struct ecb_decltype_t { typedef T type; }; |
398 |
#define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type |
399 |
#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8) |
400 |
#define ecb_decltype(x) __typeof__ (x) |
401 |
#endif |
402 |
|
403 |
#if _MSC_VER >= 1300 |
404 |
#define ecb_deprecated __declspec (deprecated) |
405 |
#else |
406 |
#define ecb_deprecated ecb_attribute ((__deprecated__)) |
407 |
#endif |
408 |
|
409 |
#if _MSC_VER >= 1500 |
410 |
#define ecb_deprecated_message(msg) __declspec (deprecated (msg)) |
411 |
#elif ECB_GCC_VERSION(4,5) |
412 |
#define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg)) |
413 |
#else |
414 |
#define ecb_deprecated_message(msg) ecb_deprecated |
415 |
#endif |
416 |
|
417 |
#if _MSC_VER >= 1400 |
418 |
#define ecb_noinline __declspec (noinline) |
419 |
#else |
420 |
#define ecb_noinline ecb_attribute ((__noinline__)) |
421 |
#endif |
422 |
|
423 |
#define ecb_unused ecb_attribute ((__unused__)) |
424 |
#define ecb_const ecb_attribute ((__const__)) |
425 |
#define ecb_pure ecb_attribute ((__pure__)) |
426 |
|
427 |
#if ECB_C11 || __IBMC_NORETURN |
428 |
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */ |
429 |
#define ecb_noreturn _Noreturn |
430 |
#elif ECB_CPP11 |
431 |
#define ecb_noreturn [[noreturn]] |
432 |
#elif _MSC_VER >= 1200 |
433 |
/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */ |
434 |
#define ecb_noreturn __declspec (noreturn) |
435 |
#else |
436 |
#define ecb_noreturn ecb_attribute ((__noreturn__)) |
437 |
#endif |
438 |
|
439 |
#if ECB_GCC_VERSION(4,3) |
440 |
#define ecb_artificial ecb_attribute ((__artificial__)) |
441 |
#define ecb_hot ecb_attribute ((__hot__)) |
442 |
#define ecb_cold ecb_attribute ((__cold__)) |
443 |
#else |
444 |
#define ecb_artificial |
445 |
#define ecb_hot |
446 |
#define ecb_cold |
447 |
#endif |
448 |
|
449 |
/* put around conditional expressions if you are very sure that the */ |
450 |
/* expression is mostly true or mostly false. note that these return */ |
451 |
/* booleans, not the expression. */ |
452 |
#define ecb_expect_false(expr) ecb_expect (!!(expr), 0) |
453 |
#define ecb_expect_true(expr) ecb_expect (!!(expr), 1) |
454 |
/* for compatibility to the rest of the world */ |
455 |
#define ecb_likely(expr) ecb_expect_true (expr) |
456 |
#define ecb_unlikely(expr) ecb_expect_false (expr) |
457 |
|
458 |
/* count trailing zero bits and count # of one bits */ |
459 |
#if ECB_GCC_VERSION(3,4) \ |
460 |
|| (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \ |
461 |
&& ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \ |
462 |
&& ECB_CLANG_BUILTIN(__builtin_popcount)) |
463 |
#define ecb_ctz32(x) __builtin_ctz (x) |
464 |
#define ecb_ctz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_ctzl (x) : __builtin_ctzll (x)) |
465 |
#define ecb_clz32(x) __builtin_clz (x) |
466 |
#define ecb_clz64(x) (__SIZEOF_LONG__ == 64 ? __builtin_clzl (x) : __builtin_clzll (x)) |
467 |
#define ecb_ld32(x) (ecb_clz32 (x) ^ 31) |
468 |
#define ecb_ld64(x) (ecb_clz64 (x) ^ 63) |
469 |
#define ecb_popcount32(x) __builtin_popcount (x) |
470 |
/* ecb_popcount64 is more difficult, see below */ |
471 |
#else |
472 |
ecb_function_ ecb_const int ecb_ctz32 (uint32_t x); |
473 |
ecb_function_ ecb_const int ecb_ctz32 (uint32_t x) |
474 |
{ |
475 |
#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
476 |
unsigned long r; |
477 |
_BitScanForward (&r, x); |
478 |
return (int)r; |
479 |
#else |
480 |
int r; |
481 |
|
482 |
x &= ~x + 1; /* this isolates the lowest bit */ |
483 |
|
484 |
#if 1 |
485 |
/* David Seal's algorithm, Message-ID: <32975@armltd.uucp> from 1994 */ |
486 |
/* This happens to return 32 for x == 0, but the API does not support this */ |
487 |
|
488 |
/* -0 marks unused entries */ |
489 |
static unsigned char table[64] = |
490 |
{ |
491 |
32, 0, 1, 12, 2, 6, -0, 13, 3, -0, 7, -0, -0, -0, -0, 14, |
492 |
10, 4, -0, -0, 8, -0, -0, 25, -0, -0, -0, -0, -0, 21, 27, 15, |
493 |
31, 11, 5, -0, -0, -0, -0, -0, 9, -0, -0, 24, -0, -0, 20, 26, |
494 |
30, -0, -0, -0, -0, 23, -0, 19, 29, -0, 22, 18, 28, 17, 16, -0 |
495 |
}; |
496 |
|
497 |
/* magic constant results in 33 unique values in the upper 6 bits */ |
498 |
x *= 0x0450fbafU; /* == 17 * 65 * 65535 */ |
499 |
|
500 |
r = table [x >> 26]; |
501 |
#elif 0 /* branchless on i386, typically */ |
502 |
r = 0; |
503 |
r += !!(x & 0xaaaaaaaa) << 0; |
504 |
r += !!(x & 0xcccccccc) << 1; |
505 |
r += !!(x & 0xf0f0f0f0) << 2; |
506 |
r += !!(x & 0xff00ff00) << 3; |
507 |
r += !!(x & 0xffff0000) << 4; |
508 |
#else /* branchless on modern compilers, typically */ |
509 |
r = 0; |
510 |
if (x & 0xaaaaaaaa) r += 1; |
511 |
if (x & 0xcccccccc) r += 2; |
512 |
if (x & 0xf0f0f0f0) r += 4; |
513 |
if (x & 0xff00ff00) r += 8; |
514 |
if (x & 0xffff0000) r += 16; |
515 |
#endif |
516 |
|
517 |
return r; |
518 |
#endif |
519 |
} |
520 |
|
521 |
ecb_function_ ecb_const int ecb_ctz64 (uint64_t x); |
522 |
ecb_function_ ecb_const int ecb_ctz64 (uint64_t x) |
523 |
{ |
524 |
#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
525 |
unsigned long r; |
526 |
_BitScanForward64 (&r, x); |
527 |
return (int)r; |
528 |
#else |
529 |
int shift = x & 0xffffffff ? 0 : 32; |
530 |
return ecb_ctz32 (x >> shift) + shift; |
531 |
#endif |
532 |
} |
533 |
|
534 |
ecb_function_ ecb_const int ecb_clz32 (uint32_t x); |
535 |
ecb_function_ ecb_const int ecb_clz32 (uint32_t x) |
536 |
{ |
537 |
#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
538 |
unsigned long r; |
539 |
_BitScanReverse (&r, x); |
540 |
return 31 - (int)r; |
541 |
#else |
542 |
|
543 |
/* Robert Harley's algorithm from comp.arch 1996-12-07 */ |
544 |
/* This happens to return 32 for x == 0, but the API does not support this */ |
545 |
|
546 |
/* -0 marks unused table elements */ |
547 |
static unsigned char table[64] = |
548 |
{ |
549 |
32, 31, -0, 16, -0, 30, 3, -0, 15, -0, -0, -0, 29, 10, 2, -0, |
550 |
-0, -0, 12, 14, 21, -0, 19, -0, -0, 28, -0, 25, -0, 9, 1, -0, |
551 |
17, -0, 4, -0, -0, -0, 11, -0, 13, 22, 20, -0, 26, -0, -0, 18, |
552 |
5, -0, -0, 23, -0, 27, -0, 6, -0, 24, 7, -0, 8, -0, 0, -0 |
553 |
}; |
554 |
|
555 |
/* propagate leftmost 1 bit to the right */ |
556 |
x |= x >> 1; |
557 |
x |= x >> 2; |
558 |
x |= x >> 4; |
559 |
x |= x >> 8; |
560 |
x |= x >> 16; |
561 |
|
562 |
/* magic constant results in 33 unique values in the upper 6 bits */ |
563 |
x *= 0x06EB14F9U; /* == 7 * 255 * 255 * 255 */ |
564 |
|
565 |
return table [x >> 26]; |
566 |
#endif |
567 |
} |
568 |
|
569 |
ecb_function_ ecb_const int ecb_clz64 (uint64_t x); |
570 |
ecb_function_ ecb_const int ecb_clz64 (uint64_t x) |
571 |
{ |
572 |
#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
573 |
unsigned long r; |
574 |
_BitScanReverse64 (&r, x); |
575 |
return 63 - (int)r; |
576 |
#else |
577 |
uint32_t l = x >> 32; |
578 |
int shift = l ? 0 : 32; |
579 |
return ecb_clz32 (l ? l : x) + shift; |
580 |
#endif |
581 |
} |
582 |
|
583 |
ecb_function_ ecb_const int ecb_popcount32 (uint32_t x); |
584 |
ecb_function_ ecb_const int ecb_popcount32 (uint32_t x) |
585 |
{ |
586 |
x -= (x >> 1) & 0x55555555; |
587 |
x = ((x >> 2) & 0x33333333) + (x & 0x33333333); |
588 |
x = ((x >> 4) + x) & 0x0f0f0f0f; |
589 |
x *= 0x01010101; |
590 |
|
591 |
return x >> 24; |
592 |
} |
593 |
|
594 |
ecb_function_ ecb_const int ecb_ld32 (uint32_t x); |
595 |
ecb_function_ ecb_const int ecb_ld32 (uint32_t x) |
596 |
{ |
597 |
#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM) |
598 |
unsigned long r; |
599 |
_BitScanReverse (&r, x); |
600 |
return (int)r; |
601 |
#else |
602 |
int r = 0; |
603 |
|
604 |
if (x >> 16) { x >>= 16; r += 16; } |
605 |
if (x >> 8) { x >>= 8; r += 8; } |
606 |
if (x >> 4) { x >>= 4; r += 4; } |
607 |
if (x >> 2) { x >>= 2; r += 2; } |
608 |
if (x >> 1) { r += 1; } |
609 |
|
610 |
return r; |
611 |
#endif |
612 |
} |
613 |
|
614 |
ecb_function_ ecb_const int ecb_ld64 (uint64_t x); |
615 |
ecb_function_ ecb_const int ecb_ld64 (uint64_t x) |
616 |
{ |
617 |
#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM) |
618 |
unsigned long r; |
619 |
_BitScanReverse64 (&r, x); |
620 |
return (int)r; |
621 |
#else |
622 |
int r = 0; |
623 |
|
624 |
if (x >> 32) { x >>= 32; r += 32; } |
625 |
|
626 |
return r + ecb_ld32 (x); |
627 |
#endif |
628 |
} |
629 |
#endif |
630 |
|
631 |
ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x); |
632 |
ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); } |
633 |
ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x); |
634 |
ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); } |
635 |
|
636 |
ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x); |
637 |
ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x) |
638 |
{ |
639 |
return ( (x * 0x0802U & 0x22110U) |
640 |
| (x * 0x8020U & 0x88440U)) * 0x10101U >> 16; |
641 |
} |
642 |
|
643 |
ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x); |
644 |
ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x) |
645 |
{ |
646 |
x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1); |
647 |
x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2); |
648 |
x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4); |
649 |
x = ( x >> 8 ) | ( x << 8); |
650 |
|
651 |
return x; |
652 |
} |
653 |
|
654 |
ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x); |
655 |
ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x) |
656 |
{ |
657 |
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); |
658 |
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); |
659 |
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); |
660 |
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); |
661 |
x = ( x >> 16 ) | ( x << 16); |
662 |
|
663 |
return x; |
664 |
} |
665 |
|
666 |
ecb_function_ ecb_const int ecb_popcount64 (uint64_t x); |
667 |
ecb_function_ ecb_const int ecb_popcount64 (uint64_t x) |
668 |
{ |
669 |
/* popcount64 is only available on 64 bit cpus as gcc builtin. */ |
670 |
/* also, gcc/clang make this surprisingly difficult to use */ |
671 |
#if (__SIZEOF_LONG__ == 8) && (ECB_GCC_VERSION(3,4) || ECB_CLANG_BUILTIN (__builtin_popcountl)) |
672 |
return __builtin_popcountl (x); |
673 |
#else |
674 |
return ecb_popcount32 (x) + ecb_popcount32 (x >> 32); |
675 |
#endif |
676 |
} |
677 |
|
678 |
ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> (-count & 7)) | (x << (count & 7)); } |
679 |
ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << (-count & 7)) | (x >> (count & 7)); } |
680 |
ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (-count & 15)) | (x << (count & 15)); } |
681 |
ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (-count & 15)) | (x >> (count & 15)); } |
682 |
ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (-count & 31)) | (x << (count & 31)); } |
683 |
ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (-count & 31)) | (x >> (count & 31)); } |
684 |
ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (-count & 63)) | (x << (count & 63)); } |
685 |
ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (-count & 63)) | (x >> (count & 63)); } |
686 |
|
687 |
#if ECB_CPP |
688 |
|
689 |
inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); } |
690 |
inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); } |
691 |
inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); } |
692 |
inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); } |
693 |
|
694 |
inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); } |
695 |
inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); } |
696 |
inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); } |
697 |
inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); } |
698 |
|
699 |
inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); } |
700 |
inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); } |
701 |
inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); } |
702 |
inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); } |
703 |
|
704 |
inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); } |
705 |
inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); } |
706 |
inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); } |
707 |
inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); } |
708 |
|
709 |
inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); } |
710 |
inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); } |
711 |
inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); } |
712 |
|
713 |
inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); } |
714 |
inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); } |
715 |
inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); } |
716 |
inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); } |
717 |
|
718 |
inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); } |
719 |
inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); } |
720 |
inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); } |
721 |
inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); } |
722 |
|
723 |
#endif |
724 |
|
725 |
#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64)) |
726 |
#if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16) |
727 |
#define ecb_bswap16(x) __builtin_bswap16 (x) |
728 |
#else |
729 |
#define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16) |
730 |
#endif |
731 |
#define ecb_bswap32(x) __builtin_bswap32 (x) |
732 |
#define ecb_bswap64(x) __builtin_bswap64 (x) |
733 |
#elif _MSC_VER |
734 |
#include <stdlib.h> |
735 |
#define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x))) |
736 |
#define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x))) |
737 |
#define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x))) |
738 |
#else |
739 |
ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x); |
740 |
ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x) |
741 |
{ |
742 |
return ecb_rotl16 (x, 8); |
743 |
} |
744 |
|
745 |
ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x); |
746 |
ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x) |
747 |
{ |
748 |
return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16); |
749 |
} |
750 |
|
751 |
ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x); |
752 |
ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x) |
753 |
{ |
754 |
return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32); |
755 |
} |
756 |
#endif |
757 |
|
758 |
#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable) |
759 |
#define ecb_unreachable() __builtin_unreachable () |
760 |
#else |
761 |
/* this seems to work fine, but gcc always emits a warning for it :/ */ |
762 |
ecb_inline ecb_noreturn void ecb_unreachable (void); |
763 |
ecb_inline ecb_noreturn void ecb_unreachable (void) { } |
764 |
#endif |
765 |
|
766 |
/* try to tell the compiler that some condition is definitely true */ |
767 |
#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0 |
768 |
|
769 |
ecb_inline uint32_t ecb_byteorder_helper (void); |
770 |
ecb_inline uint32_t ecb_byteorder_helper (void) |
771 |
{ |
772 |
/* the union code still generates code under pressure in gcc, */ |
773 |
/* but less than using pointers, and always seems to */ |
774 |
/* successfully return a constant. */ |
775 |
/* the reason why we have this horrible preprocessor mess */ |
776 |
/* is to avoid it in all cases, at least on common architectures */ |
777 |
/* or when using a recent enough gcc version (>= 4.6) */ |
778 |
#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \ |
779 |
|| ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__) |
780 |
#define ECB_LITTLE_ENDIAN 1 |
781 |
return 0x44332211; |
782 |
#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \ |
783 |
|| ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__) |
784 |
#define ECB_BIG_ENDIAN 1 |
785 |
return 0x11223344; |
786 |
#else |
787 |
union |
788 |
{ |
789 |
uint8_t c[4]; |
790 |
uint32_t u; |
791 |
} u = { 0x11, 0x22, 0x33, 0x44 }; |
792 |
return u.u; |
793 |
#endif |
794 |
} |
795 |
|
796 |
ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; } |
797 |
ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; } |
798 |
|
799 |
/*****************************************************************************/ |
800 |
/* unaligned load/store */ |
801 |
|
802 |
ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
803 |
ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
804 |
ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
805 |
|
806 |
ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
807 |
ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
808 |
ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
809 |
|
810 |
ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
811 |
ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
812 |
ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; } |
813 |
|
814 |
ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); } |
815 |
ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); } |
816 |
ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); } |
817 |
|
818 |
ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); } |
819 |
ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); } |
820 |
ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); } |
821 |
|
822 |
ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; } |
823 |
ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; } |
824 |
ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; } |
825 |
|
826 |
ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; } |
827 |
ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; } |
828 |
ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; } |
829 |
|
830 |
ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); } |
831 |
ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); } |
832 |
ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); } |
833 |
|
834 |
ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); } |
835 |
ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); } |
836 |
ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); } |
837 |
|
838 |
ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); } |
839 |
ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); } |
840 |
ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); } |
841 |
|
842 |
#if ECB_CPP |
843 |
|
844 |
inline uint8_t ecb_bswap (uint8_t v) { return v; } |
845 |
inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); } |
846 |
inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); } |
847 |
inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); } |
848 |
|
849 |
template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
850 |
template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
851 |
template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; } |
852 |
template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); } |
853 |
template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); } |
854 |
template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; } |
855 |
template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); } |
856 |
template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); } |
857 |
|
858 |
template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; } |
859 |
template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; } |
860 |
template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; } |
861 |
template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); } |
862 |
template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); } |
863 |
template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); } |
864 |
template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); } |
865 |
template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); } |
866 |
|
867 |
#endif |
868 |
|
869 |
/*****************************************************************************/ |
870 |
/* pointer/integer hashing */ |
871 |
|
872 |
/* based on hash by Chris Wellons, https://nullprogram.com/blog/2018/07/31/ */ |
873 |
ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v); |
874 |
ecb_function_ ecb_const uint32_t ecb_mix32 (uint32_t v) |
875 |
{ |
876 |
v ^= v >> 16; v *= 0x7feb352dU; |
877 |
v ^= v >> 15; v *= 0x846ca68bU; |
878 |
v ^= v >> 16; |
879 |
return v; |
880 |
} |
881 |
|
882 |
ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v); |
883 |
ecb_function_ ecb_const uint32_t ecb_unmix32 (uint32_t v) |
884 |
{ |
885 |
v ^= v >> 16 ; v *= 0x43021123U; |
886 |
v ^= v >> 15 ^ v >> 30; v *= 0x1d69e2a5U; |
887 |
v ^= v >> 16 ; |
888 |
return v; |
889 |
} |
890 |
|
891 |
/* based on splitmix64, by Sebastiona Vigna, https://prng.di.unimi.it/splitmix64.c */ |
892 |
ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v); |
893 |
ecb_function_ ecb_const uint64_t ecb_mix64 (uint64_t v) |
894 |
{ |
895 |
v ^= v >> 30; v *= 0xbf58476d1ce4e5b9U; |
896 |
v ^= v >> 27; v *= 0x94d049bb133111ebU; |
897 |
v ^= v >> 31; |
898 |
return v; |
899 |
} |
900 |
|
901 |
ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v); |
902 |
ecb_function_ ecb_const uint64_t ecb_unmix64 (uint64_t v) |
903 |
{ |
904 |
v ^= v >> 31 ^ v >> 62; v *= 0x319642b2d24d8ec3U; |
905 |
v ^= v >> 27 ^ v >> 54; v *= 0x96de1b173f119089U; |
906 |
v ^= v >> 30 ^ v >> 60; |
907 |
return v; |
908 |
} |
909 |
|
910 |
ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p); |
911 |
ecb_function_ ecb_const uintptr_t ecb_ptrmix (void *p) |
912 |
{ |
913 |
#if ECB_PTRSIZE <= 4 |
914 |
return ecb_mix32 ((uint32_t)p); |
915 |
#else |
916 |
return ecb_mix64 ((uint64_t)p); |
917 |
#endif |
918 |
} |
919 |
|
920 |
ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v); |
921 |
ecb_function_ ecb_const void *ecb_ptrunmix (uintptr_t v) |
922 |
{ |
923 |
#if ECB_PTRSIZE <= 4 |
924 |
return (void *)ecb_unmix32 (v); |
925 |
#else |
926 |
return (void *)ecb_unmix64 (v); |
927 |
#endif |
928 |
} |
929 |
|
930 |
#if ECB_CPP |
931 |
|
932 |
template<typename T> |
933 |
inline uintptr_t ecb_ptrmix (T *p) |
934 |
{ |
935 |
return ecb_ptrmix (static_cast<void *>(p)); |
936 |
} |
937 |
|
938 |
template<typename T> |
939 |
inline T *ecb_ptrunmix (uintptr_t v) |
940 |
{ |
941 |
return static_cast<T *>(ecb_ptrunmix (v)); |
942 |
} |
943 |
|
944 |
#endif |
945 |
|
946 |
/*****************************************************************************/ |
947 |
/* gray code */ |
948 |
|
949 |
ecb_inline uint_fast8_t ecb_gray_encode8 (uint_fast8_t b) { return b ^ (b >> 1); } |
950 |
ecb_inline uint_fast16_t ecb_gray_encode16 (uint_fast16_t b) { return b ^ (b >> 1); } |
951 |
ecb_inline uint_fast32_t ecb_gray_encode32 (uint_fast32_t b) { return b ^ (b >> 1); } |
952 |
ecb_inline uint_fast64_t ecb_gray_encode64 (uint_fast64_t b) { return b ^ (b >> 1); } |
953 |
|
954 |
ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g); |
955 |
ecb_function_ ecb_const uint8_t ecb_gray_decode8 (uint8_t g) |
956 |
{ |
957 |
g ^= g >> 1; |
958 |
g ^= g >> 2; |
959 |
g ^= g >> 4; |
960 |
|
961 |
return g; |
962 |
} |
963 |
|
964 |
ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g); |
965 |
ecb_function_ ecb_const uint16_t ecb_gray_decode16 (uint16_t g) |
966 |
{ |
967 |
g ^= g >> 1; |
968 |
g ^= g >> 2; |
969 |
g ^= g >> 4; |
970 |
g ^= g >> 8; |
971 |
|
972 |
return g; |
973 |
} |
974 |
|
975 |
ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g); |
976 |
ecb_function_ ecb_const uint32_t ecb_gray_decode32 (uint32_t g) |
977 |
{ |
978 |
g ^= g >> 1; |
979 |
g ^= g >> 2; |
980 |
g ^= g >> 4; |
981 |
g ^= g >> 8; |
982 |
g ^= g >> 16; |
983 |
|
984 |
return g; |
985 |
} |
986 |
|
987 |
ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g); |
988 |
ecb_function_ ecb_const uint64_t ecb_gray_decode64 (uint64_t g) |
989 |
{ |
990 |
g ^= g >> 1; |
991 |
g ^= g >> 2; |
992 |
g ^= g >> 4; |
993 |
g ^= g >> 8; |
994 |
g ^= g >> 16; |
995 |
g ^= g >> 32; |
996 |
|
997 |
return g; |
998 |
} |
999 |
|
1000 |
#if ECB_CPP |
1001 |
|
1002 |
ecb_inline uint8_t ecb_gray_encode (uint8_t b) { return ecb_gray_encode8 (b); } |
1003 |
ecb_inline uint16_t ecb_gray_encode (uint16_t b) { return ecb_gray_encode16 (b); } |
1004 |
ecb_inline uint32_t ecb_gray_encode (uint32_t b) { return ecb_gray_encode32 (b); } |
1005 |
ecb_inline uint64_t ecb_gray_encode (uint64_t b) { return ecb_gray_encode64 (b); } |
1006 |
|
1007 |
ecb_inline uint8_t ecb_gray_decode (uint8_t g) { return ecb_gray_decode8 (g); } |
1008 |
ecb_inline uint16_t ecb_gray_decode (uint16_t g) { return ecb_gray_decode16 (g); } |
1009 |
ecb_inline uint32_t ecb_gray_decode (uint32_t g) { return ecb_gray_decode32 (g); } |
1010 |
ecb_inline uint64_t ecb_gray_decode (uint64_t g) { return ecb_gray_decode64 (g); } |
1011 |
|
1012 |
#endif |
1013 |
|
1014 |
/*****************************************************************************/ |
1015 |
/* 2d hilbert curves */ |
1016 |
|
1017 |
/* algorithm from the book Hacker's Delight, modified to not */ |
1018 |
/* run into undefined behaviour for n==16 */ |
1019 |
ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s); |
1020 |
ecb_function_ ecb_const uint32_t ecb_hilbert2d_index_to_coord32 (int n, uint32_t s) |
1021 |
{ |
1022 |
uint32_t comp, swap, cs, t, sr; |
1023 |
|
1024 |
/* pad s on the left (unused) bits with 01 (no change groups) */ |
1025 |
s |= 0x55555555U << n << n; |
1026 |
/* "s shift right" */ |
1027 |
sr = (s >> 1) & 0x55555555U; |
1028 |
/* compute complement and swap info in two-bit groups */ |
1029 |
cs = ((s & 0x55555555U) + sr) ^ 0x55555555U; |
1030 |
|
1031 |
/* parallel prefix xor op to propagate both complement |
1032 |
* and swap info together from left to right (there is |
1033 |
* no step "cs ^= cs >> 1", so in effect it computes |
1034 |
* two independent parallel prefix operations on two |
1035 |
* interleaved sets of sixteen bits). |
1036 |
*/ |
1037 |
cs ^= cs >> 2; |
1038 |
cs ^= cs >> 4; |
1039 |
cs ^= cs >> 8; |
1040 |
cs ^= cs >> 16; |
1041 |
|
1042 |
/* separate swap and complement bits */ |
1043 |
swap = cs & 0x55555555U; |
1044 |
comp = (cs >> 1) & 0x55555555U; |
1045 |
|
1046 |
/* calculate coordinates in odd and even bit positions */ |
1047 |
t = (s & swap) ^ comp; |
1048 |
s = s ^ sr ^ t ^ (t << 1); |
1049 |
|
1050 |
/* unpad/clear out any junk on the left */ |
1051 |
s = s & ((1 << n << n) - 1); |
1052 |
|
1053 |
/* Now "unshuffle" to separate the x and y bits. */ |
1054 |
t = (s ^ (s >> 1)) & 0x22222222U; s ^= t ^ (t << 1); |
1055 |
t = (s ^ (s >> 2)) & 0x0c0c0c0cU; s ^= t ^ (t << 2); |
1056 |
t = (s ^ (s >> 4)) & 0x00f000f0U; s ^= t ^ (t << 4); |
1057 |
t = (s ^ (s >> 8)) & 0x0000ff00U; s ^= t ^ (t << 8); |
1058 |
|
1059 |
/* now s contains two 16-bit coordinates */ |
1060 |
return s; |
1061 |
} |
1062 |
|
1063 |
/* 64 bit, a straightforward extension to the 32 bit case */ |
1064 |
ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s); |
1065 |
ecb_function_ ecb_const uint64_t ecb_hilbert2d_index_to_coord64 (int n, uint64_t s) |
1066 |
{ |
1067 |
uint64_t comp, swap, cs, t, sr; |
1068 |
|
1069 |
/* pad s on the left (unused) bits with 01 (no change groups) */ |
1070 |
s |= 0x5555555555555555U << n << n; |
1071 |
/* "s shift right" */ |
1072 |
sr = (s >> 1) & 0x5555555555555555U; |
1073 |
/* compute complement and swap info in two-bit groups */ |
1074 |
cs = ((s & 0x5555555555555555U) + sr) ^ 0x5555555555555555U; |
1075 |
|
1076 |
/* parallel prefix xor op to propagate both complement |
1077 |
* and swap info together from left to right (there is |
1078 |
* no step "cs ^= cs >> 1", so in effect it computes |
1079 |
* two independent parallel prefix operations on two |
1080 |
* interleaved sets of thirty-two bits). |
1081 |
*/ |
1082 |
cs ^= cs >> 2; |
1083 |
cs ^= cs >> 4; |
1084 |
cs ^= cs >> 8; |
1085 |
cs ^= cs >> 16; |
1086 |
cs ^= cs >> 32; |
1087 |
|
1088 |
/* separate swap and complement bits */ |
1089 |
swap = cs & 0x5555555555555555U; |
1090 |
comp = (cs >> 1) & 0x5555555555555555U; |
1091 |
|
1092 |
/* calculate coordinates in odd and even bit positions */ |
1093 |
t = (s & swap) ^ comp; |
1094 |
s = s ^ sr ^ t ^ (t << 1); |
1095 |
|
1096 |
/* unpad/clear out any junk on the left */ |
1097 |
s = s & ((1 << n << n) - 1); |
1098 |
|
1099 |
/* Now "unshuffle" to separate the x and y bits. */ |
1100 |
t = (s ^ (s >> 1)) & 0x2222222222222222U; s ^= t ^ (t << 1); |
1101 |
t = (s ^ (s >> 2)) & 0x0c0c0c0c0c0c0c0cU; s ^= t ^ (t << 2); |
1102 |
t = (s ^ (s >> 4)) & 0x00f000f000f000f0U; s ^= t ^ (t << 4); |
1103 |
t = (s ^ (s >> 8)) & 0x0000ff000000ff00U; s ^= t ^ (t << 8); |
1104 |
t = (s ^ (s >> 16)) & 0x00000000ffff0000U; s ^= t ^ (t << 16); |
1105 |
|
1106 |
/* now s contains two 32-bit coordinates */ |
1107 |
return s; |
1108 |
} |
1109 |
|
1110 |
/* algorithm from the book Hacker's Delight, but a similar algorithm*/ |
1111 |
/* is given in https://doi.org/10.1002/spe.4380160103 */ |
1112 |
/* this has been slightly improved over the original version */ |
1113 |
ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy); |
1114 |
ecb_function_ ecb_const uint32_t ecb_hilbert2d_coord_to_index32 (int n, uint32_t xy) |
1115 |
{ |
1116 |
uint32_t row; |
1117 |
uint32_t state = 0; |
1118 |
uint32_t s = 0; |
1119 |
|
1120 |
do |
1121 |
{ |
1122 |
--n; |
1123 |
|
1124 |
row = 4 * state |
1125 |
| (2 & (xy >> n >> 15)) |
1126 |
| (1 & (xy >> n )); |
1127 |
|
1128 |
/* these funky constants are lookup tables for two-bit values */ |
1129 |
s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
1130 |
state = (0x8fe65831U >> 2 * row) & 3; |
1131 |
} |
1132 |
while (n > 0); |
1133 |
|
1134 |
return s; |
1135 |
} |
1136 |
|
1137 |
/* 64 bit, essentially the same as 32 bit */ |
1138 |
ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy); |
1139 |
ecb_function_ ecb_const uint64_t ecb_hilbert2d_coord_to_index64 (int n, uint64_t xy) |
1140 |
{ |
1141 |
uint32_t row; |
1142 |
uint32_t state = 0; |
1143 |
uint64_t s = 0; |
1144 |
|
1145 |
do |
1146 |
{ |
1147 |
--n; |
1148 |
|
1149 |
row = 4 * state |
1150 |
| (2 & (xy >> n >> 31)) |
1151 |
| (1 & (xy >> n )); |
1152 |
|
1153 |
/* these funky constants are lookup tables for two-bit values */ |
1154 |
s = (s << 2) | (0x361e9cb4U >> 2 * row) & 3; |
1155 |
state = (0x8fe65831U >> 2 * row) & 3; |
1156 |
} |
1157 |
while (n > 0); |
1158 |
|
1159 |
return s; |
1160 |
} |
1161 |
|
1162 |
/*****************************************************************************/ |
1163 |
/* division */ |
1164 |
|
1165 |
#if ECB_GCC_VERSION(3,0) || ECB_C99 |
1166 |
/* C99 tightened the definition of %, so we can use a more efficient version */ |
1167 |
#define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0)) |
1168 |
#else |
1169 |
#define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n))) |
1170 |
#endif |
1171 |
|
1172 |
#if ECB_CPP |
1173 |
template<typename T> |
1174 |
static inline T ecb_div_rd (T val, T div) |
1175 |
{ |
1176 |
return val < 0 ? - ((-val + div - 1) / div) : (val ) / div; |
1177 |
} |
1178 |
template<typename T> |
1179 |
static inline T ecb_div_ru (T val, T div) |
1180 |
{ |
1181 |
return val < 0 ? - ((-val ) / div) : (val + div - 1) / div; |
1182 |
} |
1183 |
#else |
1184 |
#define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div)) |
1185 |
#define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div)) |
1186 |
#endif |
1187 |
|
1188 |
/*****************************************************************************/ |
1189 |
/* array length */ |
1190 |
|
1191 |
#if ecb_cplusplus_does_not_suck |
1192 |
/* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */ |
1193 |
template<typename T, int N> |
1194 |
static inline int ecb_array_length (const T (&arr)[N]) |
1195 |
{ |
1196 |
return N; |
1197 |
} |
1198 |
#else |
1199 |
#define ecb_array_length(name) (sizeof (name) / sizeof (name [0])) |
1200 |
#endif |
1201 |
|
1202 |
/*****************************************************************************/ |
1203 |
/* IEEE 754-2008 half float conversions */ |
1204 |
|
1205 |
ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x); |
1206 |
ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x) |
1207 |
{ |
1208 |
unsigned int s = (x & 0x8000) << (31 - 15); |
1209 |
int e = (x >> 10) & 0x001f; |
1210 |
unsigned int m = x & 0x03ff; |
1211 |
|
1212 |
if (ecb_expect_false (e == 31)) |
1213 |
/* infinity or NaN */ |
1214 |
e = 255 - (127 - 15); |
1215 |
else if (ecb_expect_false (!e)) |
1216 |
{ |
1217 |
if (ecb_expect_true (!m)) |
1218 |
/* zero, handled by code below by forcing e to 0 */ |
1219 |
e = 0 - (127 - 15); |
1220 |
else |
1221 |
{ |
1222 |
/* subnormal, renormalise */ |
1223 |
unsigned int s = 10 - ecb_ld32 (m); |
1224 |
|
1225 |
m = (m << s) & 0x3ff; /* mask implicit bit */ |
1226 |
e -= s - 1; |
1227 |
} |
1228 |
} |
1229 |
|
1230 |
/* e and m now are normalised, or zero, (or inf or nan) */ |
1231 |
e += 127 - 15; |
1232 |
|
1233 |
return s | (e << 23) | (m << (23 - 10)); |
1234 |
} |
1235 |
|
1236 |
ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x); |
1237 |
ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x) |
1238 |
{ |
1239 |
unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */ |
1240 |
int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */ |
1241 |
unsigned int m = x & 0x007fffff; |
1242 |
|
1243 |
x &= 0x7fffffff; |
1244 |
|
1245 |
/* if it's within range of binary16 normals, use fast path */ |
1246 |
if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff)) |
1247 |
{ |
1248 |
/* mantissa round-to-even */ |
1249 |
m += 0x00000fff + ((m >> (23 - 10)) & 1); |
1250 |
|
1251 |
/* handle overflow */ |
1252 |
if (ecb_expect_false (m >= 0x00800000)) |
1253 |
{ |
1254 |
m >>= 1; |
1255 |
e += 1; |
1256 |
} |
1257 |
|
1258 |
return s | (e << 10) | (m >> (23 - 10)); |
1259 |
} |
1260 |
|
1261 |
/* handle large numbers and infinity */ |
1262 |
if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000)) |
1263 |
return s | 0x7c00; |
1264 |
|
1265 |
/* handle zero, subnormals and small numbers */ |
1266 |
if (ecb_expect_true (x < 0x38800000)) |
1267 |
{ |
1268 |
/* zero */ |
1269 |
if (ecb_expect_true (!x)) |
1270 |
return s; |
1271 |
|
1272 |
/* handle subnormals */ |
1273 |
|
1274 |
/* too small, will be zero */ |
1275 |
if (e < (14 - 24)) /* might not be sharp, but is good enough */ |
1276 |
return s; |
1277 |
|
1278 |
m |= 0x00800000; /* make implicit bit explicit */ |
1279 |
|
1280 |
/* very tricky - we need to round to the nearest e (+10) bit value */ |
1281 |
{ |
1282 |
unsigned int bits = 14 - e; |
1283 |
unsigned int half = (1 << (bits - 1)) - 1; |
1284 |
unsigned int even = (m >> bits) & 1; |
1285 |
|
1286 |
/* if this overflows, we will end up with a normalised number */ |
1287 |
m = (m + half + even) >> bits; |
1288 |
} |
1289 |
|
1290 |
return s | m; |
1291 |
} |
1292 |
|
1293 |
/* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */ |
1294 |
m >>= 13; |
1295 |
|
1296 |
return s | 0x7c00 | m | !m; |
1297 |
} |
1298 |
|
1299 |
/*******************************************************************************/ |
1300 |
/* fast integer to ascii */ |
1301 |
|
1302 |
/* |
1303 |
* This code is pretty complicated because it is general. The idea behind it, |
1304 |
* however, is pretty simple: first, the number is multiplied with a scaling |
1305 |
* factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point |
1306 |
* number with the first digit in the upper bits. |
1307 |
* Then this digit is converted to text and masked out. The resulting number |
1308 |
* is then multiplied by 10, by multiplying the fixed point representation |
1309 |
* by 5 and shifting the (binary) decimal point one to the right, so a 4.28 |
1310 |
* format becomes 5.27, 6.26 and so on. |
1311 |
* The rest involves only advancing the pointer if we already generated a |
1312 |
* non-zero digit, so leading zeroes are overwritten. |
1313 |
*/ |
1314 |
|
1315 |
/* simply return a mask with "bits" bits set */ |
1316 |
#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1) |
1317 |
|
1318 |
/* oputput a single digit. maskvalue is 10**digitidx */ |
1319 |
#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \ |
1320 |
if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \ |
1321 |
{ \ |
1322 |
char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \ |
1323 |
*ptr = digit + '0'; /* output it */ \ |
1324 |
nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \ |
1325 |
ptr += nz; /* output digit only if non-zero digit seen */ \ |
1326 |
x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \ |
1327 |
} |
1328 |
|
1329 |
/* convert integer to fixed point format and multiply out digits, highest first */ |
1330 |
/* requires magic constants: max. digits and number of bits after the decimal point */ |
1331 |
#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \ |
1332 |
ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \ |
1333 |
{ \ |
1334 |
char nz = lz; /* non-zero digit seen? */ \ |
1335 |
/* convert to x.bits fixed-point */ \ |
1336 |
type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \ |
1337 |
/* output up to 10 digits */ \ |
1338 |
ecb_i2a_digit (type,bits,digitmask, 1, 0); \ |
1339 |
ecb_i2a_digit (type,bits,digitmask, 10, 1); \ |
1340 |
ecb_i2a_digit (type,bits,digitmask, 100, 2); \ |
1341 |
ecb_i2a_digit (type,bits,digitmask, 1000, 3); \ |
1342 |
ecb_i2a_digit (type,bits,digitmask, 10000, 4); \ |
1343 |
ecb_i2a_digit (type,bits,digitmask, 100000, 5); \ |
1344 |
ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \ |
1345 |
ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \ |
1346 |
ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \ |
1347 |
ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \ |
1348 |
return ptr; \ |
1349 |
} |
1350 |
|
1351 |
/* predefined versions of the above, for various digits */ |
1352 |
/* ecb_i2a_xN = almost N digits, limit defined by macro */ |
1353 |
/* ecb_i2a_N = up to N digits, leading zeroes suppressed */ |
1354 |
/* ecb_i2a_0N = exactly N digits, including leading zeroes */ |
1355 |
|
1356 |
/* non-leading-zero versions, limited range */ |
1357 |
#define ECB_I2A_MAX_X5 59074 /* limit for ecb_i2a_x5 */ |
1358 |
#define ECB_I2A_MAX_X10 2932500665 /* limit for ecb_i2a_x10 */ |
1359 |
ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0) |
1360 |
ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0) |
1361 |
|
1362 |
/* non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit */ |
1363 |
ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0) |
1364 |
ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0) |
1365 |
ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0) |
1366 |
ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0) |
1367 |
ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0) |
1368 |
ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0) |
1369 |
ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0) |
1370 |
ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0) |
1371 |
|
1372 |
/* leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit */ |
1373 |
ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1) |
1374 |
ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1) |
1375 |
ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1) |
1376 |
ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1) |
1377 |
ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1) |
1378 |
ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1) |
1379 |
ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1) |
1380 |
ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1) |
1381 |
|
1382 |
#define ECB_I2A_I32_DIGITS 11 |
1383 |
#define ECB_I2A_U32_DIGITS 10 |
1384 |
#define ECB_I2A_I64_DIGITS 20 |
1385 |
#define ECB_I2A_U64_DIGITS 21 |
1386 |
#define ECB_I2A_MAX_DIGITS 21 |
1387 |
|
1388 |
ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u); |
1389 |
ecb_function_ char * ecb_i2a_u32 (char *ptr, uint32_t u) |
1390 |
{ |
1391 |
#if ECB_64BIT_NATIVE |
1392 |
if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
1393 |
ptr = ecb_i2a_x10 (ptr, u); |
1394 |
else /* x10 almost, but not fully, covers 32 bit */ |
1395 |
{ |
1396 |
uint32_t u1 = u % 1000000000; |
1397 |
uint32_t u2 = u / 1000000000; |
1398 |
|
1399 |
*ptr++ = u2 + '0'; |
1400 |
ptr = ecb_i2a_09 (ptr, u1); |
1401 |
} |
1402 |
#else |
1403 |
if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
1404 |
ecb_i2a_x5 (ptr, u); |
1405 |
else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000)) |
1406 |
{ |
1407 |
uint32_t u1 = u % 10000; |
1408 |
uint32_t u2 = u / 10000; |
1409 |
|
1410 |
ptr = ecb_i2a_x5 (ptr, u2); |
1411 |
ptr = ecb_i2a_04 (ptr, u1); |
1412 |
} |
1413 |
else |
1414 |
{ |
1415 |
uint32_t u1 = u % 10000; |
1416 |
uint32_t ua = u / 10000; |
1417 |
uint32_t u2 = ua % 10000; |
1418 |
uint32_t u3 = ua / 10000; |
1419 |
|
1420 |
ptr = ecb_i2a_2 (ptr, u3); |
1421 |
ptr = ecb_i2a_04 (ptr, u2); |
1422 |
ptr = ecb_i2a_04 (ptr, u1); |
1423 |
} |
1424 |
#endif |
1425 |
|
1426 |
return ptr; |
1427 |
} |
1428 |
|
1429 |
ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v); |
1430 |
ecb_function_ char * ecb_i2a_i32 (char *ptr, int32_t v) |
1431 |
{ |
1432 |
*ptr = '-'; ptr += v < 0; |
1433 |
uint32_t u = v < 0 ? -(uint32_t)v : v; |
1434 |
|
1435 |
#if ECB_64BIT_NATIVE |
1436 |
ptr = ecb_i2a_x10 (ptr, u); /* x10 fully covers 31 bit */ |
1437 |
#else |
1438 |
ptr = ecb_i2a_u32 (ptr, u); |
1439 |
#endif |
1440 |
|
1441 |
return ptr; |
1442 |
} |
1443 |
|
1444 |
ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u); |
1445 |
ecb_function_ char * ecb_i2a_u64 (char *ptr, uint64_t u) |
1446 |
{ |
1447 |
#if ECB_64BIT_NATIVE |
1448 |
if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
1449 |
ptr = ecb_i2a_x10 (ptr, u); |
1450 |
else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
1451 |
{ |
1452 |
uint64_t u1 = u % 1000000000; |
1453 |
uint64_t u2 = u / 1000000000; |
1454 |
|
1455 |
ptr = ecb_i2a_x10 (ptr, u2); |
1456 |
ptr = ecb_i2a_09 (ptr, u1); |
1457 |
} |
1458 |
else |
1459 |
{ |
1460 |
uint64_t u1 = u % 1000000000; |
1461 |
uint64_t ua = u / 1000000000; |
1462 |
uint64_t u2 = ua % 1000000000; |
1463 |
uint64_t u3 = ua / 1000000000; |
1464 |
|
1465 |
ptr = ecb_i2a_2 (ptr, u3); |
1466 |
ptr = ecb_i2a_09 (ptr, u2); |
1467 |
ptr = ecb_i2a_09 (ptr, u1); |
1468 |
} |
1469 |
#else |
1470 |
if (ecb_expect_true (u <= ECB_I2A_MAX_X5)) |
1471 |
ptr = ecb_i2a_x5 (ptr, u); |
1472 |
else |
1473 |
{ |
1474 |
uint64_t u1 = u % 10000; |
1475 |
uint64_t u2 = u / 10000; |
1476 |
|
1477 |
ptr = ecb_i2a_u64 (ptr, u2); |
1478 |
ptr = ecb_i2a_04 (ptr, u1); |
1479 |
} |
1480 |
#endif |
1481 |
|
1482 |
return ptr; |
1483 |
} |
1484 |
|
1485 |
ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v); |
1486 |
ecb_function_ char * ecb_i2a_i64 (char *ptr, int64_t v) |
1487 |
{ |
1488 |
*ptr = '-'; ptr += v < 0; |
1489 |
uint64_t u = v < 0 ? -(uint64_t)v : v; |
1490 |
|
1491 |
#if ECB_64BIT_NATIVE |
1492 |
if (ecb_expect_true (u <= ECB_I2A_MAX_X10)) |
1493 |
ptr = ecb_i2a_x10 (ptr, u); |
1494 |
else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000)) |
1495 |
{ |
1496 |
uint64_t u1 = u % 1000000000; |
1497 |
uint64_t u2 = u / 1000000000; |
1498 |
|
1499 |
ptr = ecb_i2a_x10 (ptr, u2); |
1500 |
ptr = ecb_i2a_09 (ptr, u1); |
1501 |
} |
1502 |
else |
1503 |
{ |
1504 |
uint64_t u1 = u % 1000000000; |
1505 |
uint64_t ua = u / 1000000000; |
1506 |
uint64_t u2 = ua % 1000000000; |
1507 |
uint64_t u3 = ua / 1000000000; |
1508 |
|
1509 |
/* 2**31 is 19 digits, so the top is exactly one digit */ |
1510 |
*ptr++ = u3 + '0'; |
1511 |
ptr = ecb_i2a_09 (ptr, u2); |
1512 |
ptr = ecb_i2a_09 (ptr, u1); |
1513 |
} |
1514 |
#else |
1515 |
ptr = ecb_i2a_u64 (ptr, u); |
1516 |
#endif |
1517 |
|
1518 |
return ptr; |
1519 |
} |
1520 |
|
1521 |
/*******************************************************************************/ |
1522 |
/* floating point stuff, can be disabled by defining ECB_NO_LIBM */ |
1523 |
|
1524 |
/* basically, everything uses "ieee pure-endian" floating point numbers */ |
1525 |
/* the only noteworthy exception is ancient armle, which uses order 43218765 */ |
1526 |
#if 0 \ |
1527 |
|| __i386 || __i386__ \ |
1528 |
|| ECB_GCC_AMD64 \ |
1529 |
|| __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \ |
1530 |
|| defined __s390__ || defined __s390x__ \ |
1531 |
|| defined __mips__ \ |
1532 |
|| defined __alpha__ \ |
1533 |
|| defined __hppa__ \ |
1534 |
|| defined __ia64__ \ |
1535 |
|| defined __m68k__ \ |
1536 |
|| defined __m88k__ \ |
1537 |
|| defined __sh__ \ |
1538 |
|| defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \ |
1539 |
|| (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \ |
1540 |
|| defined __aarch64__ |
1541 |
#define ECB_STDFP 1 |
1542 |
#else |
1543 |
#define ECB_STDFP 0 |
1544 |
#endif |
1545 |
|
1546 |
#ifndef ECB_NO_LIBM |
1547 |
|
1548 |
#include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */ |
1549 |
|
1550 |
/* only the oldest of old doesn't have this one. solaris. */ |
1551 |
#ifdef INFINITY |
1552 |
#define ECB_INFINITY INFINITY |
1553 |
#else |
1554 |
#define ECB_INFINITY HUGE_VAL |
1555 |
#endif |
1556 |
|
1557 |
#ifdef NAN |
1558 |
#define ECB_NAN NAN |
1559 |
#else |
1560 |
#define ECB_NAN ECB_INFINITY |
1561 |
#endif |
1562 |
|
1563 |
#if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L |
1564 |
#define ecb_ldexpf(x,e) ldexpf ((x), (e)) |
1565 |
#define ecb_frexpf(x,e) frexpf ((x), (e)) |
1566 |
#else |
1567 |
#define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e)) |
1568 |
#define ecb_frexpf(x,e) (float) frexp ((double) (x), (e)) |
1569 |
#endif |
1570 |
|
1571 |
/* convert a float to ieee single/binary32 */ |
1572 |
ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x); |
1573 |
ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x) |
1574 |
{ |
1575 |
uint32_t r; |
1576 |
|
1577 |
#if ECB_STDFP |
1578 |
memcpy (&r, &x, 4); |
1579 |
#else |
1580 |
/* slow emulation, works for anything but -0 */ |
1581 |
uint32_t m; |
1582 |
int e; |
1583 |
|
1584 |
if (x == 0e0f ) return 0x00000000U; |
1585 |
if (x > +3.40282346638528860e+38f) return 0x7f800000U; |
1586 |
if (x < -3.40282346638528860e+38f) return 0xff800000U; |
1587 |
if (x != x ) return 0x7fbfffffU; |
1588 |
|
1589 |
m = ecb_frexpf (x, &e) * 0x1000000U; |
1590 |
|
1591 |
r = m & 0x80000000U; |
1592 |
|
1593 |
if (r) |
1594 |
m = -m; |
1595 |
|
1596 |
if (e <= -126) |
1597 |
{ |
1598 |
m &= 0xffffffU; |
1599 |
m >>= (-125 - e); |
1600 |
e = -126; |
1601 |
} |
1602 |
|
1603 |
r |= (e + 126) << 23; |
1604 |
r |= m & 0x7fffffU; |
1605 |
#endif |
1606 |
|
1607 |
return r; |
1608 |
} |
1609 |
|
1610 |
/* converts an ieee single/binary32 to a float */ |
1611 |
ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x); |
1612 |
ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x) |
1613 |
{ |
1614 |
float r; |
1615 |
|
1616 |
#if ECB_STDFP |
1617 |
memcpy (&r, &x, 4); |
1618 |
#else |
1619 |
/* emulation, only works for normals and subnormals and +0 */ |
1620 |
int neg = x >> 31; |
1621 |
int e = (x >> 23) & 0xffU; |
1622 |
|
1623 |
x &= 0x7fffffU; |
1624 |
|
1625 |
if (e) |
1626 |
x |= 0x800000U; |
1627 |
else |
1628 |
e = 1; |
1629 |
|
1630 |
/* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */ |
1631 |
r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126); |
1632 |
|
1633 |
r = neg ? -r : r; |
1634 |
#endif |
1635 |
|
1636 |
return r; |
1637 |
} |
1638 |
|
1639 |
/* convert a double to ieee double/binary64 */ |
1640 |
ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x); |
1641 |
ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x) |
1642 |
{ |
1643 |
uint64_t r; |
1644 |
|
1645 |
#if ECB_STDFP |
1646 |
memcpy (&r, &x, 8); |
1647 |
#else |
1648 |
/* slow emulation, works for anything but -0 */ |
1649 |
uint64_t m; |
1650 |
int e; |
1651 |
|
1652 |
if (x == 0e0 ) return 0x0000000000000000U; |
1653 |
if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U; |
1654 |
if (x < -1.79769313486231470e+308) return 0xfff0000000000000U; |
1655 |
if (x != x ) return 0X7ff7ffffffffffffU; |
1656 |
|
1657 |
m = frexp (x, &e) * 0x20000000000000U; |
1658 |
|
1659 |
r = m & 0x8000000000000000;; |
1660 |
|
1661 |
if (r) |
1662 |
m = -m; |
1663 |
|
1664 |
if (e <= -1022) |
1665 |
{ |
1666 |
m &= 0x1fffffffffffffU; |
1667 |
m >>= (-1021 - e); |
1668 |
e = -1022; |
1669 |
} |
1670 |
|
1671 |
r |= ((uint64_t)(e + 1022)) << 52; |
1672 |
r |= m & 0xfffffffffffffU; |
1673 |
#endif |
1674 |
|
1675 |
return r; |
1676 |
} |
1677 |
|
1678 |
/* converts an ieee double/binary64 to a double */ |
1679 |
ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x); |
1680 |
ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x) |
1681 |
{ |
1682 |
double r; |
1683 |
|
1684 |
#if ECB_STDFP |
1685 |
memcpy (&r, &x, 8); |
1686 |
#else |
1687 |
/* emulation, only works for normals and subnormals and +0 */ |
1688 |
int neg = x >> 63; |
1689 |
int e = (x >> 52) & 0x7ffU; |
1690 |
|
1691 |
x &= 0xfffffffffffffU; |
1692 |
|
1693 |
if (e) |
1694 |
x |= 0x10000000000000U; |
1695 |
else |
1696 |
e = 1; |
1697 |
|
1698 |
/* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */ |
1699 |
r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022); |
1700 |
|
1701 |
r = neg ? -r : r; |
1702 |
#endif |
1703 |
|
1704 |
return r; |
1705 |
} |
1706 |
|
1707 |
/* convert a float to ieee half/binary16 */ |
1708 |
ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x); |
1709 |
ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x) |
1710 |
{ |
1711 |
return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x)); |
1712 |
} |
1713 |
|
1714 |
/* convert an ieee half/binary16 to float */ |
1715 |
ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x); |
1716 |
ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x) |
1717 |
{ |
1718 |
return ecb_binary32_to_float (ecb_binary16_to_binary32 (x)); |
1719 |
} |
1720 |
|
1721 |
#endif |
1722 |
|
1723 |
#endif |
1724 |
|