ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.66 by sf-exg, Fri Feb 20 11:28:08 2015 UTC vs.
Revision 1.86 by root, Thu Apr 30 23:24:45 2020 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
79=over 4 85=over 4
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
221=over 4 235=over 4
222 236
223=item ecb_unused 237=item ecb_unused
224 238
225Marks a function or a variable as "unused", which simply suppresses a 239Marks a function or a variable as "unused", which simply suppresses a
226warning by GCC when it detects it as unused. This is useful when you e.g. 240warning by the compiler when it detects it as unused. This is useful when
227declare a variable but do not always use it: 241you e.g. declare a variable but do not always use it:
228 242
229 { 243 {
230 ecb_unused int var; 244 ecb_unused int var;
231 245
232 #ifdef SOMECONDITION 246 #ifdef SOMECONDITION
242Similar to C<ecb_unused>, but marks a function, variable or type as 256Similar to C<ecb_unused>, but marks a function, variable or type as
243deprecated. This makes some compilers warn when the type is used. 257deprecated. This makes some compilers warn when the type is used.
244 258
245=item ecb_deprecated_message (message) 259=item ecb_deprecated_message (message)
246 260
247Same as C<ecb_deprecated>, but if possible, supplies a diagnostic that is 261Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
248used instead of a generic depreciation message when the object is being 262used instead of a generic depreciation message when the object is being
249used. 263used.
250 264
251=item ecb_inline 265=item ecb_inline
252 266
253Expands either to C<static inline> or to just C<static>, if inline 267Expands either to (a compiler-specific equivalent of) C<static inline> or
254isn't supported. It should be used to declare functions that should be 268to just C<static>, if inline isn't supported. It should be used to declare
255inlined, for code size or speed reasons. 269functions that should be inlined, for code size or speed reasons.
256 270
257Example: inline this function, it surely will reduce codesize. 271Example: inline this function, it surely will reduce codesize.
258 272
259 ecb_inline int 273 ecb_inline int
260 negmul (int a, int b) 274 negmul (int a, int b)
583 597
584=item int ecb_ctz32 (uint32_t x) 598=item int ecb_ctz32 (uint32_t x)
585 599
586=item int ecb_ctz64 (uint64_t x) 600=item int ecb_ctz64 (uint64_t x)
587 601
602=item int ecb_ctz (T x) [C++]
603
588Returns the index of the least significant bit set in C<x> (or 604Returns the index of the least significant bit set in C<x> (or
589equivalently the number of bits set to 0 before the least significant bit 605equivalently the number of bits set to 0 before the least significant bit
590set), starting from 0. If C<x> is 0 the result is undefined. 606set), starting from 0. If C<x> is 0 the result is undefined.
591 607
592For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 608For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
593 609
610The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
611C<uint32_t> and C<uint64_t> types.
612
594For example: 613For example:
595 614
596 ecb_ctz32 (3) = 0 615 ecb_ctz32 (3) = 0
597 ecb_ctz32 (6) = 1 616 ecb_ctz32 (6) = 1
598 617
599=item bool ecb_is_pot32 (uint32_t x) 618=item bool ecb_is_pot32 (uint32_t x)
600 619
601=item bool ecb_is_pot64 (uint32_t x) 620=item bool ecb_is_pot64 (uint32_t x)
602 621
622=item bool ecb_is_pot (T x) [C++]
623
603Returns true iff C<x> is a power of two or C<x == 0>. 624Returns true iff C<x> is a power of two or C<x == 0>.
604 625
605For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 626For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
606 627
628The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
629C<uint32_t> and C<uint64_t> types.
630
607=item int ecb_ld32 (uint32_t x) 631=item int ecb_ld32 (uint32_t x)
608 632
609=item int ecb_ld64 (uint64_t x) 633=item int ecb_ld64 (uint64_t x)
634
635=item int ecb_ld64 (T x) [C++]
610 636
611Returns the index of the most significant bit set in C<x>, or the number 637Returns the index of the most significant bit set in C<x>, or the number
612of digits the number requires in binary (so that C<< 2**ld <= x < 638of digits the number requires in binary (so that C<< 2**ld <= x <
6132**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6392**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
614to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 640to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
619the given data type), while C<ecb_ld> returns how many bits the number 645the given data type), while C<ecb_ld> returns how many bits the number
620itself requires. 646itself requires.
621 647
622For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 648For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
623 649
650The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
651C<uint32_t> and C<uint64_t> types.
652
624=item int ecb_popcount32 (uint32_t x) 653=item int ecb_popcount32 (uint32_t x)
625 654
626=item int ecb_popcount64 (uint64_t x) 655=item int ecb_popcount64 (uint64_t x)
627 656
657=item int ecb_popcount (T x) [C++]
658
628Returns the number of bits set to 1 in C<x>. 659Returns the number of bits set to 1 in C<x>.
629 660
630For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 661For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
662
663The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
664C<uint32_t> and C<uint64_t> types.
631 665
632For example: 666For example:
633 667
634 ecb_popcount32 (7) = 3 668 ecb_popcount32 (7) = 3
635 ecb_popcount32 (255) = 8 669 ecb_popcount32 (255) = 8
638 672
639=item uint16_t ecb_bitrev16 (uint16_t x) 673=item uint16_t ecb_bitrev16 (uint16_t x)
640 674
641=item uint32_t ecb_bitrev32 (uint32_t x) 675=item uint32_t ecb_bitrev32 (uint32_t x)
642 676
677=item T ecb_bitrev (T x) [C++]
678
643Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 679Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
644and so on. 680and so on.
645 681
682The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
683
646Example: 684Example:
647 685
648 ecb_bitrev8 (0xa7) = 0xea 686 ecb_bitrev8 (0xa7) = 0xea
649 ecb_bitrev32 (0xffcc4411) = 0x882233ff 687 ecb_bitrev32 (0xffcc4411) = 0x882233ff
650 688
689=item T ecb_bitrev (T x) [C++]
690
691Overloaded C++ bitrev function.
692
693C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
694
651=item uint32_t ecb_bswap16 (uint32_t x) 695=item uint32_t ecb_bswap16 (uint32_t x)
652 696
653=item uint32_t ecb_bswap32 (uint32_t x) 697=item uint32_t ecb_bswap32 (uint32_t x)
654 698
655=item uint64_t ecb_bswap64 (uint64_t x) 699=item uint64_t ecb_bswap64 (uint64_t x)
700
701=item T ecb_bswap (T x)
656 702
657These functions return the value of the 16-bit (32-bit, 64-bit) value 703These functions return the value of the 16-bit (32-bit, 64-bit) value
658C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 704C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
659C<ecb_bswap32>). 705C<ecb_bswap32>).
660 706
707The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
708C<uint32_t> and C<uint64_t> types.
709
661=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 710=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
662 711
663=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 712=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
664 713
665=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 714=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
676 725
677These two families of functions return the value of C<x> after rotating 726These two families of functions return the value of C<x> after rotating
678all the bits by C<count> positions to the right (C<ecb_rotr>) or left 727all the bits by C<count> positions to the right (C<ecb_rotr>) or left
679(C<ecb_rotl>). 728(C<ecb_rotl>).
680 729
681Current GCC versions understand these functions and usually compile them 730Current GCC/clang versions understand these functions and usually compile
682to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 731them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
683x86). 732on x86).
733
734=item T ecb_rotl (T x, unsigned int count) [C++]
735
736=item T ecb_rotr (T x, unsigned int count) [C++]
737
738Overloaded C++ rotl/rotr functions.
739
740C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
741
742=back
743
744=head2 HOST ENDIANNESS CONVERSION
745
746=over 4
747
748=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
749
750=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
751
752=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
753
754=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
755
756=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
757
758=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
759
760Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
761
762The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
763where C<be> and C<le> stand for big endian and little endian, respectively.
764
765=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
766
767=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
768
769=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
770
771=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
772
773=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
774
775=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
776
777Like above, but converts I<from> host byte order to the specified
778endianness.
779
780=back
781
782In C++ the following additional template functions are supported:
783
784=over 4
785
786=item T ecb_be_to_host (T v)
787
788=item T ecb_le_to_host (T v)
789
790=item T ecb_host_to_be (T v)
791
792=item T ecb_host_to_le (T v)
793
794=back
795
796These functions work like their C counterparts, above, but use templates,
797which make them useful in generic code.
798
799C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
800(so unlike their C counterparts, there is a version for C<uint8_t>, which
801again can be useful in generic code).
802
803=head2 UNALIGNED LOAD/STORE
804
805These function load or store unaligned multi-byte values.
806
807=over 4
808
809=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
810
811=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
812
813=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
814
815These functions load an unaligned, unsigned 16, 32 or 64 bit value from
816memory.
817
818=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
819
820=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
821
822=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
823
824=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
825
826=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
827
828=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
829
830Like above, but additionally convert from big endian (C<be>) or little
831endian (C<le>) byte order to host byte order while doing so.
832
833=item ecb_poke_u16_u (void *ptr, uint16_t v)
834
835=item ecb_poke_u32_u (void *ptr, uint32_t v)
836
837=item ecb_poke_u64_u (void *ptr, uint64_t v)
838
839These functions store an unaligned, unsigned 16, 32 or 64 bit value to
840memory.
841
842=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
843
844=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
845
846=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
847
848=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
849
850=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
851
852=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
853
854Like above, but additionally convert from host byte order to big endian
855(C<be>) or little endian (C<le>) byte order while doing so.
856
857=back
858
859In C++ the following additional template functions are supported:
860
861=over 4
862
863=item T ecb_peek<T> (const void *ptr)
864
865=item T ecb_peek_be<T> (const void *ptr)
866
867=item T ecb_peek_le<T> (const void *ptr)
868
869=item T ecb_peek_u<T> (const void *ptr)
870
871=item T ecb_peek_be_u<T> (const void *ptr)
872
873=item T ecb_peek_le_u<T> (const void *ptr)
874
875Similarly to their C counterparts, these functions load an unsigned 8, 16,
87632 or 64 bit value from memory, with optional conversion from big/little
877endian.
878
879Since the type cannot be deduced, it has to be specified explicitly, e.g.
880
881 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
882
883C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
884
885Unlike their C counterparts, these functions support 8 bit quantities
886(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
887all of which hopefully makes them more useful in generic code.
888
889=item ecb_poke (void *ptr, T v)
890
891=item ecb_poke_be (void *ptr, T v)
892
893=item ecb_poke_le (void *ptr, T v)
894
895=item ecb_poke_u (void *ptr, T v)
896
897=item ecb_poke_be_u (void *ptr, T v)
898
899=item ecb_poke_le_u (void *ptr, T v)
900
901Again, similarly to their C counterparts, these functions store an
902unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
903big/little endian.
904
905C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
906
907Unlike their C counterparts, these functions support 8 bit quantities
908(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
909all of which hopefully makes them more useful in generic code.
684 910
685=back 911=back
686 912
687=head2 FLOATING POINT FIDDLING 913=head2 FLOATING POINT FIDDLING
688 914
689=over 4 915=over 4
690 916
691=item ECB_INFINITY 917=item ECB_INFINITY [-UECB_NO_LIBM]
692 918
693Evaluates to positive infinity if supported by the platform, otherwise to 919Evaluates to positive infinity if supported by the platform, otherwise to
694a truly huge number. 920a truly huge number.
695 921
696=item ECB_NAN 922=item ECB_NAN [-UECB_NO_LIBM]
697 923
698Evaluates to a quiet NAN if supported by the platform, otherwise to 924Evaluates to a quiet NAN if supported by the platform, otherwise to
699C<ECB_INFINITY>. 925C<ECB_INFINITY>.
700 926
701=item float ecb_ldexpf (float x, int exp) 927=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
702 928
703Same as C<ldexpf>, but always available. 929Same as C<ldexpf>, but always available.
704 930
931=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
932
705=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 933=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
706 934
707=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 935=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
708 936
709These functions each take an argument in the native C<float> or C<double> 937These functions each take an argument in the native C<float> or C<double>
710type and return the IEEE 754 bit representation of it. 938type and return the IEEE 754 bit representation of it (binary16/half,
939binary32/single or binary64/double precision).
711 940
712The bit representation is just as IEEE 754 defines it, i.e. the sign bit 941The bit representation is just as IEEE 754 defines it, i.e. the sign bit
713will be the most significant bit, followed by exponent and mantissa. 942will be the most significant bit, followed by exponent and mantissa.
714 943
715This function should work even when the native floating point format isn't 944This function should work even when the native floating point format isn't
719 948
720On all modern platforms (where C<ECB_STDFP> is true), the compiler should 949On all modern platforms (where C<ECB_STDFP> is true), the compiler should
721be able to optimise away this function completely. 950be able to optimise away this function completely.
722 951
723These functions can be helpful when serialising floats to the network - you 952These functions can be helpful when serialising floats to the network - you
724can serialise the return value like a normal uint32_t/uint64_t. 953can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
725 954
726Another use for these functions is to manipulate floating point values 955Another use for these functions is to manipulate floating point values
727directly. 956directly.
728 957
729Silly example: toggle the sign bit of a float. 958Silly example: toggle the sign bit of a float.
736 965
737=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM] 966=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
738 967
739=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 968=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
740 969
741=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 970=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
742 971
743The reverse operation of the previous function - takes the bit 972The reverse operation of the previous function - takes the bit
744representation of an IEEE binary16, binary32 or binary64 number and 973representation of an IEEE binary16, binary32 or binary64 number (half,
745converts it to the native C<float> or C<double> format. 974single or double precision) and converts it to the native C<float> or
975C<double> format.
746 976
747This function should work even when the native floating point format isn't 977This function should work even when the native floating point format isn't
748IEEE compliant, of course at a speed and code size penalty, and of course 978IEEE compliant, of course at a speed and code size penalty, and of course
749also within reasonable limits (it tries to convert normals and denormals, 979also within reasonable limits (it tries to convert normals and denormals,
750and might be lucky for infinities, and with extraordinary luck, also for 980and might be lucky for infinities, and with extraordinary luck, also for
751negative zero). 981negative zero).
752 982
753On all modern platforms (where C<ECB_STDFP> is true), the compiler should 983On all modern platforms (where C<ECB_STDFP> is true), the compiler should
754be able to optimise away this function completely. 984be able to optimise away this function completely.
985
986=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
987
988=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
989
990Convert a IEEE binary32/single precision to binary16/half format, and vice
991versa, handling all details (round-to-nearest-even, subnormals, infinity
992and NaNs) correctly.
993
994These are functions are available under C<-DECB_NO_LIBM>, since
995they do not rely on the platform floating point format. The
996C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
997usually what you want.
755 998
756=back 999=back
757 1000
758=head2 ARITHMETIC 1001=head2 ARITHMETIC
759 1002
772C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1015C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
773negatable, that is, both C<m> and C<-m> must be representable in its 1016negatable, that is, both C<m> and C<-m> must be representable in its
774type (this typically excludes the minimum signed integer value, the same 1017type (this typically excludes the minimum signed integer value, the same
775limitation as for C</> and C<%> in C). 1018limitation as for C</> and C<%> in C).
776 1019
777Current GCC versions compile this into an efficient branchless sequence on 1020Current GCC/clang versions compile this into an efficient branchless
778almost all CPUs. 1021sequence on almost all CPUs.
779 1022
780For example, when you want to rotate forward through the members of an 1023For example, when you want to rotate forward through the members of an
781array for increasing C<m> (which might be negative), then you should use 1024array for increasing C<m> (which might be negative), then you should use
782C<ecb_mod>, as the C<%> operator might give either negative results, or 1025C<ecb_mod>, as the C<%> operator might give either negative results, or
783change direction for negative values: 1026change direction for negative values:
840dependencies on the math library (usually called F<-lm>) - these are 1083dependencies on the math library (usually called F<-lm>) - these are
841marked with [-UECB_NO_LIBM]. 1084marked with [-UECB_NO_LIBM].
842 1085
843=back 1086=back
844 1087
1088=head1 UNDOCUMENTED FUNCTIONALITY
845 1089
1090F<ecb.h> is full of undocumented functionality as well, some of which is
1091intended to be internal-use only, some of which we forgot to document, and
1092some of which we hide because we are not sure we will keep the interface
1093stable.
1094
1095While you are welcome to rummage around and use whatever you find useful
1096(we can't stop you), keep in mind that we will change undocumented
1097functionality in incompatible ways without thinking twice, while we are
1098considerably more conservative with documented things.
1099
1100=head1 AUTHORS
1101
1102C<libecb> is designed and maintained by:
1103
1104 Emanuele Giaquinta <e.giaquinta@glauco.it>
1105 Marc Alexander Lehmann <schmorp@schmorp.de>
1106
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines