ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.71 by root, Sat Nov 21 16:53:50 2015 UTC vs.
Revision 1.88 by root, Mon Jun 21 21:49:51 2021 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
79=over 4 85=over
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
149without having to think about format or endianness. 163without having to think about format or endianness.
150 164
151This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
152not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
153side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integerss. While 64 bit
174integer support is very common (and in fatc required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
154 176
155=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
156 178
157These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
158ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
165 187
166=back 188=back
167 189
168=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
169 191
170=over 4 192=over
171 193
172=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
173 195
174Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
175a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
216declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
217 239
218 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
219 ecb_unused int i; 241 ecb_unused int i;
220 242
221=over 4 243=over
222 244
223=item ecb_unused 245=item ecb_unused
224 246
225Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
226warning by GCC when it detects it as unused. This is useful when you e.g. 248warning by the compiler when it detects it as unused. This is useful when
227declare a variable but do not always use it: 249you e.g. declare a variable but do not always use it:
228 250
229 { 251 {
230 ecb_unused int var; 252 ecb_unused int var;
231 253
232 #ifdef SOMECONDITION 254 #ifdef SOMECONDITION
248used instead of a generic depreciation message when the object is being 270used instead of a generic depreciation message when the object is being
249used. 271used.
250 272
251=item ecb_inline 273=item ecb_inline
252 274
253Expands either to C<static inline> or to just C<static>, if inline 275Expands either to (a compiler-specific equivalent of) C<static inline> or
254isn't supported. It should be used to declare functions that should be 276to just C<static>, if inline isn't supported. It should be used to declare
255inlined, for code size or speed reasons. 277functions that should be inlined, for code size or speed reasons.
256 278
257Example: inline this function, it surely will reduce codesize. 279Example: inline this function, it surely will reduce codesize.
258 280
259 ecb_inline int 281 ecb_inline int
260 negmul (int a, int b) 282 negmul (int a, int b)
400 422
401=back 423=back
402 424
403=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
404 426
405=over 4 427=over
406 428
407=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
408 430
409Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
410constant, and false otherwise. 432constant, and false otherwise.
567 589
568=back 590=back
569 591
570=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
571 593
572=over 4 594=over
573 595
574=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
575 597
576=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
577 599
583 605
584=item int ecb_ctz32 (uint32_t x) 606=item int ecb_ctz32 (uint32_t x)
585 607
586=item int ecb_ctz64 (uint64_t x) 608=item int ecb_ctz64 (uint64_t x)
587 609
610=item int ecb_ctz (T x) [C++]
611
588Returns the index of the least significant bit set in C<x> (or 612Returns the index of the least significant bit set in C<x> (or
589equivalently the number of bits set to 0 before the least significant bit 613equivalently the number of bits set to 0 before the least significant bit
590set), starting from 0. If C<x> is 0 the result is undefined. 614set), starting from 0. If C<x> is 0 the result is undefined.
591 615
592For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 616For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
593 617
618The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619C<uint32_t> and C<uint64_t> types.
620
594For example: 621For example:
595 622
596 ecb_ctz32 (3) = 0 623 ecb_ctz32 (3) = 0
597 ecb_ctz32 (6) = 1 624 ecb_ctz32 (6) = 1
598 625
599=item bool ecb_is_pot32 (uint32_t x) 626=item bool ecb_is_pot32 (uint32_t x)
600 627
601=item bool ecb_is_pot64 (uint32_t x) 628=item bool ecb_is_pot64 (uint32_t x)
602 629
630=item bool ecb_is_pot (T x) [C++]
631
603Returns true iff C<x> is a power of two or C<x == 0>. 632Returns true iff C<x> is a power of two or C<x == 0>.
604 633
605For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 634For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
606 635
636The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637C<uint32_t> and C<uint64_t> types.
638
607=item int ecb_ld32 (uint32_t x) 639=item int ecb_ld32 (uint32_t x)
608 640
609=item int ecb_ld64 (uint64_t x) 641=item int ecb_ld64 (uint64_t x)
642
643=item int ecb_ld64 (T x) [C++]
610 644
611Returns the index of the most significant bit set in C<x>, or the number 645Returns the index of the most significant bit set in C<x>, or the number
612of digits the number requires in binary (so that C<< 2**ld <= x < 646of digits the number requires in binary (so that C<< 2**ld <= x <
6132**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6472**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
614to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 648to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
619the given data type), while C<ecb_ld> returns how many bits the number 653the given data type), while C<ecb_ld> returns how many bits the number
620itself requires. 654itself requires.
621 655
622For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 656For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
623 657
658The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659C<uint32_t> and C<uint64_t> types.
660
624=item int ecb_popcount32 (uint32_t x) 661=item int ecb_popcount32 (uint32_t x)
625 662
626=item int ecb_popcount64 (uint64_t x) 663=item int ecb_popcount64 (uint64_t x)
627 664
665=item int ecb_popcount (T x) [C++]
666
628Returns the number of bits set to 1 in C<x>. 667Returns the number of bits set to 1 in C<x>.
629 668
630For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 669For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670
671The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672C<uint32_t> and C<uint64_t> types.
631 673
632For example: 674For example:
633 675
634 ecb_popcount32 (7) = 3 676 ecb_popcount32 (7) = 3
635 ecb_popcount32 (255) = 8 677 ecb_popcount32 (255) = 8
638 680
639=item uint16_t ecb_bitrev16 (uint16_t x) 681=item uint16_t ecb_bitrev16 (uint16_t x)
640 682
641=item uint32_t ecb_bitrev32 (uint32_t x) 683=item uint32_t ecb_bitrev32 (uint32_t x)
642 684
685=item T ecb_bitrev (T x) [C++]
686
643Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 687Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
644and so on. 688and so on.
645 689
690The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691
646Example: 692Example:
647 693
648 ecb_bitrev8 (0xa7) = 0xea 694 ecb_bitrev8 (0xa7) = 0xea
649 ecb_bitrev32 (0xffcc4411) = 0x882233ff 695 ecb_bitrev32 (0xffcc4411) = 0x882233ff
650 696
697=item T ecb_bitrev (T x) [C++]
698
699Overloaded C++ bitrev function.
700
701C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702
651=item uint32_t ecb_bswap16 (uint32_t x) 703=item uint32_t ecb_bswap16 (uint32_t x)
652 704
653=item uint32_t ecb_bswap32 (uint32_t x) 705=item uint32_t ecb_bswap32 (uint32_t x)
654 706
655=item uint64_t ecb_bswap64 (uint64_t x) 707=item uint64_t ecb_bswap64 (uint64_t x)
708
709=item T ecb_bswap (T x)
656 710
657These functions return the value of the 16-bit (32-bit, 64-bit) value 711These functions return the value of the 16-bit (32-bit, 64-bit) value
658C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 712C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
659C<ecb_bswap32>). 713C<ecb_bswap32>).
660 714
715The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
716C<uint32_t> and C<uint64_t> types.
717
661=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 718=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
662 719
663=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 720=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
664 721
665=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 722=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
676 733
677These two families of functions return the value of C<x> after rotating 734These two families of functions return the value of C<x> after rotating
678all the bits by C<count> positions to the right (C<ecb_rotr>) or left 735all the bits by C<count> positions to the right (C<ecb_rotr>) or left
679(C<ecb_rotl>). 736(C<ecb_rotl>).
680 737
681Current GCC versions understand these functions and usually compile them 738Current GCC/clang versions understand these functions and usually compile
682to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 739them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
683x86). 740on x86).
741
742=item T ecb_rotl (T x, unsigned int count) [C++]
743
744=item T ecb_rotr (T x, unsigned int count) [C++]
745
746Overloaded C++ rotl/rotr functions.
747
748C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
749
750=back
751
752=head2 HOST ENDIANNESS CONVERSION
753
754=over
755
756=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
757
758=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
759
760=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
761
762=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
763
764=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
765
766=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
767
768Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
769
770The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
771where C<be> and C<le> stand for big endian and little endian, respectively.
772
773=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
774
775=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
776
777=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
778
779=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
780
781=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
782
783=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
784
785Like above, but converts I<from> host byte order to the specified
786endianness.
787
788=back
789
790In C++ the following additional template functions are supported:
791
792=over
793
794=item T ecb_be_to_host (T v)
795
796=item T ecb_le_to_host (T v)
797
798=item T ecb_host_to_be (T v)
799
800=item T ecb_host_to_le (T v)
801
802=back
803
804These functions work like their C counterparts, above, but use templates,
805which make them useful in generic code.
806
807C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
808(so unlike their C counterparts, there is a version for C<uint8_t>, which
809again can be useful in generic code).
810
811=head2 UNALIGNED LOAD/STORE
812
813These function load or store unaligned multi-byte values.
814
815=over
816
817=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
818
819=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
820
821=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
822
823These functions load an unaligned, unsigned 16, 32 or 64 bit value from
824memory.
825
826=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
827
828=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
829
830=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
831
832=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
833
834=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
835
836=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
837
838Like above, but additionally convert from big endian (C<be>) or little
839endian (C<le>) byte order to host byte order while doing so.
840
841=item ecb_poke_u16_u (void *ptr, uint16_t v)
842
843=item ecb_poke_u32_u (void *ptr, uint32_t v)
844
845=item ecb_poke_u64_u (void *ptr, uint64_t v)
846
847These functions store an unaligned, unsigned 16, 32 or 64 bit value to
848memory.
849
850=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
851
852=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
853
854=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
855
856=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
857
858=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
859
860=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
861
862Like above, but additionally convert from host byte order to big endian
863(C<be>) or little endian (C<le>) byte order while doing so.
864
865=back
866
867In C++ the following additional template functions are supported:
868
869=over
870
871=item T ecb_peek<T> (const void *ptr)
872
873=item T ecb_peek_be<T> (const void *ptr)
874
875=item T ecb_peek_le<T> (const void *ptr)
876
877=item T ecb_peek_u<T> (const void *ptr)
878
879=item T ecb_peek_be_u<T> (const void *ptr)
880
881=item T ecb_peek_le_u<T> (const void *ptr)
882
883Similarly to their C counterparts, these functions load an unsigned 8, 16,
88432 or 64 bit value from memory, with optional conversion from big/little
885endian.
886
887Since the type cannot be deduced, it has to be specified explicitly, e.g.
888
889 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
890
891C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
892
893Unlike their C counterparts, these functions support 8 bit quantities
894(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
895all of which hopefully makes them more useful in generic code.
896
897=item ecb_poke (void *ptr, T v)
898
899=item ecb_poke_be (void *ptr, T v)
900
901=item ecb_poke_le (void *ptr, T v)
902
903=item ecb_poke_u (void *ptr, T v)
904
905=item ecb_poke_be_u (void *ptr, T v)
906
907=item ecb_poke_le_u (void *ptr, T v)
908
909Again, similarly to their C counterparts, these functions store an
910unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
911big/little endian.
912
913C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
914
915Unlike their C counterparts, these functions support 8 bit quantities
916(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
917all of which hopefully makes them more useful in generic code.
684 918
685=back 919=back
686 920
687=head2 FLOATING POINT FIDDLING 921=head2 FLOATING POINT FIDDLING
688 922
689=over 4 923=over
690 924
691=item ECB_INFINITY [-UECB_NO_LIBM] 925=item ECB_INFINITY [-UECB_NO_LIBM]
692 926
693Evaluates to positive infinity if supported by the platform, otherwise to 927Evaluates to positive infinity if supported by the platform, otherwise to
694a truly huge number. 928a truly huge number.
760=item uint16_t ecb_binary32_to_binary16 (uint32_t x) 994=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
761 995
762=item uint32_t ecb_binary16_to_binary32 (uint16_t x) 996=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
763 997
764Convert a IEEE binary32/single precision to binary16/half format, and vice 998Convert a IEEE binary32/single precision to binary16/half format, and vice
765versa, handling all details (round-to-even, subnormals, infinity and NaNs) 999versa, handling all details (round-to-nearest-even, subnormals, infinity
766correctly. 1000and NaNs) correctly.
767 1001
768These are functions are available under C<-DECB_NO_LIBM>, since 1002These are functions are available under C<-DECB_NO_LIBM>, since
769they do not rely on the platform floating point format. The 1003they do not rely on the platform floating point format. The
770C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are 1004C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
771usually what you want. 1005usually what you want.
772 1006
773=back 1007=back
774 1008
775=head2 ARITHMETIC 1009=head2 ARITHMETIC
776 1010
777=over 4 1011=over
778 1012
779=item x = ecb_mod (m, n) 1013=item x = ecb_mod (m, n)
780 1014
781Returns C<m> modulo C<n>, which is the same as the positive remainder 1015Returns C<m> modulo C<n>, which is the same as the positive remainder
782of the division operation between C<m> and C<n>, using floored 1016of the division operation between C<m> and C<n>, using floored
789C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1023C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
790negatable, that is, both C<m> and C<-m> must be representable in its 1024negatable, that is, both C<m> and C<-m> must be representable in its
791type (this typically excludes the minimum signed integer value, the same 1025type (this typically excludes the minimum signed integer value, the same
792limitation as for C</> and C<%> in C). 1026limitation as for C</> and C<%> in C).
793 1027
794Current GCC versions compile this into an efficient branchless sequence on 1028Current GCC/clang versions compile this into an efficient branchless
795almost all CPUs. 1029sequence on almost all CPUs.
796 1030
797For example, when you want to rotate forward through the members of an 1031For example, when you want to rotate forward through the members of an
798array for increasing C<m> (which might be negative), then you should use 1032array for increasing C<m> (which might be negative), then you should use
799C<ecb_mod>, as the C<%> operator might give either negative results, or 1033C<ecb_mod>, as the C<%> operator might give either negative results, or
800change direction for negative values: 1034change direction for negative values:
813 1047
814=back 1048=back
815 1049
816=head2 UTILITY 1050=head2 UTILITY
817 1051
818=over 4 1052=over
819 1053
820=item element_count = ecb_array_length (name) 1054=item element_count = ecb_array_length (name)
821 1055
822Returns the number of elements in the array C<name>. For example: 1056Returns the number of elements in the array C<name>. For example:
823 1057
831 1065
832=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1066=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
833 1067
834These symbols need to be defined before including F<ecb.h> the first time. 1068These symbols need to be defined before including F<ecb.h> the first time.
835 1069
836=over 4 1070=over
837 1071
838=item ECB_NO_THREADS 1072=item ECB_NO_THREADS
839 1073
840If F<ecb.h> is never used from multiple threads, then this symbol can 1074If F<ecb.h> is never used from multiple threads, then this symbol can
841be defined, in which case memory fences (and similar constructs) are 1075be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines