ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libecb/ecb.pod
(Generate patch)

Comparing libecb/ecb.pod (file contents):
Revision 1.76 by root, Mon Jan 20 13:13:56 2020 UTC vs.
Revision 1.93 by root, Sat Jul 31 14:39:16 2021 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
80 80
81All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
82preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
83ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
84 84
85=over 4 85=over
86 86
87=item ECB_C 87=item ECB_C
88 88
89True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
90while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
91 91
92=item ECB_C99 92=item ECB_C99
93 93
94True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
959899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
110=item ECB_CPP11, ECB_CPP14, ECB_CPP17 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
111 111
112True if the implementation claims to be compliant to C++11/C++14/C++17 112True if the implementation claims to be compliant to C++11/C++14/C++17
113(ISO/IEC 14882:2011, :2014, :2017) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114 114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
123
115=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
116 125
117Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
118if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
119higher.
120 128
121This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
122compatible but aren't. 130compatible but aren't.
123 131
124=item ECB_EXTERN_C 132=item ECB_EXTERN_C
143 151
144 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
145 153
146=item ECB_STDFP 154=item ECB_STDFP
147 155
148If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
149preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
150and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
151both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
152 160
153This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
155without having to think about format or endianness. 163without having to think about format or endianness.
156 164
157This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
158not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
159side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integers. While 64 bit
174integer support is very common (and in fact required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
160 176
161=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
162 178
163These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
164ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
171 187
172=back 188=back
173 189
174=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
175 191
176=over 4 192=over
177 193
178=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
179 195
180Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
181a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
222declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
223 239
224 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
225 ecb_unused int i; 241 ecb_unused int i;
226 242
227=over 4 243=over
228 244
229=item ecb_unused 245=item ecb_unused
230 246
231Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
232warning by GCC when it detects it as unused. This is useful when you e.g. 248warning by the compiler when it detects it as unused. This is useful when
233declare a variable but do not always use it: 249you e.g. declare a variable but do not always use it:
234 250
235 { 251 {
236 ecb_unused int var; 252 ecb_unused int var;
237 253
238 #ifdef SOMECONDITION 254 #ifdef SOMECONDITION
406 422
407=back 423=back
408 424
409=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
410 426
411=over 4 427=over
412
413=item ECB_OPTIMIZE_SIZE
414
415Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
416can also be defined before including F<ecb.h>, in which case it will be
417unchanged.
418 428
419=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
420 430
421Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
422constant, and false otherwise. 432constant, and false otherwise.
579 589
580=back 590=back
581 591
582=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
583 593
584=over 4 594=over
585 595
586=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
587 597
588=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
589 599
595 605
596=item int ecb_ctz32 (uint32_t x) 606=item int ecb_ctz32 (uint32_t x)
597 607
598=item int ecb_ctz64 (uint64_t x) 608=item int ecb_ctz64 (uint64_t x)
599 609
610=item int ecb_ctz (T x) [C++]
611
600Returns the index of the least significant bit set in C<x> (or 612Returns the index of the least significant bit set in C<x> (or
601equivalently the number of bits set to 0 before the least significant bit 613equivalently the number of bits set to 0 before the least significant bit
602set), starting from 0. If C<x> is 0 the result is undefined. 614set), starting from 0. If C<x> is 0 the result is undefined.
603 615
604For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 616For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
605 617
618The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619C<uint32_t> and C<uint64_t> types.
620
606For example: 621For example:
607 622
608 ecb_ctz32 (3) = 0 623 ecb_ctz32 (3) = 0
609 ecb_ctz32 (6) = 1 624 ecb_ctz32 (6) = 1
610 625
611=item bool ecb_is_pot32 (uint32_t x) 626=item bool ecb_is_pot32 (uint32_t x)
612 627
613=item bool ecb_is_pot64 (uint32_t x) 628=item bool ecb_is_pot64 (uint32_t x)
614 629
630=item bool ecb_is_pot (T x) [C++]
631
615Returns true iff C<x> is a power of two or C<x == 0>. 632Returns true iff C<x> is a power of two or C<x == 0>.
616 633
617For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 634For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
618 635
636The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637C<uint32_t> and C<uint64_t> types.
638
619=item int ecb_ld32 (uint32_t x) 639=item int ecb_ld32 (uint32_t x)
620 640
621=item int ecb_ld64 (uint64_t x) 641=item int ecb_ld64 (uint64_t x)
642
643=item int ecb_ld64 (T x) [C++]
622 644
623Returns the index of the most significant bit set in C<x>, or the number 645Returns the index of the most significant bit set in C<x>, or the number
624of digits the number requires in binary (so that C<< 2**ld <= x < 646of digits the number requires in binary (so that C<< 2**ld <= x <
6252**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6472**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
626to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 648to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
631the given data type), while C<ecb_ld> returns how many bits the number 653the given data type), while C<ecb_ld> returns how many bits the number
632itself requires. 654itself requires.
633 655
634For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 656For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
635 657
658The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659C<uint32_t> and C<uint64_t> types.
660
636=item int ecb_popcount32 (uint32_t x) 661=item int ecb_popcount32 (uint32_t x)
637 662
638=item int ecb_popcount64 (uint64_t x) 663=item int ecb_popcount64 (uint64_t x)
639 664
665=item int ecb_popcount (T x) [C++]
666
640Returns the number of bits set to 1 in C<x>. 667Returns the number of bits set to 1 in C<x>.
641 668
642For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 669For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670
671The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672C<uint32_t> and C<uint64_t> types.
643 673
644For example: 674For example:
645 675
646 ecb_popcount32 (7) = 3 676 ecb_popcount32 (7) = 3
647 ecb_popcount32 (255) = 8 677 ecb_popcount32 (255) = 8
650 680
651=item uint16_t ecb_bitrev16 (uint16_t x) 681=item uint16_t ecb_bitrev16 (uint16_t x)
652 682
653=item uint32_t ecb_bitrev32 (uint32_t x) 683=item uint32_t ecb_bitrev32 (uint32_t x)
654 684
685=item T ecb_bitrev (T x) [C++]
686
655Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 687Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
656and so on. 688and so on.
657 689
690The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691
658Example: 692Example:
659 693
660 ecb_bitrev8 (0xa7) = 0xea 694 ecb_bitrev8 (0xa7) = 0xea
661 ecb_bitrev32 (0xffcc4411) = 0x882233ff 695 ecb_bitrev32 (0xffcc4411) = 0x882233ff
662 696
697=item T ecb_bitrev (T x) [C++]
698
699Overloaded C++ bitrev function.
700
701C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702
663=item uint32_t ecb_bswap16 (uint32_t x) 703=item uint32_t ecb_bswap16 (uint32_t x)
664 704
665=item uint32_t ecb_bswap32 (uint32_t x) 705=item uint32_t ecb_bswap32 (uint32_t x)
666 706
667=item uint64_t ecb_bswap64 (uint64_t x) 707=item uint64_t ecb_bswap64 (uint64_t x)
708
709=item T ecb_bswap (T x)
668 710
669These functions return the value of the 16-bit (32-bit, 64-bit) value 711These functions return the value of the 16-bit (32-bit, 64-bit) value
670C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 712C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
671C<ecb_bswap32>). 713C<ecb_bswap32>).
672 714
673=item T ecb_bswap (T x) [C++] 715The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
674 716C<uint32_t> and C<uint64_t> types.
675For C++, an additional generic bswap function is provided. It supports
676C<uint8_t>, C<uint16_t>, C<uint32_t> and C<uint64_t>.
677 717
678=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 718=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
679 719
680=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 720=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
681 721
693 733
694These two families of functions return the value of C<x> after rotating 734These two families of functions return the value of C<x> after rotating
695all the bits by C<count> positions to the right (C<ecb_rotr>) or left 735all the bits by C<count> positions to the right (C<ecb_rotr>) or left
696(C<ecb_rotl>). 736(C<ecb_rotl>).
697 737
738The valid range for C<count> is C<1> to the number of bits in the
739underlying datatype minus one (7/15/31/63). If you need a rotate count
740of zero you need to add an extra check before calling these functions
741currently.
742
698Current GCC versions understand these functions and usually compile them 743Current GCC/clang versions understand these functions and usually compile
699to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 744them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
700x86). 745on x86).
746
747=item T ecb_rotl (T x, unsigned int count) [C++]
748
749=item T ecb_rotr (T x, unsigned int count) [C++]
750
751Overloaded C++ rotl/rotr functions.
752
753C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
701 754
702=back 755=back
703 756
704=head2 HOST ENDIANNESS CONVERSION 757=head2 HOST ENDIANNESS CONVERSION
705 758
706=over 4 759=over
707 760
708=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) 761=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
709 762
710=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) 763=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
711 764
718=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) 771=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
719 772
720Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order. 773Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
721 774
722The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>, 775The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
723where be and le stand for big endian and little endian, respectively. 776where C<be> and C<le> stand for big endian and little endian, respectively.
724 777
725=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) 778=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
726 779
727=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) 780=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
728 781
737Like above, but converts I<from> host byte order to the specified 790Like above, but converts I<from> host byte order to the specified
738endianness. 791endianness.
739 792
740=back 793=back
741 794
742In C++ the following additional functions are supported: 795In C++ the following additional template functions are supported:
743 796
744=over 4 797=over
745 798
746=item T ecb_be_to_host (T v) 799=item T ecb_be_to_host (T v)
747 800
748=item T ecb_le_to_host (T v) 801=item T ecb_le_to_host (T v)
749 802
750=item T ecb_host_to_be (T v) 803=item T ecb_host_to_be (T v)
751 804
752=item T ecb_host_to_le (T v) 805=item T ecb_host_to_le (T v)
753 806
807=back
808
754These work like their C counterparts, above, but use templates for the 809These functions work like their C counterparts, above, but use templates,
755type, which make them useful in generic code. 810which make them useful in generic code.
756 811
757C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t> 812C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
758(so unlike their C counterparts, there is a version for C<uint8_t>, which 813(so unlike their C counterparts, there is a version for C<uint8_t>, which
759again can be useful in generic code). 814again can be useful in generic code).
760 815
761=head2 UNALIGNED LOAD/STORE 816=head2 UNALIGNED LOAD/STORE
762 817
763These function load or store unaligned multi-byte values. 818These function load or store unaligned multi-byte values.
764 819
765=over 4 820=over
766 821
767=item uint_fast16_t ecb_peek_u16_u (const void *ptr) 822=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
768 823
769=item uint_fast32_t ecb_peek_u32_u (const void *ptr) 824=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
770 825
812Like above, but additionally convert from host byte order to big endian 867Like above, but additionally convert from host byte order to big endian
813(C<be>) or little endian (C<le>) byte order while doing so. 868(C<be>) or little endian (C<le>) byte order while doing so.
814 869
815=back 870=back
816 871
817In C++ the following additional functions are supported: 872In C++ the following additional template functions are supported:
818 873
819=over 4 874=over
820 875
821=item T ecb_peek (const void *ptr) 876=item T ecb_peek<T> (const void *ptr)
822 877
823=item T ecb_peek_be (const void *ptr) 878=item T ecb_peek_be<T> (const void *ptr)
824 879
825=item T ecb_peek_le (const void *ptr) 880=item T ecb_peek_le<T> (const void *ptr)
826 881
827=item T ecb_peek_u (const void *ptr) 882=item T ecb_peek_u<T> (const void *ptr)
828 883
829=item T ecb_peek_be_u (const void *ptr) 884=item T ecb_peek_be_u<T> (const void *ptr)
830 885
831=item T ecb_peek_le_u (const void *ptr) 886=item T ecb_peek_le_u<T> (const void *ptr)
832 887
833Similarly to their C counterparts, these functions load an unsigned 8, 16, 888Similarly to their C counterparts, these functions load an unsigned 8, 16,
83432 or 64 bit value from memory, with optional conversion from big/little 88932 or 64 bit value from memory, with optional conversion from big/little
835endian. 890endian.
836 891
837Since the type cannot be deduced, it has top be specified explicitly, e.g. 892Since the type cannot be deduced, it has to be specified explicitly, e.g.
838 893
839 uint_fast16_t v = ecb_peek<uint16_t> (ptr); 894 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
840 895
841C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>. 896C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
842 897
866(C<uint8_t>) and also have an aligned version (without the C<_u> prefix), 921(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
867all of which hopefully makes them more useful in generic code. 922all of which hopefully makes them more useful in generic code.
868 923
869=back 924=back
870 925
926=head2 FAST INTEGER TO STRING
927
928Libecb defines a set of very fast integer to decimal string (or integer
929to ascii, short C<i2a>) functions. These work by converting the integer
930to a fixed point representation and then successively multiplying out
931the topmost digits. Unlike some other, also very fast, libraries, ecb's
932algorithm should be completely branchless per digit, and does not rely on
933the presence of special cpu functions (such as clz).
934
935There is a high level API that takes an C<int32_t>, C<uint32_t>,
936C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
937harder to use but supports slightly more formatting options.
938
939=head3 HIGH LEVEL API
940
941The high level API consists of four functions, one each for C<int32_t>,
942C<uint32_t>, C<int64_t> and C<uint64_t>:
943
944Example:
945
946 char buf[ECB_I2A_MAX_DIGITS + 1];
947 char *end = ecb_i2a_i32 (buf, 17262);
948 *end = 0;
949 // buf now contains "17262"
950
951=over
952
953=item ECB_I2A_I32_DIGITS (=11)
954
955=item char *ecb_i2a_u32 (char *ptr, uint32_t value)
956
957Takes an C<uint32_t> I<value> and formats it as a decimal number starting
958at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
959pointer to just after the generated string, where you would normally put
960the terminating C<0> character. This function outputs the minimum number
961of digits.
962
963=item ECB_I2A_U32_DIGITS (=10)
964
965=item char *ecb_i2a_i32 (char *ptr, int32_t value)
966
967Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
968sign if needed.
969
970=item ECB_I2A_I64_DIGITS (=20)
971
972=item char *ecb_i2a_u64 (char *ptr, uint64_t value)
973
974=item ECB_I2A_U64_DIGITS (=21)
975
976=item char *ecb_i2a_i64 (char *ptr, int64_t value)
977
978Similar to their 32 bit counterparts, these take a 64 bit argument.
979
980=item ECB_I2A_MAX_DIGITS (=21)
981
982Instead of using a type specific length macro, youi can just use
983C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
984
985=back
986
987=head3 LOW-LEVEL API
988
989The functions above use a number of low-level APIs which have some strict
990limitations, but can be used as building blocks (study of C<ecb_i2a_i32>
991and related functions is recommended).
992
993There are three families of functions: functions that convert a number
994to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
995for "leading zeroes"), functions that generate up to N digits, skipping
996leading zeroes (C<_N>), and functions that can generate more digits, but
997the leading digit has limited range (C<_xN>).
998
999None of the functions deal with negative numbers.
1000
1001Example: convert an IP address in an u32 into dotted-quad:
1002
1003 uint32_t ip = 0x0a000164; // 10.0.1.100
1004 char ips[3 * 4 + 3 + 1];
1005 char *ptr = ips;
1006 ptr = ecb_i2a_3 (ptr, ip >> 24 ); *ptr++ = '.';
1007 ptr = ecb_i2a_3 (ptr, (ip >> 16) & 0xff); *ptr++ = '.';
1008 ptr = ecb_i2a_3 (ptr, (ip >> 8) & 0xff); *ptr++ = '.';
1009 ptr = ecb_i2a_3 (ptr, ip & 0xff); *ptr++ = 0;
1010 printf ("ip: %s\n", ips); // prints "ip: 10.0.1.100"
1011
1012=over
1013
1014=item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
1015
1016=item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
1017
1018=item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
1019
1020=item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
1021
1022=item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1023
1024=item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1025
1026=item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1027
1028=item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1029
1030The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1031them to exactly I<N> digits, returning a pointer to the first character
1032after the digits. The I<value> must be in range. The functions marked with
1033I<32 bit> do their calculations internally in 32 bit, the ones marked with
1034I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1035architectures (the high level API decides on 32 vs. 64 bit versions using
1036C<ECB_64BIT_NATIVE>).
1037
1038=item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1039
1040=item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1041
1042=item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1043
1044=item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1045
1046=item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1047
1048=item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1049
1050=item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1051
1052=item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1053
1054Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1055and convert them to at most I<N> digits, suppressing leading zeroes, and
1056returning a pointer to the first character after the digits.
1057
1058=item ECB_I2A_MAX_X5 (=59074)
1059
1060=item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1061
1062=item ECB_I2A_MAX_X10 (=2932500665)
1063
1064=item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1065
1066The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1067functions, but they can generate one digit more, as long as the number
1068is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
106916 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1070respectively.
1071
1072For example, the digit part of a 32 bit signed integer just fits into the
1073C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1074digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1075good enough for 32 bit unsigned numbers.
1076
1077=back
1078
871=head2 FLOATING POINT FIDDLING 1079=head2 FLOATING POINT FIDDLING
872 1080
873=over 4 1081=over
874 1082
875=item ECB_INFINITY [-UECB_NO_LIBM] 1083=item ECB_INFINITY [-UECB_NO_LIBM]
876 1084
877Evaluates to positive infinity if supported by the platform, otherwise to 1085Evaluates to positive infinity if supported by the platform, otherwise to
878a truly huge number. 1086a truly huge number.
956 1164
957=back 1165=back
958 1166
959=head2 ARITHMETIC 1167=head2 ARITHMETIC
960 1168
961=over 4 1169=over
962 1170
963=item x = ecb_mod (m, n) 1171=item x = ecb_mod (m, n)
964 1172
965Returns C<m> modulo C<n>, which is the same as the positive remainder 1173Returns C<m> modulo C<n>, which is the same as the positive remainder
966of the division operation between C<m> and C<n>, using floored 1174of the division operation between C<m> and C<n>, using floored
973C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1181C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
974negatable, that is, both C<m> and C<-m> must be representable in its 1182negatable, that is, both C<m> and C<-m> must be representable in its
975type (this typically excludes the minimum signed integer value, the same 1183type (this typically excludes the minimum signed integer value, the same
976limitation as for C</> and C<%> in C). 1184limitation as for C</> and C<%> in C).
977 1185
978Current GCC versions compile this into an efficient branchless sequence on 1186Current GCC/clang versions compile this into an efficient branchless
979almost all CPUs. 1187sequence on almost all CPUs.
980 1188
981For example, when you want to rotate forward through the members of an 1189For example, when you want to rotate forward through the members of an
982array for increasing C<m> (which might be negative), then you should use 1190array for increasing C<m> (which might be negative), then you should use
983C<ecb_mod>, as the C<%> operator might give either negative results, or 1191C<ecb_mod>, as the C<%> operator might give either negative results, or
984change direction for negative values: 1192change direction for negative values:
997 1205
998=back 1206=back
999 1207
1000=head2 UTILITY 1208=head2 UTILITY
1001 1209
1002=over 4 1210=over
1003 1211
1004=item element_count = ecb_array_length (name) 1212=item element_count = ecb_array_length (name)
1005 1213
1006Returns the number of elements in the array C<name>. For example: 1214Returns the number of elements in the array C<name>. For example:
1007 1215
1015 1223
1016=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1224=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
1017 1225
1018These symbols need to be defined before including F<ecb.h> the first time. 1226These symbols need to be defined before including F<ecb.h> the first time.
1019 1227
1020=over 4 1228=over
1021 1229
1022=item ECB_NO_THREADS 1230=item ECB_NO_THREADS
1023 1231
1024If F<ecb.h> is never used from multiple threads, then this symbol can 1232If F<ecb.h> is never used from multiple threads, then this symbol can
1025be defined, in which case memory fences (and similar constructs) are 1233be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines